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Coherent control of group index and
magneto-optical anisotropy in a multilevel
atomic vapor
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Midlands Ultracold Atom Research Centre, School of Physics and Astronomy, University of Birmingham,
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Abstract: We study electromagnetically induced transparency (EIT) in a heated potassium
vapor cell, using a simple optical setup with a single free-running diode laser and an acousto-optic
modulator. Despite the fact that the Doppler width is comparable to the ground state hyperfine
splitting, transparency windows with deeply sub-natural line widths and large group indices
are obtained. A longitudinal magnetic field is used to split the EIT feature and induce magneto-
optical anisotropy. Using the beat note between co-propagating coupling and probe beams, we
perform a heterodyne measurement of the circular dichroism (and therefore birefringence) of the
EIT medium. The observed spectra reveal that lin‖lin polarizations lead to greater anisotropy
than lin⊥lin. A simplified analytical model encompassing sixteen Zeeman states and eighteen Λ

subsytems reproduces the experimental observations.

© 2016 Optical Society of America

OCIS codes: (020.1670) Coherent optical effects; (300.6210) Spectroscopy, atomic; (290.3030) Index measurements;
(230.2240) Faraday effect.

References and links
1. K-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev.

Lett. 66, 2593–2596 (1991).
2. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent

media,” Rev. Mod. Phys. 77, 633 (2005).
3. M. D. Lukin, “Colloquium: trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75,

457 (2003).
4. D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear

magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153 (2002).
5. J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B 81, 421 (2005).
6. S. Gozzini, S. Cartaleva, A. Lucchesini, C. Marinelli, L. Marmugi, D. Slavov, and T. Karaulanov, “Coherent

population trapping and strong electromagnetically induced transparency resonances on the D1 line of potassium,”
Eur. Phys. J. D. 53, 153–161 (2009).

7. K. Nasyrov, S. Gozzini, A. Lucchesini, C. Marinelli, S. Gateva, S. Cartaleva, and L. Marmugi, “Antirelaxation
coatings in coherent spectroscopy: theoretical investigation and experimental test," Phys. Rev. A 92, 043803
(2015).

8. S. Gu, J. A. Behr, M. N. Groves, and D. Dhat, “Coherent population trapping states with cold atoms in a magnetic
field,” Opt. Commun. 220, 365–370 (2003).

9. A. Sargsyan, P. A. Petrov, T. A. Vartanyan, and D. Sarkisyan, “Electromagnetically induced transparency in
potassium vapors: features and restrictions,” Opt. Spectrosc. 120, 339–344 (2015).

10. E. Haller, J. Hudson, A. Kelly, D. A. Cotta, B. Peaudecerf, G. D. Bruce, and S. Kuhr, “Single-atom imaging of
fermions in a quantum-gas microscope,” Nat. Phys. 11, 738–742 (2015).

11. G. J. A. Edge, R. Anderson, D. Jervis, D. C. McKay, R. Day, S. Trotzky, and J. H. Thywissen, “Imaging and
addressing of individual fermionic atoms in an optical lattice,” Phys. Rev. A 92, 063406 (2015).

12. W. Xu and B. DeMarco, “Velocity-selective electromagnetically-induced-transparency measurements of potassium
Rydberg states,” Phys. Rev. A 93, 011801(R) (2016).

13. S. Falke, E. Tiemann, C. Lisdat, H. Schnatz, and G. Grosche, “Transition frequencies of the D lines of 39K, 40K,
and 41K measured with a femtosecond laser frequency comb,” Phys. Rev. A 74, 032503 (2006).

14. K. A. Whittaker, J. Keaveney, I. G. Hughes, and C. S. Adams, “Hilbert transform: applications to atomic spectra,”
Phys. Rev. A 91, 032513 (2015).

                                                                                                  Vol. 24, No. 14 | 11 Jul 2016 | OPTICS EXPRESS 15494 

Journal © 2016 Received 20 Apr 2016; revised 29 May 2016; accepted 1 Jun 2016; published 29 Jun 2016 
#263608 http://dx.doi.org/10.1364/OE.24.015494 



15. H. Wang, P. L. Gould, and W. C. Stwalley, “Long-range interaction of the 39K(4s)+39K(4p) asymptote by
photoassociative spectroscopy. I. The 0−g pure long-range state and the long-range potential constants,” J. Chem.
Phys. 106, 7899 (1997).

16. O. Schmidt, R. Wynands, Z. Hussein, and D. Meschede, “Steep dispersion and group velocity below c/3000 in
coherent population trapping,” Phys. Rev. A 53, R27(R) (1996).

