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Probabilistic modelling of prospective 
environmental concentrations of gold 
nanoparticles from medical applications as a 
basis for risk assessment
Indrani Mahapatra1, Tian Yin Sun2,3, Julian R. A. Clark1, Peter J. Dobson4,5, Konrad Hungerbuehler3, 
Richard Owen6, Bernd Nowack2*  and Jamie Lead1,7*

Abstract 

Background: The use of gold nanoparticles (Au-NP) based medical applications is rising due to their unique physical 
and chemical properties. Diagnostic devices based on Au-NP are already available in the market or are in clinical trials 
and Au-NP based therapeutics and theranostics (combined diagnostic and treatment modality) are in the research 
and development phase. Currently, no information on Au-NP consumption, material flows to and concentrations 
in the environment are available. Therefore, we estimated prospective maximal consumption of Au-NP from medi-
cal applications in the UK and US. We then modelled the Au-NP flows post-use and predicted their environmental 
concentrations. Furthermore, we assessed the environment risks of Au-NP by comparing the predicted environmental 
concentrations (PECs) with ecological threshold (PNEC) values.

Results: The mean annual estimated consumption of Au-NP from medical applications is 540 kg for the UK and 
2700 kg for the US. Among the modelled concentrations of Au-NP in environmental compartments, the mean annual 
PEC of Au-NP in sludge for both the UK and US was estimated at 124 and 145 μg kg−1, respectively. The mean PEC 
in surface water was estimated at 468 and 4.7 pg L−1, respectively for the UK and US. The NOEC value for the water 
compartment ranged from 0.12 up to 26,800 μg L−1, with most values in the range of 1000 μg L−1.

Conclusion: The results using the current set of data indicate that the environmental risk from Au-NP used in nano-
medicine in surface waters and from agricultural use of biosolids is minimal in the near future, especially because we 
have used a worst-case use assessment. More Au-NP toxicity studies are needed for the soil compartment.
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Background
There has been an increased focus on developing gold 
nanoparticles (Au-NP) based applications in fields 

ranging from electronics to medicine. Between 2000 and 
2013, gold nanotechnology related patents increased 
exponentially, with about 1600 patents published in 2013 
[1]. The number of publications related to Au-NP in the 
health sector in Thomson Reuters’ Web of Science data 
base also show an exponential increase from 54 to 9083 
publications between 2004 and 2014, of which 2150 arti-
cles were published in 2014 alone (search conducted 
on 28 Dec 2014) [2]. The unique chemical and physical 
properties of Au-NP [3–5] make them excellent candi-
dates for exploitation in the medical field to help in dis-
ease diagnosis and treatment. Furthermore, their ease of 
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synthesis in a variety of sizes and shapes and their ame-
nability towards surface functionalization creates the 
possibility for multi-functionality including imaging and 
targeted drug delivery [6–10].

Drug delivery applications based on Au-NP are fore-
cast to have a 21  % share of the USD 136 billion total 
market of nano-drug delivery applications by 2021 [11]. 
The enormous range of potential applications of Au-NP 
and their increased future use could result in greater risk 
of environmental release and exposure at low concentra-
tions, as is the case with many pharmaceutical products 
[12–15]. Proliferation and increased application of single 
use and disposable cheap medical diagnostic devices [16] 
could add to this environmental burden.

Uptake, biodistribution, accumulation and biomag-
nification of Au-NP by environmental organisms have 
been studied by many investigators [17–19], and it has 
also been shown that Au-NP can be toxic to animals 
and plants [20–23] thus indicating that these suppos-
edly biocompatible materials could present a significant 
hazard to plants and wildlife. Au-NP have been shown to 
have different modes of action for creating toxic effects 
dependent on their properties and the organism studied 
[24, 25] and show promise as an antibacterial agent [26].

In terms of environmental risks, studies on potential 
flows and concentrations of Au-NP in anthropogenic 
and ecological systems are non-existent. Overall there is 
limited environmental hazard data and no exposure data, 
making risk assessment highly problematic. Since there 
is potential for an exponential increase in use of Au-NP, 
it is timely to model their environmental flows and con-
centrations to help frame the risk analysis [27, 28], as has 
been done also for other nanomaterials [29–32].

In this study we have estimated the environmental con-
centrations of Au-NP for the United Kingdom (UK) and 
for the United States of America (US) from selected med-
ical applications that are currently on the market or have 
potential to be introduced in the near future by develop-
ing a conceptual environmental exposure model and by 
combining this with the hazard data. Since no measured 
environmental concentration data is available for Au-NP, 
we have used probabilistic material flow analysis [33] to 
track the flow and fate of Au-NP during use and disposal 
as a first step to establish the possible future baseline 
in a worst case Au-NP release scenario. This approach 
attempts to address the uncertainty and variability in the 
data by creating probability distributions for all input 
data as has been described before [33, 34] Where there is 
limited toxicity data and where experimental procedures 
and methodologies have variability, use of probabilistic/
stochastic methods to establish and quantify environ-
mental risks can help to increase the robustness of the 
risk quotients. Thus, probabilistic species sensitivity 

distribution (pSSD) for quantifying ecotoxicological risks 
and comparing the modeled PEC to the predicted no 
adverse effect concentration (PNEC) based on toxicity 
data for the corresponding environmental compartment, 
forms the basis of our approach to derive risk levels for 
the ecosystem [35].

