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 1 

Key points 2 

• Liver regeneration is well described and occurs efficiently in the normal liver to restore normal 3 

architecture, size and function 4 

• Chronic injury severely impairs liver regeneration through excess inflammation, scarring and 5 

epithelial abnormalities, this is less well studied but clinically important.  6 

• Zebrafish are an excellent new tool to study liver regeneration and enable large scale chemical 7 

screening assays. 8 

• There is a gap between the generally utilised animal models of liver regeneration and clinically 9 

important scenarios of severe liver injury and impaired liver regeneration     10 

• Understanding and promoting regeneration and repair of the failing liver is a key challenge of 11 

major clinical significance 12 

• Modern imaging techniques will allow non-invasive real-time assessment of liver structure and 13 

function. 14 

• Cell therapies that have been successful in animal models are now being trialled in the more 15 

challenging clinical arena.  16 

 17 

 18 

Introduction 19 

Why the clinical need to understand measure and promote liver regeneration?  20 

Although the normal liver has a fantastic regenerative capacity following acute injury or resection this 21 

regenerative ability becomes overwhelmed in two important scenarios: (1) in the setting of severe acute liver 22 

injury or (2) when there is severe chronic liver injury with aberrant liver architecture and marked liver 23 

fibrosis. These are clinically relevant scenarios that often result in serious morbidity and mortality. Whilst 24 

there have been decades of excellent and clinically informative research into understanding the signals that 25 

control regeneration of the normal liver1 the mechanisms at play when the abnormal liver attempts 26 

regeneration are less well described2. Understanding how regeneration fails or is impaired in the severely 27 

damaged liver is an important goal. Lessons learned from relevant animal models may have a have 28 

importance in the clinical setting and aid the development of new therapies to either promote regeneration or 29 

prevent complications that arise during the period of liver regeneration. A clinical scenario where an 30 

improved understanding of regeneration of the compromised liver includes liver transplantation, where the 31 

increasingly common use of partial livers such as split livers and living donor transplants relies upon  32 

regeneration of the donor graft to reach the correct liver mass. Failure of regeneration in these settings 33 

results in poor or delayed graft function, prolonged intensive care stays, occasionally a requirement for re-34 

transplantation or ultimately even death of the recipient. By understanding the pathological mechanisms 35 
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driving these adverse conditions it is hoped that the period of regeneration can be more predictable and the 1 

associated clinical complications ultimately preventable. The ability to predict or improve liver regeneration 2 

when the liver is compromised, for example in the setting of cirrhosis when surgical resection of 3 

hepatocellular cancer (HCC) is commonly performed, or following the resection of colorectal hepatic 4 

metastasis, when the liver has received prior chemotherapy, would allow clinicians to optimise cancer 5 

resection approaches. Furthermore by understanding the mechanisms underlying normal liver regeneration 6 

and aberrant liver regeneration in chronic liver injury it is hoped that we will be able to promote “healthy 7 

regeneration” or remodelling in chronic liver disease. Such a scenario would be liver cirrhosis where the 8 

initial insult may now be directly treated such as viral hepatitis or autoimmune hepatitis, but the liver tissue 9 

is left severely damaged and still susceptible to the clinical consequences of liver failure, portal hypertension 10 

and an increased risk of HCC. This review cannot be comprehensive but seeks to describe briefly the 11 

mechanisms underpinning liver regeneration, the models used to study this and then discuss areas where 12 

failed or compromised liver regeneration is clinically relevant – with a view to highlighting areas for future 13 

research.  14 

 15 

1. Mechanisms and models of Liver regeneration  16 

In the following section we will review some of the animal models that have been used to understand liver 17 

regeneration. These have traditionally been in rodents but new models are emerging such as the zebrafish. A 18 

general theme is that there has been much work important work understanding how the normal liver 19 

regenerates in these models, but there is less information about how the damaged or compromised liver 20 

regenerates. 21 

  22 

The Rat model of liver regeneration (see figure 1) 23 

The normal liver will attempt to retain an appropriate size relative to the rest of the body. Following injury 24 

or resection the remaining liver undergoes a rapid series of co-ordinated changes to regain its original 25 

volume and structure1. Interestingly, this need to retain the previous size to body weight ratio appears after 26 

liver hypertrophy has been induced by growth factors such as Tri-iodothyronine, when the liver shrinks back 27 