17. R. Wynands, A. Nagel, S. Brandt, D. Meschede, and A. Weis, “Selection rules and line strengths of Zeeman-split
dark resonances,” Phys. Rev. A 58, 196 (1998).

18. X. Wei, J. Wu, G. Sun, Z. Shao, Z. Kang, Y. Jiang, and J. Gao, “Splitting of an electromagnetically induced
transparency window of rubidium atoms in a static magnetic field,” Phys. Rev. A 72, 023806 (2005).

19. S. M. Iftiquar and V. Natarajan, “Line narrowing of electromagnetically induced transparency in Rb with a
longitudinal magnetic field,” Phys. Rev. A 79, 013808 (2009).

20. S. Franke-Arnold, M. Arndt, and A. Zeilinger, “Magneto-optical effects with cold lithium atoms,” J. Phys. B: At.
Mol. Opt. Phys. 34 2527 (2001).

21. J. M. Choi, J. M. Kim, Q.-H. Park, and D. Cho, “Optically induced Faraday effect in a Λ configuration of
spin-polarized cold cesium atoms,” Phys. Rev. A 75, 013815 (2007).

22. A. Wojciechowski, E. Corsini, J. Zachorowski, and W. Gawlik, “Nonlinear Faraday rotation and detection of
superposition states in cold atoms,” Phys. Rev. A 81, 053420 (2010).

23. B. Wang, S. Li, J. Ma, H. Wang, K. C. Peng, and M. Xiao, “Controlling the polarization rotation of an optical field
via asymmetry in electromagnetically induced transparency,” Phys. Rev. A 73, 051801 (2006)

24. N. Hombo, S. Taniguchi, S. Sugimura, K. Fujita, and M. Mitsunaga, “Electromagnetically induced polarization
rotation in Na vapor,” J. Opt. Soc. Am. B 29, 1717–1721 (2012).

25. D. A. Steck, Classical and Modern Optics, available online at http://steck.us/teaching (revision 1.5.2, 28 June
2015).

26. Trade names and part numbers are used for identification purposes only, and do not constitute endorsements. Other
products may perform similarly or better.

27. Y.-C. Chen, C.-W. Lin, and I. A. Yu, “Roles of degenerate Zeeman levels in electromagnetically induced trans-
parency,” Phys. Rev. A 61, 053805 (2000).

28. K. Li, L. Deng, and M. G. Payne, “Realization of a single and closed Λ-system in a room-temperature three-level
coherently prepared resonant medium with narrow D1 hyperfine splittings,” Appl. Phys. Lett. 95, 221103 (2009).

29. O. S. Mishina, M. Scherman, P. Lombardi, J. Ortalo, D. Felinto, A. S. Sheremet, A. Bramati, D. V. Kupriyanov,
J. Laurat, and E. Giacobino, “Electromagnetically induced transparency in an inhomogeneously broadened Λ

transition with multiple excited levels,” Phys. Rev. A 83, 053809 (2011).
30. R. K. Hanley, P. D. Gregory, I. G. Hughes, and S. L. Cornish, “Absolute absorption on the potassium D lines:

theory and experiment,” J. Phys. B: At. Mol. Opt. Phys. 48, 19 (2015).
31. H. Wang, D. J. Goorskey, W. H. Burkett, and M. Xiao, “Cavity-linewidth narrowing by means of electromagnetically

induced transparency,” Opt. Lett. 23, 1732–1734 (2000).
32. G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of a tunable-bandwidth white-light interferometer

using anomalous dispersion in atomic vapor,” Phys. Rev. Lett. 99, 133601 (2007).
33. T. Lauprêtre, C. Proux, R. Ghosh, S. Schwartz, F. Goldfarb, and F. Bretenaker, “Photon lifetime in a cavity

containing a slow-light medium,” Opt. Lett. 9, 1551–1553 (2011).
34. T. Lauprêtre, S. Schwartz, R. Ghosh, I. Carusotto, F. Goldfarb, and F. Bretenaker, “Anomalous ring-down effects

and breakdown of the decay rate concept in optical cavities with negative group delay,” New J. Phys. 14 043012
(2012).

35. J. G. Bohnet, Z. Chen, J. M. Weiner, D. Meiser, M. J. Holland, and J. K. Thompson, “A steady-state superradiant
laser with less than one intracavity photon,” Nature 484, 78–81 (2012).