Results and discussion
Estimation of nano gold consumption from prospective 
medical applications
Table  1 details the estimated quantity of Au-NP from 
nano-enabled medical applications. As the table depicts, 
very small amounts—in the range of milligram to less 
than a few kilograms—are estimated to originate from 
in vitro medical devices or devices used for detection of 
specific disease biomarkers. Larger quantities of Au-NP 
are estimated to be released from applications used for 
treating or managing a particular disease, for example, 
for the treatment of gum infections, cancer and diabe-
tes. The amount of Au-NP per patient was estimated to 
range from 0.05 mg to 5000 mg for the whole treatment 
cycle, the higher values corresponding to the treatment 
modality of photothermal ablation of cancer using gold 
nanoshells. A study [36] conducted in Northwest Eng-
land estimated the consumption of anticancer drugs 
from hospital records and showed total consumption of 
all the identified anticancer drugs to be around 350  kg. 
Thus, the annual Au-NP consumption amount in the 
range <1 kg to 250 kg could be reached in the near future 
for the UK for treatment of breast, lung, pancreatic and 
bowel cancer. This is because these diseases have high 
incidence rates, however, it needs to be kept in mind 
that we have used high release scenario of 100 % patient 
access and treatment by the same Au-NP based thera-
peutic for all patients.

The Au-NP consumption data could be estimated due 
to the strict regulatory governance framework associated 
with approval of pharmaceutical products for human use 
and also because of the availability of disease incidence 
and prevalence data for widespread diseases, such as 
cancer, diabetes. In contrast, estimating Au-NP quanti-
ties from in vitro diagnostic devices was challenging due 
to the dependence on the patenting literature, wherein 
specific details are obscured and also because of the less 
stringent regulatory pathway for in vitro medical devices. 
Hence, the estimated data relied on vast number of 
assumptions and data was extrapolated from various lit-
erature sources.

Mass flows of Au‑NP
The annual mean prospective Au-NP use estimates for 
the UK and US are 540 kg and 2700 kg respectively. The 
yearly disease incidence rates of HIV/AIDS and cancer 
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were found to be relatively stable over the last few years 
[37–41], so the data estimated in this study (which uses 
incidence and prevalence data compiled in the recent 
national disease registries and are for the years between 
2007 and 2014) can be assumed to remain constant for 
the next 5  years. By combining the estimated maximal 
possible consumption of Au-NP with the technical and 
environmental transfer coefficients, we were able to 
obtain Au-NP flows from the end user to technical com-
partments and then further to receiving environmental 
compartments. Currently this represents an unrealisti-
cally high use of Au-NP and therefore our PEC values 
also represent highest possible concentrations. If Au-NP 
based applications for the healthcare sector are realised 
over the coming years, it may result in very high mar-
ket penetration. For example, seven in vitro diagnostics, 
based on Au-NP for determining pregnancy and ovula-
tion, were approved by the USFDA between 2009 and 
2012. In our current assessment, only two uses dominate 

the overall Au-NP flows, a cancer treatment and an insu-
lin delivery platform. The overall flows are therefore to a 
large extent following the flows of Au-NP used in these 
two applications, with all other uses having only a minor 
influence on the mean values but influencing the overall 
distribution and therefore the extreme values.

Figure 1 shows that the most prominent Au-NP flows 
arise from consumption, leading to accumulation in the 
human body for both the UK and US. Based on pre-clin-
ical data, we assumed 35 % [42] and 85 % [43] accumula-
tion of Au-NP in the body for the two cancer therapeutics 
used as model input data. For other Au-NP based appli-
cations we assumed 100 % excretion [44, 45]. Of the total 
yearly consumption of Au-NP, around 160 and 850 kg of 
Au-NP respectively for the UK and the US would remain 
in the body of treated patients.

The second largest flow of Au-NP for both the UK 
and US is via sewage to sewage treatment plants 
(STPs). About 230 and 1300 kg of Au-NP from the total 

Table 1 Prospective amount (per annum) of Gold nanoparticles in selected medical applications (high release scenario)

The Table presents total gold nanoparticles consumption per annum for the UK and US using a worst case scenario. Data rounded off to 2 significant digits for values 
below 1 or data rounded off to the nearest integer or ten. Unit: gram. Refer to Additional file 1: Section S2 Estimation of annual Au-NP consumption for details related 
to assumptions and references

Application Consumption Waste compartment

UK US

Lab based lateral flow assay to detect the presence of 
Methicillin Resistant and Methicillin Sensitive Staphylococ-
cus aureus in blood

0.34 6 Hazardous Medical/Clinical/
Infectious Waste (HMCIW)

In vitro lab based diagnostic test kit for detection and geno-
typing warfarin metabolism