to its original size3. 28 

The rat partial hepatectomy model is the classic model of liver regeneration and has been studied for 29 

decades. In a landmark paper from 1931, Higgins and Anderson reported that removal of the two anterior 30 

lobes of the rat liver (the median and left lateral lobes) equated to a 70% reduction in liver size.4 This 31 

standardised procedure is well tolerated and produces a reliable result. Whilst the normal adult liver is 32 

mitotically quiescent with only minor hepatocyte proliferation detectable, following 70% or “two thirds 33 

partial hepatectomy” the remaining liver remnant undergoes a series of rapid vascular endothelial, 34 

inflammatory and epithelial changes (See Figure 2A). The peak of liver regeneration, as measured by the 35 

number of hepatocytes in DNA synthetic phase, termed “S phase”, occurs about 24 hours following 36 
3 

 



resection. By 7 to 10 days following hepatectomy the rat has largely regrown a normal sized liver (93%) by 1 

hyperplasia of the remnant lobes, and by 20 days following hepatectomy the liver has fully regained its 2 

starting volume. This simple and repeatable experimental procedure has enabled many important new 3 

insights into regeneration of the normal liver1. Following such “normal regeneration” the non-parenchymal 4 

cells in the liver, namely the stellate cells, liver sinusoidal endothelial cells (LSECS) and macrophages act in 5 

a coordinated fashion and help to control the epithelial regenerative response5. In a classic parabiosis 6 

experiment by Moolten and Bucher, carotid-to-jugular cross circulation was established between a rat that 7 

has been subjected to partial hepatectomy and a normal rats. This induced “liver regeneration” in the non-8 

hepatectomized rats with normal livers. This suggested factors were circulating from the hepatectomized rat 9 

to the normal rat to induce the regenerative response and thereby pointed to there being circulating blood 10 

derived factors that help to stimulate and co-ordinate liver regeneration following partial hepatectomy6. 11 

Interleukin-6, tumor necrosis factor-α (TNF- α), hepatocyte growth factor (HGF), epidermal growth factor 12 

(EGF) and thyroid hormone have been discovered as humoral factors that control liver regeneration7, 8. 13 

Whilst the multiple important mechanisms controlling normal liver regeneration that have been identified in 14 

the rat, these have been well reviewed elsewhere1 and we will therefore not write further on this. 15 

 16 

The volume of liver resected in the rat can be increased to 90%, effectively modelling the clinical syndrome 17 

termed “small for size”. In both the 90% hepatectomy model and the clinical situation survival is 18 

compromised with death from liver failure a significant risk9. In the 90% hepatectomy model and the 19 

clinical situation, if the volume of resection increases beyond a threshold then the regenerative capacity of 20 

the remaining hepatocytes actually begin to fall, thereby contributing to a rapidly developing scenario of 21 

liver failure. Understanding why there is a failure of appropriate regeneration by the remaining liver is a 22 

clinically important goal.  The contributory mechanisms of this failure of regeneration are likely to be 23 

multiple but involve vascular shear stress in the livers sinusoids caused by the portal blood passing through a 24 

small parenchymal volume which can cause periportal sinusoidal endothelial damage and parenchymal 25 

inflammation10. 26 

 27 

Various strategies have been deployed in this model of 90% hepatectomy to increase liver regeneration and 28 

/or improve the survival following this operation. Ren et al. showed that 90% but not 70% hepatectomy 29 

increased portal and systemic endotoxin levels. Following this observations they used selective bowel 30 

decontamination with Gentamycin and showed that this reduced lipopolysaccharide levels, enhance liver 31 

regeneration and increased the survival following 90% hepatectomy from 24% to 56%11. Given that sepsis 32 

due to gut related organisms is a major cause of death following major hepatic resection this is a potentially 33 

important finding12. Another potentially clinically relevant treatments for this syndrome is octreotide which 34 

has been shown in the rat 90% hepatectomy model to reduce mortality from 63% to 33%13. Interestingly, 35 

although octreotide had this beneficial effect on mortality it actually reduced early hepatocyte proliferation, 36 
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however it did reduce liver injury and necrosis and modified the hepatic methionine cycle reaction, causing 1 

an increase in methionine and 5′-methylthioadenosine, which was thought to be important for the beneficial 2 

effect. An important study by Ninomiya and colleagues challenged the assumption that the promotion of 3 

regeneration would be beneficial in the rat 90% hepatectomy model. They hypothesized that the rapid 4 