36. J. M. Weiner, K. C. Cox, J. G. Bohnet, Z. Chen, and J. K. Thompson, “Superradiant Raman laser magnetometer,”
Appl. Phys. Lett. 101, 261107 (2012).

37. M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and
relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 053807 (2007).

38. http://epapers.bham.ac.uk/2130/

1. Introduction

Electromagnetically induced transparency (EIT) occurs with three-level atoms when a pair of
optical transitions simultaneously addressed by a weak probe and strong coupling field share
a common atomic state [1]. This dramatically modifies the optical susceptibility of an atomic
vapor as a result of quantum interferences between competing scattering channels [2]. Even
though the refractive index in such a gas may differ from unity by less than a part per million,
the dispersion line width can be deeply sub-natural, leading to a giant group index of refraction.
Critically, this enhanced dispersion is accompanied by reduced absorption. Because of this, and
the fact the dispersion is dynamically controllable, EIT and related techniques have generated
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widespread interest for a number of applications, including slowing and storage of light [3],
optical magnetometry [4], and precision timekeeping [5].

Here we study EIT in the Λ configuration in a heated potassium vapor. In contrast with more
commonly used alkali atoms such as cesium and rubidium, EIT in potassium is complicated
by the fact that the frequency scale of Doppler broadening is comparable to the ground state
hyperfine splitting. This can result in unwanted probe absorption from atoms that are in the
wrong combination of internal state and velocity class to undergo EIT. However the relatively
small hyperfine splitting in potassium also offers some practical advantages, for example with
respect to the generation and detection of a mutually coherent pair of probe and coupling beams.
Furthermore in studies of coherent population trapping (CPT) with potassium, it was shown
that the overlapping Doppler profiles of the hyperfine ground states lead to reduced optical
pumping and therefore enhanced CPT contrast when compared to cesium [6]. This work was
later extended to EIT in antirelaxation-coated cells [7]. The effects of optical pumping on CPT
with cold potassium atoms also have been studied with an eye towards nuclear beta decay
experiments with radioactive 38mK and 37K [8]. The small hyperfine splitting in potassium
additionally makes it possible to enter the Paschen-Back regime at significantly lower magnetic
fields than in cesium or rubidium [9]. More recently Λ-EIT-based cooling was used to enable
lattice-site-resolved studies of correlated many-body states of quantum degenerate 40K Fermi
gases [10, 11], and ladder-EIT spectroscopy of Rydberg states in heated 39K has been studied for
future experiments with Rydberg-dressed quantum gases of 40K [12]. In the present work we
show how the richness of potassium EIT can be enhanced with the addition of a uniform magnetic
field. The resulting Zeeman shifts lift the manifold degeneracies to induce a magneto-optical
anisotropy whose polarization dependence highlights the role of coherence.

The rest of the paper is organized as follows. In Section 2 we describe the experimental setup,
and investigate the effects of vapor pressure and laser detuning on the group index of the gas. In
Section 3 we study the system under the influence of an applied longitudinal magnetic field, and
for different coupling beam polarizations. We exploit our configuration of co-propagating and
spatially mode-matched probe and coupling beams to demonstrate a heterodyne measurement
of the circular dichroism of the gas. We observe a significant dependence of the anisotropy
on the angle between linear probe and coupling beam polarizations. A multi-level theoretical
model is introduced and used to verify this result. Finally, in Section 4 we discuss our results and
conclude.

2. Absorption coefficient and group index

We implement EIT on the D1 (42S1/2 ↔ 42P1/2) lines of potassium, shown schematically in
Fig. 1(a). The relatively small isotope shifts and hyperfine splittings mean that all of the D1
transitions for the two most naturally abundant potassium isotopes occur within a single Doppler-
broadened profile. Given the 93% abundance of 39K, the 41K lines are typically not observed
in our experiment (see Fig. 1(b)), but the probe and coupling beams still address multiple 39K
transitions. Considering the relative oscillator strengths and our typical detunings, we associate
the probe with the |Fp = 1〉 ↔ |F ′ = 2〉 manifold of 39K transitions, and the coupling beam with
|Fc = 2〉 ↔ |F ′ = 2〉, where F is the total electronic plus nuclear angular momentum and primes
denote an excited state.