0.36 3 HMCIW

In vitro lab based diagnostic test kit for detection of single 
nucleotide polymorphism to detect risk from venous 
thrombosis

1 3 HMCIW

OTC pregnancy and ovulation test kits to detect hormones 
in urine

3–100 20–460 Municipal solid waste

Lab based in vitro rapid test kits for qualitative detection of 
antibodies to HIV-1 and HIV-2 in human serum, plasma and 
blood

2–80 20–830 HMCIW

Home based in vitro HIV test kits 20 90 Municipal solid waste

Lab based in vitro tests for detection of CD4 cells and viral 
loads for HIV patients

60 540 HMCIW

Lab based diagnostic test kits for infectious diseases 70 350 HMCIW

Removal of Staphylococcus aureus from the nasal passage of 
patients to reduce risks of nosocomial infections

30–53,300 110–164,640 HMCIW

Treatment of periodontitis 270–106,560 940–365,160 Waste water

Sensors for diagnosing diseases from breath samples 0.01–1590 0.03–4620 HMCIW

Treatment for solid tumors (colorectal, pancreas, breast) 70 -(480) -1100 310-(2020)–4600 Waste water

Last line treatment for patients with solid tumors (colorectal, 
pancreatic and breast)

420 1500 Waste water

Treatment for patients diagnosed with head and neck and 
lung cancer

140,290–233,820 744,750–1,241,260 Waste water

Last line treatment for patients with head and neck and lung 
cancer

104,710–174,520 468,250–780,410 Waste water

Transbuccal insulin delivery platforms 128,250 841,620 Waste water
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consumption for the UK and US, respectively, end up in 
sewage. In the UK, small amounts of Au-NP are directly 
transported to surface water due to misconnections and 
overflows. No data about misconnection for the US could 
be found, hence we have not modelled this value, but it is 
a potentially important source of uncertainty. In addition 
to misconnections, leakages from sewer pipes result in 
Au-NP mass transfer to subsurface soils. Au-NP reaching 
the STP might additionally not flow into the STP due to 
overflow discharges during rainy seasons. Compared to 
the US, overflows for the UK are more significant; direct 
discharge to surface waters accounts for nearly one-fifth 
of the total Au-NP initially reaching STPs; whereas for 
the US only 0.04 % of the total Au-NP by-passes the STP 
and reaches the surface waters.

Significant removal of Au-NP into the sludge, for both 
regions, results in significant quantities of Au-NP enter-
ing STPs, ending up in biosolids, which is partially fur-
ther distributed onto agricultural soils as a fertilizer. Total 
Au-NP inputs in soil were modeled to be around 150 and 
730 kg/year for the UK and US respectively. For the UK, 
around 32  kg of Au-NP present in the sludge reach the 
municipal waste incinerators (MWIs)) and a negligible 
quantity pass to the landfill i.e. the majority is applied as 
sludge to land. For the US, of the 990 kg of Au-NP pre-
sent in sludge from centralized treatment works, around 
280 and 150 kg were estimated to reach the landfill and 
MWIs compartments respectively. Au-NP from decen-
tralized systems such as septic tanks, cesspools, etc. can 
be released to land and/or surface water, or underground 
water, based on the implementation status of relevant 
regulations. We assumed all Au-NP passing through the 
decentralized systems end up in sludge treated soils.

The third major flow of Au-NP is to the hazardous 
waste compartment for both regions. For the UK, 60  % 
of the 27 kg of hazardous waste was estimated to reach 
landfill, with the remainder in hazardous medical/clini-
cal/infectious waste (HMCIW) incinerator, whereas 
for the US, 90  % of the 84  kg of Au-NP in the hazard-
ous waste end up in landfills. These values indicate that 
clinical waste treatment via incineration is not a preva-
lent practice for both regions, and hence there is a pos-
sibility of Au-NP becoming accumulated in landfills in 
the future. However, these values need to be treated with 

caution because of the scarcity of national scale data with 
regard to waste management from healthcare facilities. 
Comprehensive and updated reports for medical waste 
for the US were not available and we depended on extrap-
olations from data reported in non-peer reviewed litera-
ture sources (details in Additional file 1: Table AF.T3.2). 
For the UK, only one peer reviewed paper [46] contain-
ing data for the year 2007 was available. Furthermore, the 
difference in the healthcare and biological waste (H&B) 
generation data in the Eurostat database, updated on  
Dec 6, 2013 [47] and DEFRA [48] report for the years 
2004, 2006, 2008 indicate the need for coherent defini-
tions and reporting. H&B generation data in the Eurostat 
database for the year 2010 was approximately 3 times 
more than the waste generated in 2008. Since there was 
no publication from DEFRA for the year 2010, the data 
reported in the Eurostat database could not be verified/
triangulated and the reason for the increase was undeci-
pherable. This indicates the poor state of environmental 
reporting, monitoring and updating between national 
scale and regional scale databases and between organiza-
tions in the EU.