regenerative response of small remnant liver is actually responsible for the poor outcome seen. They 5 

administered dHGF which promoted the rate of liver regeneration in the 70% hepatectomy model. However, 6 

in the 90% hepatectomy this had no benefit upon the survival rates. Instead they sought to delay the 7 

regenerative response through the administration of either NS-398 (an ERK1/2 inhibitor) or PD98059 (a 8 

selective MEK inhibitor).  Deceleration of the regenerative response by NS-398 or PD98059 treatment 9 

resulted in a significant and exciting improvement in day 7 survival (approximately 70%) compared to the 10 

vehicle treated group (10%) 14. Interestingly the lobular spatial integrity was better preserved in animals that 11 

had their regenerative response lowered. Presumably this enables the portal blood flow and resulting 12 

physiological function to be maintained during the regenerative phase.  13 

 14 

The rat has further been widely used to study liver regeneration when the regenerative capacity of mature 15 

hepatocytes is compromised. Here hepatocyte proliferation is inhibited by the chemical 2-16 

Acetaminofluorene (AAF). This can be combined with either partial hepatectomy or the hepatotoxin carbon 17 

tetrachloride to prompt liver regeneration15, 16. In a classic paper from the Thorgeirsson laboratory 18 

[3H]thymidine was administered to the AAF treated rats at 6 days following partial hepatectomy. The 19 

[3H]thymidine labelled the only epithelial cells that were proliferating in the liver at this time, the 20 

oval/HPCs. When the rats were subsequently sacrificed from 9 to 13 days the [3H]thymidine was then 21 

identified in hepatocytes. Whilst not definitive proof that the oval cells/HPCs were the source of hepatocytes 22 

in the rat, this was suggestive of a product-precursor relationship17 Later work in the rat AAF/partial 23 

hepatectomy model confirmed that cell proliferation was limited to the oval cells/HPCs and that hepatocytes 24 

were senescent (i.e. unable to proliferate) and p21 positive, making them an unlikely source of 25 

regeneration18. However, a recent report has challenged the concept that oval cells/HPCs contribute to liver 26 

parenchyma regeneration in the AAF/PH model in the rat and following careful observations suggested that 27 

he replication of mature hepatocytes mainly contributes regenerate the liver, even in these circumstances 28 

where there is a challenge to hepatocyte regeneration19; presumably these hepatocytes, if able to regenerate 29 

hepatocytes, would have initially escaped the effects of AAF. Such results emphasize the need for reliable 30 

lineage tracing systems to make the claims of regenerative potential of various cell populations secure and 31 

the technology to achieve this is not well developed in the rat compared to mouse20.  32 

 33 

The mouse as a model of liver regeneration. 34 

More recently the mouse has been used as a model of liver regeneration, this has facilitated the use of the 35 

many mouse transgenic strains that enable the understanding of the role of various genes that control or 36 
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modulate liver regeneration21. The transgenic mice may have a permanent over or under-expression of a 1 

normal or mutated gene, a refinement of this is that the gene may be “conditionally” deleted from a 2 

particular cell type in the liver at a set time- for example before a partial hepatectomy.  The physiology of 3 

regeneration in the mouse following partial hepatectomy is similar to the rat although following partial 4 

hepatectomy the peak of regeneration, as measured by BrdU incorporation into hepatocytes in DNS 5 

synthesis (S phase), occurs slightly later, at 24-48 hours22.  6 

The mouse has been used to model liver regeneration in the setting of chronic liver damage where “normal 7 

liver regeneration” is impaired. The most frequently used model of iterative liver damage is the chronic 8 

carbon tetrachloride (CCl4) model of liver injury (which has also been used in the rat). Following CCl4 9 

administration there is predictable parenchymal necrosis most prominently surrounding the central veins 10 

peaking at 24 hours which is then followed by liver regeneration. After repeated dosing of CCl4 liver fibrosis 11 

begins to develop, with the activation of stellate cells into scar forming myofibroblasts, the deposition of 12 

excess liver scar tissue, and ultimately the development of nodular liver cirrhosis. The collagen scar 13 

becomes increasingly crosslinked over time, making degradation of the scar more difficult, and further 14 

inhibiting regeneration23. Upon cessation of CCl4 administration, there is regeneration of the liver 15 

parenchyma which is combined with scar degradation and resolution of the inflammation. In this setting the 16 