The experimental setup is outlined in Fig. 1(c). The coupling beam is obtained from an external
cavity diode laser running at a wavelength λ = 770.1 nm, and the probe beam, detuned blue by
around 461.7 MHz, is generated by splitting off a small fraction of the laser power and double-
passing an acousto-optic modulator (AOM). The two beams are recombined on a polarizing
beam splitter (PBS) and coupled into orthogonal axes of a single-mode polarization-maintaining
fiber. The beams are collimated together out of the fiber to a 1/e2 intensity diameter of∼ 7.5 mm.
Because the probe and coupling beams are co-propagating, the two-photon EIT transition is
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Fig. 1. (a) Simplified energy schematic of the D1 hyperfine transitions of 39K used in this
work. The coupling beam field Ec (red) is detuned by ∆ from the excited state F ′ = 2
manifold (F ′ = 1 has been omitted for clarity), and the probe (Ep, blue) is detuned by δ

from Raman resonance. The ground state hyperfine splitting is taken from [13]. (b) Saturated
absorption spectrum with no coupling beam present, showing the transitions in (a) and the
background Doppler profile. The partially resolved features include excited state crossover
resonances, and the transmission dips between manifolds are due to ground state crossovers.
(c) Experimental layout, as described in the text. ECDL: external cavity diode laser; M:
mirror; HWP: half-wave plate; QWP: quarter-wave plate; PBS: polarizing beam splitter;
AOM: acousto-optic modulator; BB: beam block; PMF: polarization-maintaining fiber; PD:
photodiode.

effectively Doppler-free; from the ground-state hyperfine splitting, we calculate a broadening
of 600 Hz, which is negligible for even our narrowest features. Since the interference effect
responsible for EIT is independent of the coupling beam detuning ∆, a large fraction of atoms can
contribute to the signal with relatively little dependence on the laser frequency. The relevant scale
is set by the single-photon Doppler width ∆D, which is typically ∼ 2π×400 MHz in half-width
at half-maximum (HWHM). We therefore are able to make all of the measurements described
here without any active stabilization of the laser frequency.

The probe and coupling beams co-propagate through a commercial reference cell with an
internal length of L = 70 mm and a natural abundance of potassium, with no buffer gas or anti-
relaxation coating. Thin-foil resistive heaters at each end of the cell control the vapor pressure
and prevent condensation of potassium on the windows. Although the heater wires trace out
a meandering path to reduce stray magnetic fields, we find it necessary to momentarily turn
them off during measurements in order to obtain the best transparency features. The assembly is
placed within an aluminum lens tube sealed with anti-reflection-coated windows at each end and
wrapped in thermal insulation. To control the magnetic field a solenoid is wound around the lens
tube and the system is placed in a 24 cm long, two-layer cylindrical mu-metal shield without end
caps. After the cell, the probe and coupling beams are separated by another PBS, and the probe
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power is detected with a biased photodiode whose output current is loaded by the 1 MΩ input
impedance of a digital oscilloscope.

We first demonstrate that large refractive group indices can be obtained, even though the
Doppler width approaches the ground state hyperfine splitting. For a probe-frequency-dependent
phase index n(ωp), the group index ng is defined as,

ng = n+ωp
dn

dωp
. (1)

To obtain ng from our transmission spectra, we apply the method recently demonstrated with
Doppler-broadened media in the absence of EIT (Ec = 0) [14]. As in that work, our EIT medium
can be described by a complex susceptibility χ(ωp) = χ ′+ iχ ′′, describing the linear response
with respect to the probe field. The real part χ ′ describes a phase shift picked up by the probe
light as it traverses the cell, with χ ′ = n2−1, and the imaginary part χ ′′ > 0 describes absorption
through the absorption coefficient α = kχ ′′, where k = 2π/λ is the wavenumber. The fraction of
the incident probe power transmitted through the cell is given by,

T (ωp) = exp[−α(ωp)L] . (2)

Although linear in Ep, the response of our EIT medium is nonlinear in Ec, which varies throughout
the volume of the cell due to the Gaussian intensity profile and absorption along z. Therefore in
applying the method from [14] to our system, we must understand χ to represent the susceptibility
averaged over the entire cell volume and weighted by the transverse intensity profile, and we
assume that the variation in T (ωp) around resonance is not too large. Then χ ′′(ωp) can be
calculated from transmission measurements according to Eq. (2). As the medium obeys causality,
the real and imaginary parts of χ are related via the Kramers-Kronig relations; χ ′(ωp) can be
obtained by applying a Hilbert transform to χ ′′(ωp), and numerical differentiation of n(χ ′(ωp))
gives ng(ωp) according to Eq. (1).