Au‑NP concentrations in technical and environmental 
compartments
Table  2 shows the predicted Au-NP concentrations in 
STP effluent, surface water, STP sludge, and yearly con-
centration in sediments and biosolid treated soils for the 
UK and US. The values presented are mean values, mode 
values (the most probable values) and their 15th and 85th 
percentiles (Q15 and Q85) from each distribution. When 
comparing the two regions, predicted Au-NP concentra-
tions were higher in the UK in nearly all the compart-
ments when compared to those in the US, except for STP 
sludge which shows similar mean concentrations. The 
predicted environment concentration (PEC) in surface 
water in the US is the lowest among all the modeled tech-
nical and environmental compartments for UK and US.

In the UK, the predicted Au-NP concentration in sur-
face water is higher than in sewage effluent. This is due to 
the fact that a significant amount of Au-NP is estimated 
to be released directly to surface waters via overflows. In 
contrast, the lower Au-NP concentration in STP efflu-
ent and the lower PEC in surface water for the US can be 

(See figure on next page.) 
Fig. 1 Modelled annual prospective mass flows (in kg) of Au-NP in the UK and US. Technical and environmental compartments are expressed as 
boxes and flows are expressed as arrows. The flow volumes used are mean values from the probability distribution of each flow. Each box (compart-
ment) is given a code. Mean values, mode, quantile 15 (Q15) and Quantile 85(Q85) values are also given. These are indicated with compartment codes 
on the right side of the flowchart. The flow volumes are visualised by the thickness of the arrows. The compartments which we assumed to be the 
final sink are indicated by a black square box (body of living patients, crematorium, burial, landfill, soil, sediments and subsurface soils). Complete 
Au-NP suspension in surface water and complete Au-NP sedimentation from surface water to sediment are assumed in the calculation of mass flow 
(indicated by dashed arrow) and concentrations
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explained by the much larger STP effluent volume pro-
duced per capita. According to USEPA, 625 liters of STP 
effluent is produced per capita per day [49] whereas for 
the UK, it is 150-180 liters per capita per day [50, 51] (see 
tables in Additional file  1). The mean modeled Au-NP 
concentration in surface waters for both regions is in the 
range of 5–470 pg L−1 which is similar to the background 
gold concentration reported in freshwaters (reviewed by 
McHugh [52]). PECs in surface water of Germany for 
iron oxide nanoparticles based MRI contrast agents were 
estimated to be 400 and 3140  pg  L−1 for the year 2015 
for two different scenarios used by author [53]. Meas-
ured environmental concentrations in surface waters 
of various anticancer drugs in use are in the range 500 
to 41000  pg  L−1 [36], indicating that the results of our 
model are at a similar level.

Predicted mean concentrations of Au-NP in STP sludge 
are 124 and 145 μg kg−1 for the UK and US, respectively. 
The PEC in sludge is considerably less than the meas-
ured total gold concentration of 790  μg  kg−1 reported 
in a Swedish study [54]. The second highest concentra-
tion of Au-NP is in biosolid treated soils, although yearly 
concentrations are only in ng kg−1 levels. However, con-
tinuous application of biosolids on agricultural land 
might lead to Au-NP accumulation in soil over years. The 
lower predicted concentration of Au-NP in US agricul-
tural soils is because of the larger area of the country and 
hence larger mass of biosolid treated agricultural soils in 
comparison to the UK.

The Au-NP concentrations for water and sediment 
concentrations are for worst-case scenarios, i.e., we did 

not model any fate in the environment but assumed that 
for the water compartment no sedimentation and for the 
sediment compartment complete sedimentation. Only a 
full environmental fate modelling including a mechanis-
tic modelling of heteroagglomeration, sedimentation and 
transport will enable to predict the actual concentrations 
but these models [55–57] will rely heavily on input data 
to the environmental compartments that are provided by 
the material flow modelling carried out in this study. The 
environmental concentrations calculated in this work are 
valid for a regional assessment and are based on well-
mixed compartments and follow as such the ECHA guid-
ance [58]. A next step in the exposure assessment would 
be to regionalize the emissions which also allow to iden-
tify hotspots [59, 60].

Risk assessment with probabilistic species sensitivity 
distribution (pSSD)
Aquatic species show a wide range of responses to 
Au-NP, with no observed effect concentrations (NOECs) 
ranging from 0.12 μg L−1 up to 26,800 μg L−1; a spread 
of five orders of magnitude, although most values are in 
the 1000  µg  L−1range. The most sensitive species was 
the single cell green algae, Chlamydomonas reinhardtii, 
(an acute toxicity study done using 2 nm Au-NP capped 
with D-manno-pyranoside terminated PAMAM (poly-
amidoamine) G0 generation dendrimer) [23]. PAMAM 
dendrimers of different cores and generations (G2 to G6) 
have been shown to exert toxic affects in fish, freshwa-
ter crustaceans and algae with L(E)C50 values in the range 
0.13–194 μM (reviewed in [61]).