importance of macrophages in collagen scar regression24, 25,has been shown to be critical for effective liver 17 

regeneration26 .  18 

There are several dietary models of liver injury in mouse commonly used to model liver disease including 19 

the 1,4-dihydro-2,4,6-trimethyl-pyridine-3,5-dicarboxylate (DDC) diet27,  which induces biliary injury and 20 

regeneration. Following the diet there is a proliferation of primitive ductules with poorly defined lumens that 21 

spread from the portal tract into the hepatic lobule. This “ductular reaction” is associated with significant 22 

fibrosis28, 29 and thus is a model of biliary injury and fibrosis. Mice subject to the DDC diet respond poorly 23 

to partial hepatectomy27. Another diet model which is commonly used in mice is the modified CDE diet 24 

which was developed by the Yeoh Group30 which induces hepatocellular injury with a degree of steatosis 25 

and a secondary “ductular response” where oval/ductular cells spread from the portal tract28, 31, 32. These 26 

ductular reactions are important for biliary regeneration following injury and if their proliferative response is 27 

impaired following biliary injury then then there is an increase in hepatic necrosis33. Whether the ductular 28 

reactions contain bipotential hepatic progenitor cells capable of regenerating hepatocytes as well as biliary 29 

cells is a controversial area. In mouse, in the absence of significant hepatocyte senescence, then hepatocyte 30 

self-replication seems to provide practically all hepatocyte regeneration with little or no contribution from 31 

hepatic progenitor cells34, 35. However, in the context of severe liver injury ad hepatocyte replication failure 32 

then hepatic progenitor cells may have hepatocyte regenerating capacity36- the degree and importance of this 33 

axis in severe liver injury needs further study and this may require the development of models where 34 

hepatocyte replication can be inhibited to model the severe human liver disease.  35 

 36 
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Zebrafish  1 

Zebrafish have recently been developed to model many diseases and understand pathophysiological 2 

processes (see figure 1)37. Their small size and optically translucency brings the advantages of low cost, 3 

rapid analysis. Because they grow in water zebrafish have been used as model system for in vivo chemical 4 

screening. To date, their use has shown that many of the biological processes and signalling pathways seen 5 

in the mouse and rat are recapitulated in zebrafish.  6 

There are a number of ways of provoking liver generation in the zebrafish including surgical partial 7 

hepatectomy, drug induced liver injury and nitroreductose-mediated hepatocyte ablation38. The zebrafish has 8 

a trilobar structure and the one-third partial hepatectomy model has been established in the zebrafish by 9 

removal of one lobe39. Clearly this is currently a more limited resection than performed in rodents. These 10 

studies have established signals such as Wnt40, BMP and FGF as important for liver regeneration in 11 

zebrafish41. Interestingly zebrafish exhibit cellular plasticity in that bile ducts can convert to hepatocytes 12 

following large-scale hepatocyte loss. Two independent reports found, using hepatocyte ablation and lineage 13 

tracing, that following extensive hepatocyte loss the biliary cells are able to regenerate the hepatocytes42-44. 14 

Interestingly, in an ethanol induced model of liver fibrosis Huang et al. found that Wnt and Notch has 15 

opposing roles in directing HPCs in their regeneration of hepatocytes. Low levels of Notch stimulation 16 

stimulated HPC proliferation and hepatocyte differentiation, high levels of Notch suppressed this pathway. 17 

Wnt ligands were found to suppress Notch signalling via Numb a protein inhibitor of Notch45. Importantly 18 

this helps to validate the zebrafish model in the liver regeneration setting, as the same opposing signals Wnt 19 

and Notch acting via the node Numb signals have previously been shown to control the behaviour of HPCs 20 

in mouse and are differentially expressed in hepatocellular versus biliary injury in human liver31. Zebrafish 21 

are an ideal model for “forward genetic” due to their small size and ability to screen large numbers of 22 

organisms following exposure to a chemical mutagen. Phenotypes can be screened and the actual gene/s 23 

responsible then mapped, an approach that has already yielded results in the setting of liver development46.   24 

This exciting new model system looks set to make important inroads especially into the area of screening 25 

compounds and drugs for their effects upon liver regeneration. However we should still express some 26 

caution and there is an important need to show that the signals and targets identified translate through into 27 

mammalian systems including human liver regeneration.  28 

 29 

The cellular sources and mechanisms controlling epithelial regeneration in various model systems 30 