Example transmission spectra are shown in Fig. 2(a) for a cell temperature of 84◦C and a
selection of laser detunings. The Raman detuning δ is swept using a voltage-controlled oscillator
driving the AOM. The coupling beam power at the entrance to the cell is 300 µW and the probe
beam is 50 µW. In trace C the laser is tuned so that the probe is near the center of the combined
single-photon Doppler profile shown in Fig. 1(b), giving the strongest background absorption.
The fractional transmission in C varies by 8% over a frequency range of 2π×72 kHz (HWHM),
which is much smaller than the corresponding natural line width, γ = 2π×2.978 MHz [15]. For
these spectra the EIT line width is dominated by power broadening from the coupling beam. The
incident power of 300 µW was chosen to maximise the group index in a compromise between
increasing EIT contrast and broadening with increasing power. In other measurements (not
shown) we have observed transparency windows below 2π × 50 kHz (= γ/60), with a linear
dependence on coupling beam power and a y-intercept equal to 2π× (43.0±1.0) kHz. Of this
limiting value we calculate a contribution of 2π×11 kHz from transit broadening, and a lower
limit of 2π × 17 kHz from B-field variations of 1.2 µT throughout the interaction region, as
calculated on axis for our relatively small solenoid.

As mentioned previously, because of our co-propagating probe and coupling beams, a trans-
parency feature is observed around zero Raman detuning (δ = 0) independent of the coupling
beam detuning ∆. Traces A and B in Fig. 2(a) are taken with the probe beam on the blue- and
red-detuned sides, respectively, of the Doppler profile. Although the spectra were chosen to
have similar α outside of the EIT feature, the heights of the peaks are significantly different.
In A the probe and coupling beams are near resonance with the transitions shown in Fig. 1(a)
in the lab frame, leading to optimum EIT. In contrast, in B the probe absorption is dominated
by high-velocity atoms in the wrong (F = 2) ground state, which see the probe beam red-
shifted into resonance. For these atoms a Λ system exists with the coupling beam addressing
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Fig. 2. Absorption and group index. (a) Fractional transmission spectra T (ωp) for coupling
(probe) power of 300 (50) µW and a cell temperature of 84◦C. The background absorption
coefficient is varied by coarse tuning of the laser, as described in the text. The EIT linewidth
is 2π×{96,98,72} kHz for trace {A,B,C}, and the amplitude is {16,3,8}%. (b) Effect of
optical depth on the group index. For each cell temperature, the group index is measured
for varying laser detuning ∆, leading to varying background probe absorption (i.e., just
outside the EIT resonance). The upper branches correspond to probing on the blue side of
the Doppler profile near the Fp→ F ′ transitions, and the bottom halves on the red side near
Fc→ F ′. The solid line shows the linear dependence expected for simple EIT.

the (F = 1)↔ F ′ transitions, but with Raman detuning increased by the ground state hyperfine
splitting, so that transparency is no longer induced. The resulting excess probe absorption leaves
only a small EIT feature corresponding to the Λ systems shown in Fig. 1(a), but with very large ∆.
If off-resonant absorption is negligible, the group index should be proportional to the absorption
coefficient. We measured ng for varying laser detuning at multiple cell temperatures, a sample of
which are shown in Fig. 2(b). The upper branch of each data set corresponds to probe detunings
on the blue side of the combined Doppler profile. In this regime ng is proportional to α for all of
the temperatures, as shown by the linear fit (dashed line). On the red side the group index is much
smaller for a similar absorption coefficient, showing the effects of single-photon absorption. The
peak group index monotonically increases with cell temperature until ∼ 90◦C. Beyond this, the
maximum achievable ng is reduced due to excessive absorption of the coupling beam. The cell
was therefore kept at 84◦C for the rest of the experiments described here. These results imply
that under optimum conditions, a light pulse whose frequency bandwidth is below the EIT line
width will propagate through the cell with a group velocity vg = c/ng more than 6000 times
slower than the vacuum speed of light, c.