Table 2 Predicted Au-NP concentrations in technical and environmental compartments

The mean, mode (most probable values), quantile 15 (Q15) and quantile 85 (Q85) for the predicted concentrations in the technical environmental compartments are 
provided on the table. Values in italics designate yearly increases in concentrations. Au-NP concentrations in surface water and sediments represent no and complete 
sedimentation respectively. The results are expressed up to two significant digits

UK US Units

Mean Mode Q15 Q85 Mean Mode Q15 Q85

STP Effluent 440 360 220 670 140 130 71 200 pg/L

Surface water 470 270 210 730 4.7 4.0 2.7 6.8 pg/L

STP sludge 120 130 94 150 150 150 120 170 μg/kg

Sludge treated soil 300 300 230 370 150 150 120 170 ng/kg· years

Sediment 290 170 130 450 5.0 4.5 3.0 8.0 ng/kg·years

Hazardous waste 77 78 23 130 65 69 20 110 μg/kg

Medical WIP

Fly ash 270 30 36 530 260 32 36 530 μg/kg

Bottom ash 200 25 27 410 200 26 27 400 μg/kg

Municipal WIP

Fly ash 72 70 53 92 39 38 31 47 μg/kg

Bottom ash 55 52 39 71 30 27 22 37 μg/kg
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Figure  2 shows the cumulative probabilistic species 
sensitivity distribution (pSSD) for Au-NP in water. The 
results lacked sufficient resolution to decipher which 
taxa are most affected, and what particle properties are 
related to toxicity, though it seems fish (Danio rerio) 
were the least sensitive species when exposed to Au-NP 
in an aquatic environment. Publications with properly 
designed experiments [62, 63] or environmentally rel-
evant exposure concentrations for studying toxic effects 
of Au-NP on environmental organisms are sparse. Bar-
ring a few, the studies selected do not report the L(E)Cx 
(lethal/toxic effect shown by x  % of the organisms at a 
particular concentration) value, or the statistical method 
used to arrive at the reported data, do not mention 
acceptable control performance, and lack characteriza-
tion of the NPs throughout the exposure duration. These 
results indicate the high variability of input model data, 
reflecting the varied toxic potential of Au-NP of different 
sizes and coating to different species. Therefore, reliable 
toxicity studies with specific Au-NP used for medical 
applications are needed for improved environmental risk 
assessment to influence policy makers for aiding regula-
tory decision making and responsible innovation [64]. It 
is also necessary to study the environmental stability and 
fate of the coatings of the Au-NP once released to waste-
water or the environment.

By using probability distributions in place of single val-
ues we attempted to address the variability and the uncer-
tainty which is inherent in toxicity studies. The hazard 

assessment we performed is for a “generic” Au-NP, con-
sidering all different sizes and coatings, representing the 
full width of currently used Au-NP in toxicity studies. 
This enables us to compare in a next step this “generic 
Au-NP SSD” with the modelling of the flows and concen-
trations which is also for a “generic Au-NP” because data 
on specific forms of Au-NP is not available.

Figure 3 shows the probability distributions of the PECs 
and the pSSDs for Au-NP in the aquatic and terrestrial 
environment for both the UK and US. The PEC and pSSD 
for surface water and soils are compared and risks may 
arise where the PEC and pSSD overlap. It is clear that 
there is no overlap between the PEC and pSSD in both 
environmental compartments considered for the UK 
and US. The narrowness of the PEC probability density 
curves is due to the fact that few of the Au-NP applica-
tion categories dominate the total consumption resulting 
in a narrow distribution of the total input into the system.

Conclusion
Many human pharmaceuticals occur in the aquatic envi-
ronment in ng L−1 concentrations [14, 65, 66] and studies 
have shown accumulation of these chemicals in aquatic 
organisms [15, 67, 68] and their adverse effects [13, 
69]. The very defining property of nanoparticles—size 
and surface area—coupled with their ability to inter-
act at subcellular levels to generate subtle biochemical 
changes [70], their novel properties and gaps in knowl-
edge regarding relationship between chronic and acute 
toxicity, calls for the inclusion of sub-lethal toxicity end-
points for regulatory decision making. In one scenario we 
also included selected sub-lethal endpoints in the pSSD 
(results are provided in the Additional file 1 section S3: 
Alternate Scenarios) but the risk assessment does not sig-
nificantly change.

Because nanomaterials have been found to undergo 
transformation both inside human body as well as the 
environment [71], their fate can change accordingly in 
real world situations. However, for Au-NP chemical 
degradation is rather unlikely due to the inert nature of 
gold but transformations of surface coatings will strongly 
affect environmental fate. This will be important when 
the results from our material flow modelling are used 
in environmental fate models which include a specific 
description of fate processes [55–57].

In an ideal situation environmental risk assessment 
should be based on a full characterization of the material 
and its transformation products; in the case of nanomate-
rials such complete risk assessments are not yet available 
[27]. The complex challenge can currently be addressed 
in a number of ways, for example by using expert judg-
ment and multi-criteria decision analysis [72, 73] and 
species sensitivity distributions [74] for different types of 
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a nanomaterial. The probabilistic risk assessment using 
both probabilistic species sensitivity distributions and 
probabilistic mass flow models enables to consider the 
complete current knowledge in a systematic and compre-
hensive way and has been applied to other ENM before 
[75, 76]. Both exposure and hazard data are limited and 
the model provides a way to deal with this uncertainty. 