As discussed above, mouse models of liver injury recent lineage tracing experiments have failed to show 31 

convincing regeneration from non-hepatocyte sources34, 47 unless there is significant liver injury and 32 

hepatocyte proliferation is strongly inhibited36. Furthermore, there is evidence that hepatocytes can undergo 33 

a ductular change and at least partly contribute to the ductular cell population48, 49. However as outlined 34 

above, in zebrafish there is strong evidence using lineage tracing systems that following significant liver 35 

injury ductular cells/HPCs can give rise to significant hepatocyte regeneration42-44. In the rat there is some 36 
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circumstantial evidence suggestion oval cells/HPCs can regenerate hepatocytes when hepatocyte 1 

regeneration is compromised;17 however, opposing data does exist suggesting that this regenerative pathway 2 

is not significant19. A common theme is the need for reliable lineage tracing systems to provide proof of the 3 

regenerative lineages in the models commonly studied, a further issue is the whether the liver injury systems 4 

reliably recapitulate the severity of liver injury seen in human disease. Morphological studies have recently 5 

claimed that hepatic progenitor cells regenerate hepatocyte “buds” in areas of liver parenchyma has been 6 

obliterated50. However, performing lineage tracing experiments in humans is not possible and caution is 7 

required in interpreting such studies. The nearest approach to lineage tracing in the human liver is the use of 8 

mitochondrial DNA mutation analysis to show that regenerative nodules and adjacent ducts can be clonal51. 9 

Although an important observation and a technical “tour de force” this does not conclusively prove the any 10 

precursor- product relationship. Understanding the cellular contributions to hepatocyte and biliary 11 

regeneration may seem an academic exercise and remote from clinical practice, however, defining the 12 

regenerative cells in clinically relevant models of liver injury and regeneration will considerably aid the 13 

development of strategies to promote liver regeneration, either through cell therapy or through the 14 

stimulation of endogenous repair and regeneration.  15 

 16 

Bile acids and liver regeneration 17 

Bile acids (BAs) have recently been recognised as important for liver regeneration. Ueda et al. showed that 18 

liver regeneration is impaired in rats in the absence of intestinal bile52. Following this report, it was shown 19 

that increased bile acid levels accelerate regeneration, whilst low levels of BAs impair regeneration as does 20 

absence of the BA receptor Farnesoid X Receptor (FXR)53. BAs are rapidly increased following partial 21 

hepatectomy and signal via the receptors FXR and G-protein-coupled BA receptor 1 (GPBAR1). FXR 22 

signalling reduces liver injury and promotes liver regeneration following CCl4 induced liver injury54. The 23 

potential clinical application of these basic studies was indicated by Otato et al. who analysed liver 24 

regeneration in patients following major hepatectomy and found that patients who had external biliary 25 

drainage had lower levels of liver regeneration than those patients without external biliary drainage55. This 26 

was a retrospective study and there may be confounding factors that could explain the striking results 27 

however further studies into this area are warranted. This interesting study highlights a general point, that 28 

prospective trials are warranted in the clinical setting where there is strong animal data indicative of efficacy 29 

and where there is an acceptable risk/benefit ration from a new intervention.  30 

 31 

2. The gap between animal models and the clinical experience of liver regeneration 32 

Both animal models and clinical studies are informative but there still remains a gap that in poorly bridged 33 

between these two disciplines (see table 1). Ideally to maximise the development of understanding liver 34 

regeneration and develop new techniques to enhance liver regeneration observations made using in vivo 35 

models should inform human studies and the human studies should feed-back to refine the in vivo models.  36 
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At one end of this “bridge” animal models have been highly informative regarding the drivers of liver 1 

regeneration, the timing of response and cellular sources of the regenerative cells in the liver. Through the 2 

use of modern cell and molecular biology techniques, combined with modern transgenic mouse and now 3 

zebrafish technology, the signalling and cellular mechanisms underpinning liver regeneration are rapidly 4 

being described.  5 

At the other side of the bridge human clinical studies of liver regeneration have often followed patients who 6 

have has a heterogeneous collection of liver insults. The studies have primarily looked at clinical outcome 7 

and sought to define associations of poor outcome and pre-operative markers of poor outcome. The study 8 

techniques have often revolved around whole organ imaging and serum analysis.  9 

To date there is still a marked gap between these areas of study with the signalling mechanisms rarely 10 