3. Magneto-optical anisotropy

When applying a longitudinal magnetic field, the EIT resonance is split into three distinct
components. Such splitting of EIT and CPT features was the subject of early studies [16, 17] and
interest in this phenomenon has continued [9, 18, 19]. The resonance frequency of the central
peak is independent of field to first order, while the side peaks are shifted with effective magnetic
moments equal to ±1 Bohr magneton (µB = 2π h̄×14 kHz/µT). This occurs because the linear
Zeeman shift perturbs the ground state energies by gF mF µBB where mF is the projection of F , and
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the Landé g-factor gF equals +1/2 for the Fc manifold and −1/2 for Fp (gF ′ =±1/6, but shifts
to the excited states do not affect the Raman resonance frequencies). For linear polarizations,
both probe and coupling fields can be decomposed along the B-field axis into superpositions
of left- and right-handed circular polarizations, so that every Λ system contributing to EIT
connects pairs of ground states with ∆mF = 0 or ±2, giving frequency shifts of 0 or ±µBB/h̄.
The central peak shows no anisotropy. Although the side peaks are not uniquely associated with
either σ± atomic transitions, they do exhibit circular dichroism and birefringence. The latter
manifests itself as Faraday rotation of a linearly polarized probe, which can be detected using a
balanced polarimeter [4]. Coherent control of polarization rotation in Λ systems with and without
magnetic fields has been studied in cold lithium [20], cesium [21], and rubidium [22], and in
heated rubidium [23] and sodium [24].

In Λ systems, where the probe and coupling beam wavelengths are similar, polarization
rotation measurements typically require some relative misalignment of the probe and coupling
beams, to prevent the latter from entering the polarimeter. We prefer not to sacrifice our compact,
robust, and Doppler-free configuration. Instead we have developed a measurement of magneto-
optical activity which exploits the spatial mode-matching of our beams. The setup is shown
schematically in Fig. 3. A quarter-wave plate (QWP), with its fast axis at 45◦ from horizontal,
converts right- and left-hand circular polarizations to vertical and horizontal. In the language of
Jones vectors [25],

er
el

}
QWP−→

{
ev e−iπ/4

eh eiπ/4 , (3)

where er and el are the basis vectors for right- and left-handed circular polarizations (RHC
and LHC, respectively), which are related to horizontal (h) and vertical (v) polarizations by
er = (eh− iev)/

√
2 and el = (eh + iev)/

√
2.

After the wave plate the horizontal and vertical components of both probe and coupling beams
are separated on a polarizing beam splitter and sent to two high-speed photodetectors (Hamamatsu
G4176-03 [26]), which are biased at +5 V with bias-tees (Mini-Circuits ZFBT-4R2GW+). The
two microwave beat notes are amplified by 24 dB (Mini-Circuits ZFL-500LN+), and then sent to
the inputs of an integrated chip gain/phase detector (Analog Devices AD8302-EVALZ), whose
outputs are described below.

PBS

EP  

QWP

,

EVAL
G
φA B

A

B

5V
5V

EC  

Fig. 3. Simplified schematic for heterodyne measurements of optical anisotropy. The quarter-
wave plate and PBS act together as a circularly polarizing beam splitter according to Eq. (3).
The probe and coupling beam components interfere at the fast photodiodes A and B, and the
resulting beat notes are used as inputs to a gain/phase detecting circuit (EVAL) as described
in the text.

To calculate the detected signal, we first consider the propagation of the probe beam. The
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incident field is assumed to take the form Ep = eh Ep exp(−iωpt). After the cell,

Ep(after cell) =
Ep e−iωpt
√

2

(
er e−αrL/2eiφr + el e−αlL/2eiφl

)
,

where αi is the absorption coefficient for i-handed circular polarization, and the corresponding
phase shift φi is related to the phase index by φi = kLni. After the quarter-wave plate,

Ep(after QWP) =
Ep e−iωpt
√

2

[
ev e−αrL/2ei(φr−π/4)+ eh e−αlL/2ei(φl+π/4)

]
. (4)

The coupling beam is initially of the form Ec = e j Ec exp(−iωct), where j = v for the lin⊥lin
configuration coming from the fiber, and j = h for lin‖lin, obtained by placing a polarizer at 45◦

before the cell and increasing the incident power to obtain the same power immediately before
the cell. Given the relative probe and coupling beam powers, we assume the coupling beam
absorption coefficient αc and phase φc are both independent of δ for a fixed value of ∆, and take
φc = 0 without loss of generality. Then,

Ec(after QWP) =
Ec e−iωct
√

2

[
ev e−αcL/2e∓iπ/4 + eh e−αcL/2e±iπ/4

]
, (5)

where the upper and lower symbols refer to lin‖lin and lin⊥lin configurations, respectively. After
the polarizing beam splitter, the detected beat notes are proportional to 2Re(Ep ·E∗c),

LHC (h after PBS) = EpEce−(αl+αc)L/2 cos
sin (δω t−φl) (6)