Extensive literature search combined with communica-
tions with experts in the field has helped us to arrive at 
plausible estimates. The results from the model can be 
used to provide a baseline for realistic and environmen-
tally relevant exposure/toxicology studies and can help in 
iterative problem formulation and solution, as more con-
crete data becomes available. The modelling performed 
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here suggest that freshwater (and hence sediments) and 
biosolids treated soils would likely receive highest loads 
of Au-NP for the UK. Risk from Au-NP to aquatic organ-
isms and soil organisms seems to be unlikely in the near 
future at a regional scale, although variations will exist 
temporally and spatially and can also be influenced by the 
presence of natural Au-NP [77].The study models for high 
loading of Au-NP and depends on worst case assump-
tions with regard to environmental transformation and 
fate, hence real concentrations in the environment are 
likely to be much lower. Developing environmental 
fate models and models addressing temporal and spa-
tial issues can be a possible next step to arrive at more 
robust estimates of Au-NP concentration in the envi-
ronment. Hazard assessment data for soil organisms is 
severely limited and so uncertainty is particularly high 
indicating that more Au-NP toxicity research is needed 
for soil organisms. Empirical fate and transformation 
data of Au-NP for incinerators as well as freshwater sys-
tems is non-existent and research is needed for Au-NP 
transformation in STPs with different treatment pro-
cesses using Au-NP with surface coatings used in medi-
cal applications.

Methodology
General model layout
We have used the geographical regions of the UK and 
US (excluding dependent areas) as the units of analysis 
for our study. Similar to the approach proposed by the 
Guidelines for environmental risk assessment (ERA) of 
human pharmaceuticals [78, 79], (hereinafter referred to 
as ‘Guidelines’) where the consumption data of a drug per 
year is the key input factor, the model input in this study 
is based on population based estimates of use and con-
sumption of the selected medical applications in a given 
year and disregards the manufacturing and processing 
facilities as a potential source. The model is a step-wise 
process where the selected application’s post usage life 
cycle has been mapped through the technical compart-
ments of STPs, waste incineration plants (WIPs), land-
fills and the environmental compartments of soil, water 
and sediments. In addition to Au-NP based therapeu-
tic agents which are in early stages of clinical trials, we 
have estimated Au-NP concentrations in medical devices 
approved by regulatory agencies or in late stages of 
product development. A deviation from the Guidelines 
is the use of excretion rates from pre-clinical studies as 
opposed to assuming 100 % excretion. We have consid-
ered possible variable retention of Au-NP in STPs. PECs 
in various compartments and risk assessment results 
considering 100  % excretion are provided in the Addi-
tional file  1 under section  3: Alternate Scenarios. The 

data and values used to arrive at gold amounts per use 
are based on broad estimates derived from the available 
literature and the patient population and hence the study 
is a bottom up, high release scenario study. We have 
assumed Au-NP to be spherical in shape and have used 
mass concentrations to estimate consumption amounts.

Transfer coefficients (TC) have been used to model 
the behaviour of Au-NP in various environmental and 
technical compartments included within the model (see 
Fig. 1 for details). The data used in the model have high 
uncertainty, compounded by large variability and hence 
we built probability distributions for the majority of input 
data. Estimated consumption values of products which 
have the same life-cycle pathway have been summed by 
adding their individual probability distributions. Addi-
tional file 1: Table AF.T1 illustrates the probability distri-
butions for all data used in the study.

To estimate the volumes of the environmental com-
partments, we have used ECHA’s guidance on environ-
mental exposure estimation for chemicals for a regional 
scale model [58]. The mass and volumes along with the 
assumptions of the transition and final environmental 
compartments are detailed in Additional file  1: Tables 
AF.T3.1, AF.T3.2 and AF.T3.3. Seawater is not included 
in our model. The assumptions of a well-mixed, homog-
enous and stationery system have been applied in this 
study which is a standard approach to arrive at crude 
estimates of environmental concentrations at a regional 
level [29]. The model tracks the Au-NP mass and not the 
total gold mass. Loss of the nano-property (e.g. by vapor-
ization) therefore constitutes an elimination flow.