translating to clinical trials or indeed human observational studies, and thereby rarely having any clinical 11 

impact. Likewise, the human observational studies providing little data to support further discriminatory in 12 

vivo studies. Non-invasive measurements during liver regeneration should be particularly insightful in the 13 

future. Modern functional imaging techniques, such as MRI spectroscopy56-58, where distinct metabolic 14 

signatures are seen in patients regenerating liver should impact on. Likewise proteomic analysis of patients’ 15 

blood during regeneration seems an obvious future development; studies in mice have already shown a 16 

distinct proteomic signature in plasma following hepatectomy and during liver regeneration that were 17 

strongly associated to metabolims.59 Another non-invasive method analysis is the 13C-breath tests which 18 

can measure hepatic mitochondrial, microsomal, and cytosolic function.60 The 13C-phenylalanine breath test 19 

has been used in a rat model of 70% hepatectomy and showed good discrimination between 70% 20 

hepatectomy rats and controls at 24 hours post-surgery, indicating possible future clinical utility61. The 21 

above techniques all show promise and may help to build strong links between the in vivo models and 22 

human studies and indeed allow further refinement of the current in vivo models.  23 

 24 

3. Regeneration in the “abnormal liver” 25 

In the clinic the regeneration of normal liver is relevant- for example when a well relative donates part of 26 

their liver to a recipient with liver disease- so called living donor liver transplantation”. Here, the donor will 27 

have been specifically screened to exclude significant liver disease62. However, in the majority of clinical 28 

scenarios the abnormal- damaged liver is the one required to perform the feat of regeneration. The 29 

challenges to regeneration are very different across the different clinical scenarios and some of these are 30 

detailed below: 31 

 32 

Severe acute liver damage resulting in fulminant liver failure 33 

Common causes of acute liver failure include viruses such as hepatitis A, B and E, drugs such as 34 

acetaminophen, and auto-immune liver disease63. By definition the liver was previously normal and the 35 

damage acute- often with widespread hepatocyte apoptosis and necrosis. Following moderate liver injury 36 
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and necrosis, there is proportional hepatocyte proliferation until homeostasis is achieved. However, with 1 

increasing injury a threshold is reached beyond which the remaining liver fails to regenerate adequately.  2 

This has been clearly shown by Bhushan et al. in mice that, compared to a moderate dose of acetaminophen 3 

(300mg/kg), a higher dose (600mg/kg) actually resulted in poorer liver regeneration in the non-necrotic parts 4 

of the liver64. There have been attempts to stimulate liver regeneration following acute liver injury in 5 

humans. In mice, using the acetaminophen model of liver injury, loss of β-Catenin activation prevents liver 6 

regeneration. In patients with APAP mediated liver injury the degree of β-Catenin activation correlated with 7 

the degree of liver regeneration, indicating that β-Catenin activation could be a possible therapeutic strategy 8 

in patients with acute liver injury65.  9 

 10 

In the setting of acute liver injury, the innate immune system is critical for coordinating and stimulating 11 

regeneration, as well as for maintaining immunity5. In particular macrophages are important for the 12 

phagocytosis or the necrotic tissue and the stimulation of liver regeneration. Following acetaminophen 13 

induced liver injury macrophages are rapidly recruited to the areas of liver necrosis66. Mice deficient in 14 

CSF-1 have reduced numbers of tissue macrophages and an impairment in liver regeneration, which can be 15 

overcome by the addition of exogenous CSF-167. As well as helping to co-ordinate a liver regeneration 16 

response the hepatic macrophages are important in controlling sepsis, a major complication of acute liver 17 

failure that is associated with clinical deterioration, systemic inflammatory response and multi-organ failure. 18 

Hepatic macrophages, so-called Kupffer Cells (Figure 2), are a major filter of portal blood and are 19 

particularly important when the gut barrier function is compromised in liver failure. CSF-1 levels are related 20 

to prognosis in acetaminophen induced fulminant liver failure and in experimental models of acute liver 21 

injury the exogenous administration of CSF-1 has been used to boost immunity and hepatic macrophage 22 

phagocytic function68.   23 

 24 

 25 

Fatty liver  26 

Given the increasing levels of fatty liver in the West it is not surprising that the impaired regeneration of 27 

fatty livers is an increasingly important clinical question. Many fatty liver grafts have to be discarded as 28 