RHC (v after PBS) = ±EpEce−(αr+αc)L/2 cos
sin (δω t−φr) , (7)

with the beat note frequency δω = ωp−ωc. The AC signals from the two photodiodes are sent
to the A and B input channels of the evaluation board. The board generates two voltage outputs:
one linear in the logarithm of the ratio of A/B amplitudes, and one linear in the phase difference.
Specifically,

amplitude ratio: VG = 0.9 V−0.6 V
(

∆α L
2ln10

)
(8)

phase difference: Vϕ = 0.9 V−1.8 V
(
|∆φ |−π/2

π

)
. (9)

Here ∆α = αr−αl characterizes the circular dichroism and ∆φ = φr−φl the birefringence. For
simplicity we have dropped a π phase shift in the lin⊥lin case, which doesn’t affect the principle
of the measurement. Since the detector expects phase differences centered around π/2, it is
necessary anyway to add a bias phase (we used quarter-wave lengths of cables).

Equations (8) and (9) show that our method produces voltages linear in the differential
absorption and phase shift between circular polarization components, without the need to
normalize to the full transmission. Furthermore, since the probe and coupling beams propagate
together, there is strong common-mode rejection of any phase noise due to mechanical vibrations
of the optics. Example spectra are shown in Fig. 4. The detuning ∆ and coupling beam power
(1 mW) were adjusted to maximize the dichroism at large fields with 50 µW of probe light.
We found that our values of ∆φ were too small to be measured directly given the higher noise
level of the phase channel output. Therefore in practice we obtained spectra of ∆φ via Hilbert
transforms of ∆α in the spirit of what has been described previously.
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Fig. 4. Heterodyne spectra of magneto-optically induced anisotropy. Red (blue) traces show
the results for lin‖lin (lin⊥lin) polarizations; ∆α is the differential absorption coefficient,
∆φ is the phase difference (obtained by Hilbert transformation of ∆α), and ∆ng is the group
index difference obtained by numerical differentiation of ∆φ after smoothing with a cubic
Savitzky-Golay filter (implemented in Matlab using the sgolayfilt command).

We observe that the magneto-optical anisotropy of the EIT medium is systematically 2–3
times greater for lin‖lin polarizations than for lin⊥lin. The dichroism ∆α is of order α/10
for lin‖lin polarizations. This is accompanied by an equivalent polarization rotation angle
θ = ∆φ/2 ∼ 70 mrad, giving a Verdet constant of V ∼ 3×105 rad/T/m for small fields. The
group index difference implies a relative delay of ∆t = ∆ngL/c∼ 200 ns between LHC and RHC
probe components.

The observed difference between polarization configurations can be attributed to magneto-
optical coherence. The linearly polarized probe and coupling beams each represent 50/50
superpositions of LHC and RHC light, with only the relative phases of the components differing
between lin‖lin and lin⊥lin. These phases can influence the anisotropy only if the probability
amplitudes describing scattering within individual Λ subsystems add coherently. It is not a
priori clear whether this should be the case. Schmidt et al. studied the B-field splitting of CPT
resonances in [16], and found in that case that the subsystems summed incoherently to the total
signal. However EIT experiments without magnetic fields have shown some unexpected and
non-trivial results attributed to coherences between multiple scattering channels [27–29]. Our
results similarly show a clear dependence on the relative phase of LHC and RHC polarizations,
highlighting the role of coherence in generating the magneto-optical anisotropy. To the best of
our knowledge this specific effect has not been observed before.

To model our EIT medium, we begin with the susceptibility for a single Λ system, obtained

                                                                                                  Vol. 24, No. 14 | 11 Jul 2016 | OPTICS EXPRESS 15502 



from the three-level master equation [2],

χ = i
N d2

p

h̄ε0

1
2 Γ− iδ

| 12 Ωc|2 +( 1
2 Γ− iδ )[γ− i(δ +∆)]

. (10)

Here N is the number density of atoms, dp is the atomic dipole moment for the probe transition,
and Ωc =−dc ·Ec/h̄ is the Rabi frequency associated with the coupling beam. A ground state
dephasing rate Γ has been added to account for broadening of the EIT features due to magnetic
field variations and the finite transit time of atoms passing through the beams.