Methodological approach for input data
An extensive literature search was carried out to iden-
tify relevant peer reviewed scientific publications of 
Au-NP or gold colloids in the medical field, administra-
tion doses, distribution, excretion, environmental fate 
and behaviour and environmental toxicity. Our aim was 
to identify Au-NP enabled medical applications which 
are approved, in clinical trials or show promise of trans-
lation from pre-clinical models. Reports published by 
UK and US Government Department and Agencies have 
been relied upon for estimating population, environment 
and technical compartment data. The transfer coeffi-
cients have been estimated by reviewing literature and/
or soliciting expert viewpoints. Triangulations between 
various publications were performed and the approach of 
the best available data was adopted to arrive at the esti-
mates used in this study. Details regarding consumption 
data and assumptions and references therein are included 
in the Additional file  1 section  2: Estimation of annual 
Au-NP consumption and Additional file 1: Table AT.T2.
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Transfer factors
Therapeutics based on Au-NP, after use, will end up either 
in solid waste, when the containers with the remnants of 
the therapeutic and associated procedural implements 
are disposed of as part of HMCIW and/or in the sewer-
age system when it is excreted from the body in urine or 
faeces. In vitro diagnostic devices used in hospitals and 
other healthcare settings will likely be part of HMCIW. 
Over-the-counter (OTC) single use medical devices are 
likely to end up in household waste. Therefore, wastewa-
ter (WW)/sewerage, HMCIW and household waste are 
defined as the key potential sources of entry of Au-NP 
from medical products to the environment.

Au‑NP flow into sewage treatment plants and surface water
Not all houses are served by a centralised STP. The con-
nection rates to STP are 96 % [80] and 74 % [81] for the 
UK and the US respectively. Untreated sewer overflows, 
misconnections whereby grey water from households 
is connected to the storm water drainage systems, and 
exfiltration from sewerage pipes can result in untreated 
WW reaching surface waters, groundwater and subsur-
face soil directly. Au-NP from WW can also enter the 
environment due to failure of decentralised STPs. Since 
the connection rate to STPs for the UK is 96 %, we have 
neglected the contribution of individual septic tanks, 
cesspools, etc. to the pollution load. However, for the US, 
nearly 25  % of the total population is served by decen-
tralised systems and the USEPA suggests a failure rate of 
6 % annually of these systems [82]. Therefore, for the US 
we have considered failures of decentralised systems as a 
source of Au-NP reaching the environment. Additionally, 
discharge of untreated WW due to the dilapidated state 
of sewerage infrastructure [83] and polluted outfalls from 
combined sewers during rains [81] can add to the pollu-
tion load of surface waters.

Behaviour of Au‑NP in surface water
Data was non-existent with regard to Au-NP fate in sur-
face waters and we have therefore modelled two extreme 
scenarios to represent worst case conditions for both 
compartments. We assumed that Au-NP entering the 
surface freshwater compartment were either 100  % 
deposited to the sediment to derive sediment concen-
trations, or remained 100 % in the water phase to derive 
freshwater concentrations.

Behaviour of Au‑NP in Sewage Treatment Plant
Only one published study is available where an estimate 
of the removal efficiency of Au-NP in STPs has been pro-
vided [84]. This study found 99 % removal rate of polymer 
coated Au-NP of sizes 10  nm and 100  nm in activated 
sludge batch experiments irrespective of coating, sizes 

and treatment. We have therefore used a removal effi-
ciency of 99  % for wastewater treatment. However, we 
acknowledge that removal efficiencies will differ based on 
the WW treatment systems used [85, 86].

Au‑NP flow into waste compartment
Household waste is non-hazardous in nature and hence 
in addition to incineration, discarding to landfill is 
another preferred mode of treatment. OTC disposable 
in vitro diagnostic devices containing Au-NP will be part 
of the household and similar waste category as defined 
in the European Union Waste catalogue [87]. In the UK, 
the proportion of landfilled and incinerated waste for the 
category of household and similar waste is 85 and 15 % 
respectively for the year 2008 [47]. For the US, the pro-
portion of household waste sent to landfill and incin-
erated is 82 and 18  % respectively of the total waste 
discarded after the recovered fraction [88].

Wastes from healthcare settings are both hazard-
ous and non-hazardous in type. Hazardous waste from 
healthcare facilities are generally sent for high tem-
perature treatments like incineration and pyrolysis, or 
alternatively non-burn low temperature treatments or 
chemical treatments to disinfect the infectious waste 
[46]. These alterative treatment technologies use wet or 
dry steam at temperatures lower than 200  °C and use 
chemical disinfection methods. We have assumed that 
Au-NP will not be transformed/destroyed when waste is 
treated via non-burn alternative treatment technologies 
and will eventually end up in landfill.

Behaviour of Au‑NP during Waste Incineration
No information is available about the fate of Au-NP in 
incinerators. Depending on the type of waste, type of 
incinerator and operating temperatures, configuration of 
the air pollution control devices (APCDs), and the parti-
cle size, it is likely that Au-NP will partition into bottom 
ash, APCD residues and stack emissions from APCDs.

Emissions from incinerators are under strict regulatory 
control; therefore it has been assumed that all munici-
pal waste and HMCIW incinerators will have associated 
APCDs. Both the UK and US use dry or semi–dry scrub-
bing systems with fabric filters or electrostatic precipita-
tors (ESPs) as the main types of APCDs in the municipal 
waste incinerators [89, 90].