above a threshold the liver often fails upon transplant. Obese patients regenerate their livers more slowly 29 

than non-obese controls69. Dietary induced hepatic steatosis reduces liver regeneration following 70% 30 

hepatectomy in rats70. In the setting of liver regeneration of fatty liver, growth arrest and DNA damage-31 

inducible 34 (Gadd34) inhibition was shown to be important, and Gadd344 overexpression through gene 32 

therapy increased liver regeneration in mice with fatty liver71.  33 

 34 

Clinically, fatty livers are the subject of potential hepatectomy when the resection of colorectal metastasis is 35 

being contemplated in patients with fatty liver due to NAFLD or as a secondary response to chemotherapy. 36 
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Interestingly in a recent analysis of patients who had undergone liver resection for colorectal liver 1 

metastases, in over 5800 patients that had not received pre-operative chemotherapy, and 4000 patients that 2 

had received pre-operative chemotherapy, the presence of hepatic steatosis did not worsen their 90 day or 5 3 

year overall survival rates72, 73.  4 

 5 

In transplantation the presence of macroscopic hepatic steatosis can have serious consequences and increase 6 

the risk of primary graft non function74, the more severe the steatosis then the greater the risk of hepatic 7 

dysfunction. The assessment of steatosis can be made by the surgeon at the time of organ procurement but 8 

has an inbuilt subjective element. A pathologist can quantify hepatic steatosis on biopsy but this is not 9 

always convenient and of course is a limited sample area. Imaging methods are therefore being trialled as a 10 

way of objectively quantifying hepatic steatosis. A CT assessment of the donor liver was tested in 109 11 

consecutive cadaveric donors and the liver/spleen attenuation ratio determined (used in liver donor imaging). 12 

All graft had a biopsy and blinded pathological assessment. The CT scan was able to predict significant 13 

steatosis (defined as >30%) with a sensitivity of 79% and a specificity of 97% 75 indicating its potential 14 

future utility.  15 

 16 

Small liver grafts, ischaemia-reperfusion injury and RAGE  17 

The transplantation of small grafts relative to the recipient can result in so-called “small for size syndrome”-18 

SFSS. There are several putative pathological mechanisms thought to be causative including intrahepatic 19 

vascular shear stress. SFFS results in a combination of injury in the liver and poor regeneration of the 20 

graft76. The clinical presentation often includes liver failure, coagulopathy, ascites, cholestasis and 21 

encephalopathy. Whilst the mainstay of management is prevention by careful volume analysis, surgical 22 

techniques are developing to reduce the incidence of this serious but thankfully rare condition77. 23 

 24 

Ischaemia –reperfusion injury is a major issue affecting transplanted livers. Reactive oxygen species 25 

increase in the graft during removal of the graft and cold storage due to anaerobic metabolism. Receptor for 26 

advanced glycation endproducts (RAGE) is markedly increased in mice subject to hepatic ischaemia-27 

reperfusion injury. Two important studies have shown that RAGE is a potential therapeutic target.  In a 28 

murine model of ischaemia-reperfusion, blockage of RAGE signalling reduced liver injury and increased 29 

regeneration78. In a murine model of hepatectomy, RAGE was increased in 85% hepatectomy mice, 30 

compared to 70% hepatectomy in mice. RAGE was expressed in dendritic cells mononuclear phagocyte -31 

derived dendritic cells. Blockade of RAGE reduced hepatocyte death, increased regeneration and increased 32 

survival in the 85% hepatectomy mice from 30% to 90%79. In patients with acetaminophen induced acute 33 

liver failure, increased circulating levels of soluble receptor for advanced glycation end products (sRAGE) 34 

was found to be associated with liver transplant or death rather than spontaneous recovery80. Future therapy 35 

may be indicated by a study in mice which reduced hepatic IR injury by prior treatment with the drug 36 
11 

 