With the quantization axis taken along the B-field and propagation direction, the linearly
polarized probe and coupling beams comprise a total of four circularly polarized components.
If we include the F ′ = 1 excited states, which are well within the Doppler-broadened profile,
then we have a total of 18 interconnected Λ systems encompassing 16 Zeeman states, each
defined by the transitions |Fp,mp〉

p←→ |F ′,mp +qp〉
c←→ |Fc,mp +qp−qc〉, where the q =±1

correspond to spherical tensor components of the probe and coupling fields. Rather than solve the
full 18-level master equation, we simply treat each Λ system individually according to Eq. (10),
with dp and Ωc depending on the relevant oscillator strengths and coupling beam polarization
component, and with modified detunings,

δ → δ +µBB [gFpmp−gFc(mp +qp−qc)] (11)
(δ +∆) → (δ +∆)+∆F ′ +µBB [gFpmp−gF ′(mp +qp)] . (12)

The additional excited state detuning ∆F ′ is taken to be 2π×55.55 MHz for F ′ = 1, and 0 MHz
for F ′ = 2 [13], and the distribution of atomic velocities are accounted for by averaging over
Doppler shifted values of ∆ weighted by a Maxwell-Boltzmann distribution. Summing over mp
and F ′ for fixed qp and qc gives a single component χ

qc
qp , and then the total χqp is given by a

symmetric (anti-symmetric) superposition of χ+1
qp and χ−1

qp for lin‖lin (lin⊥lin) polarizations. We
thus finally obtain the susceptibility difference,

∆χ = χ−1−χ+1

=

{ (
χ
+1
−1 +χ

−1
−1

)
−
(
χ
−1
+1 +χ

+1
+1

)
, lin ‖ lin(

χ
+1
−1 −χ

−1
−1

)
−
(
χ
−1
+1 −χ

+1
+1

)
, lin⊥ lin

. (13)

The calculated spectra are shown in Fig. 5. The main features of the data in Fig. 4 are repro-
duced, in particular the greater optical anisotropy for lin‖lin polarizations. One can also see the
spectral asymmetry of ∆φ due to the additional detuning ∆F ′ of the F ′ = 1 states. Missing in
the simulation is the small remnant of the central EIT peak visible at higher field. This feature
only vanishes under perfect balancing of the ideally equal LHC and RHC contributions. Any
imperfections in the polarizations (such as induced by birefringence in the heated cell windows)
or in the uniformity of the magnetic field (due to the small solenoid and imperfect shielding) will
perturb this balance. There are also some quantitative differences in the magnitudes and widths
of the features. Otherwise the excellent agreement between this simplified model and our obser-
vations suggests that a number of other effects not accounted for in our calculation are negligible
for our parameters. For example we have not included the variation in Ep and Ec throughout
the cell volume, have implicitly assumed a uniform distribution of ground state populations,
and have neglected nonlinearities and higher-order coherences related to the multiply-connected
network of Λ systems. Still the magnitude, spectral shape, and polarization dependence of the
magneto-optical anisotropy are all remarkably well modeled by Eqs. (10)–(13). We stress that all
of the χ

qc
qp terms in Eq. (13) are the same for the two polarization configurations, and it is only

the signs of their contributions which differ. These signs have their origins in the superpositions
of LHC and RHC polarizations in the probe and coupling beams, revealing the coherent nature
of the magneto-optical anisotropy.
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Fig. 5. Theoretical spectra, calculated using Eqs. (10)–(13). Parameters are ∆ = 0, Ωc =
2π×10 MHz, Γ = 2π×0.18 MHz, and N = 1.5×1011 cm−3 (we expect 1.8×1011 cm−3

for our temperature [30]).

4. Discussion and conclusion

We have studied electromagnetically induced transparency in a heated potassium vapor cell.
Features with deeply sub-natural line widths, limited by transit broadening and magnetic field
inhomogeneities, were obtained with only a free-running laser and an acousto-optic modulator.
Optimization of the group index with cell temperature resulted in group indices of several
thousand, and the effect of absorption from Doppler-shifted atoms not participating in EIT was
observed. The response of the medium to a longitudinal magnetic field was studied, showing
that the EIT medium exhibits magneto-optical anisotropy for either lin⊥lin or lin‖lin probe and
coupling beam polarizations. A novel heterodyne measurement of the circular dichroism was
demonstrated, and used to show that the magnitude of the induced anisotropy is sensitive to the
relative polarizations. This effect highlights the role of interfering coherences among the many Λ

systems contributing to the signal, as captured in a microscopic multilevel model.
Our longer-term interest is in applying these methods to laser-cooled potassium clouds,

where we can expect much less residual absorption at EIT resonance, and narrower line widths.
In our main experiment 39K atoms are being magneto-optically cooled and trapped within
the mode volume of a high-finesse ring cavity. This will enable studies of strong in-cavity
dispersion [31–34] and lasing with extremely large [35, 36] or near-zero [37] group indices, for
applications in active dispersion-enhanced metrology and sensing.
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