The temperatures in HMCIW incinerators having sec-
ondary chambers can reach as high as 1100 °C, which is 
higher than the melting temperature of bulk gold. Melt-
ing temperature depression related to particle size, both 
for free Au-NP and substrate supported Au-NP, has been 
proven by many investigators [91–95]. Furthermore, 
the presence of chlorine generated from Polyvinyl chlo-
ride in the incinerator can increase metal volatility and 



Page 11 of 14Mahapatra et al. J Nanobiotechnol  (2015) 13:93 

release into gas phase [96]. The vapour pressure of gold 
at 1095  °C is about 1 ×  10−5 torr (1.33 ×  10−3 Pa) [97] 
and that means typically around one monolayer of gold 
will be vaporized in 0.1  s. Hence, Au-NP entering the 
HMCIW incinerators will either melt or vaporize. In 
both cases the nano-property of the gold is lost and the 
Au-NP is no longer distinguishable from the other gold 
forms. We have used both the case of 0 and 100 % elimi-
nation of the gold mass. In the case of 0 % elimination, we 
assume Au-NP to be distributed 81 % in the bottom ash 
and 19 % in the fly ash using the values found by Walser 
et al. [98] for removal of Ceria nanoparticles in munici-
pal waste incinerators. Of the 19  % of Au-NP in the fly 
ash, we assume 50 % of the Au-NP pass through the wet 
scrubbers and the remaining 50 % through the fabric fil-
ter for both the UK and US. This assumption was extrap-
olated from the type of APCD installed in the HMCIW 
incinerators in the US [99] since no data was available 
with regard to APCDs for HMCIW incinerators in the 
UK.

The operating temperatures in municipal waste incin-
erators are around 850  °C, so we assume that 81  % of 
Au-NP mass will be removed in the bottom ash and 19 % 
in the fly ash [98] of which 99.99 % will be removed by 
the ESP and fabric filter as APCD residue. These residues 
are treated as hazardous waste and are finally disposed 
to secured landfills or abandoned underground mines 
[100]. Bottom ash from municipal waste combustors can 
be used in the construction sector [101]. However, due to 
non-uniformity in available data for the selected regions 
and to simplify the model, we have neglected bottom ash 
recycling rate and have presumed that 100 % of the bot-
tom ash from both types of incinerators will be landfilled.

We have not included the leachate from landfill and 
subsequent contamination of the ground water com-
partment because studies on the fate of nanoparticles in 
landfills are not yet available. The technical compartment 
of cremation has been considered in the model bound-
ary with the assumption that some percentage of Au-NP 
might remain in the human body post treatment when 
Au-NP has been administered as a last line treatment. 
The temperature in crematoria is not high enough to 
vaporize or melt Au-NP [102] and hence we assume that 
untransformed Au-NP will form part of the ash.

Therefore, human body, landfills, sediments, subsur-
face soils and burial grounds have been considered as the 
final sink of the product life cycle post usage.

Ecological risk assessment
To derive species sensitivity distributions for environ-
mental effects of Au-NP, an extensive search of the eco-
toxicological literature was conducted. Fourteen relevant 
studies were found published between 2008 and Feb 

2014. Twenty-six data points across five taxonomically 
different environmental organisms—bacteria, fish, algae, 
crustacean and ciliates—were included in the assess-
ment. The endpoints used were mortality and malforma-
tions, growth inhibition and reproductive performance. 
These endpoints were selected to maximize utility of the 
data points from the available published literature and 
because these endpoints can impact species survival. 
We considered all endpoints reported in a study even if 
they used different particle size and coating with the aim 
to create a generic Au-NP species sensitivity distribu-
tion to compare with the PEC of Au-NP which considers 
the mass of Au-NP. If in a study only one concentration 
has been tested on an organism and it had shown no 
effect for the selected toxicity endpoint, we have used 
that concentration as no-observed-effect concentra-
tion (NOEC), acknowledging that this could in reality be 
higher. When a range of concentrations were tested [103, 
104], the highest concentration at which no statistically 
significant adverse effect was observed was used as the 
highest-observed-no-effect-concentration (HONEC). 
The raw data were converted to species sensitive values 
below which long-term negative impacts on the species 
were considered to be excluded using two assessment 
factors (AF) based on the REACH guidelines [105]. The 
first AF was used to convert acute toxicity to chronic tox-
icity (AF time = 1, in the case of chronic and long-term 
test; AF time =  10, in the case of acute and short-term 
test). All but two data points represented acute or short-
term exposures. The second AF was used to convert the 
various endpoints to NOEC values (AF no effect = 1 for 
NOEC, AF no-effect =  2, if L(E)C10 ≤ L(E)Cx < L (E)C 
50 and AF = 10, if L(E)50 ≤ L(E)Cx ≤ L(E)C 100). In stud-
ies where effect concentrations were reported in terms 
of molar concentrations, we have converted the values 
to mass concentration (μg/L), because regulatory limits 
are expressed as such. The studies selected and the asso-
ciated end points arranged species wise are detailed in 
Additional file  1: Tables AF.T4.1, AF.T4.2. Probabilistic 
species sensitivity distributions were constructed for soil 
and freshwater as explained in an earlier study [35].
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