Losartan which increased PPARG signalling and reduced RAGE activation81. Clearly the early detection and 1 

quantification of the livers metabolic status to predict post-transplant ischaemia-reperfusion may allow 2 

therapeutic trials and interventions. It has been suggested, that ex vivo spectroscopy of the organ could be 3 

performed to gain a real time assessment of the metabolic status of the graft and facilitate possible pre-4 

conditioning interventions56. Whilst this is an interesting future technique it is technology and operator 5 

intense and at present time this may limit widespread uptake.  6 

 7 

The issue of abnormal and excessive extracellular matrix 8 

 There is activation of the quiescent stellate cells (pericytes into activated scar forming myofibroblasts 9 

leading to excessive deposition of extracellular matrix (Figure 2B). This aberrant scar formation in the liver 10 

has been shown to inhibit hepatocyte proliferation23. The collagen scar also needs to be remodelled for the 11 

formation of a ductular response26. The relationship between the “ductular reaction”, which occurs during 12 

times of impaired regeneration, and fibrosis is complex as a florid ductular response is also commonly 13 

associated with a rapid fibrotic response29. Following cessation of injury the scar tissue can be degraded, the 14 

hepatic macrophages are thought to be key cellular mediators of this action24, secreting matrix 15 

metalloproteinases that can degrade scar tissue24, 82. If liver injury and scarring progresses, then eventually 16 

bridging fibrosis and the appearance of regenerative nodules occur. In this setting vascular abnormalities 17 

develop and the blood flow to the liver switches from being predominantly from the portal vein to 18 

predominantly from the hepatic artery-i.e. becomes “arterialised”. The livers epithelial cells- hepatocytes 19 

and biliary epithelial cells- become increasingly senescent (unable to divide)83. In this setting removal of the 20 

injurious agent is the key goal to promote endogenous liver repair but there is evidence that the addition of 21 

additional ex vivo cell therapies such as macrophages may promote the endogenous repair by increasing the 22 

resolution of liver fibrosis and promoting liver regeneration84, 85. 23 

 24 

 25 

Clinical evidence of regeneration in the setting of cirrhosis and chronic liver injury 26 

Liver disease is often silent and patients may present to liver physicians with established cirrhosis. Often the 27 

insult can be removed such as the treatment of hepatitis C, cessation of alcohol or treatment of an auto-28 

immune disease, however patients are on a precarious tightrope with very small changes leading to 29 

decompensation and frequent hospital admissions with decompensated liver cirrhosis- likewise natural 30 

history studies clearly show that some patients can re-compensate at this stage and not require further 31 

inpatient hospital treatment. By providing a stimulus to the natural regenerative process this treatment is 32 

targeted to a patient group who will benefit hugely from a successful strategy to improve liver regeneration.  33 

Even in cirrhosis, if the injurious insult can be treated the liver can regenerate and remodel to some degree. 34 

D’Ambrosio et al. showed in a paired biopsy study in patients with hepatitis C induced liver cirrhosis who 35 

had been successfully treated for the hepatitis C infection that after 61 months from viral eradication (SVR), 36 
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cirrhosis regression was observed in 61%, and the collagen content decreased in 89%86. Critically, 1 

regression of cirrhosis can lead to a reduction in hard clinical endpoints (complications, death)87. This 2 

clearly indicated that even in the context of liver cirrhosis the natural history can be modified and patient 3 

outcome improved. With the new, exciting and effective anti-viral treatments appearing for hepatitis C there 4 

will be many patients with hepatitis C induced cirrhosis, who have been cleared of virus and have non-5 

progressive disease but who are still at high risk of clinical events and decompensation, who will benefit 6 

greatly from treatments which improve liver regeneration and background liver function. 7 

 8 

The requirement for regeneration is even greater when considering liver resection for HCC in the setting of a 9 

patient with cirrhosis. Whilst regeneration can still occur in this setting, there is a risk of developing liver 10 

decompensation which is often guided by clinical features such as the presence of portal hypertension. 11 

 12 

The changes in liver function can be clinically measured using the MELD scoring system using objective 13 

variables that are readily obtained namely; serum bilirubin, serum creatinine and INR. MELD has been 14 

validated in outpatients with compensated cirrhosis and across a broad spectrum of liver disease. It is highly 15 

accurate in predicting one week, three month and one year mortality. MELD independently predicts clinical 16 

decompensation in patients with compensated cirrhosis. MELD score has been used by all the major 17 

Western regulatory authorities involved in liver transplantation (UK Transplant, Eurotransplant and UNOS) 18 

to help prioritise the allocation of liver transplants. This indicates that simple measurements can have 19 

predictive power.  20 

 21 

4. Clinical measurement of liver regeneration 22 

 Much of the literature around measurement of human liver regeneration relates primarily to liver resection 23 

and liver cancer and to a lesser extent to acute liver failure. Consequently there has been a greater focus on 24 

measures of volume replacement or recovery from very low levels of hepatic functionality as seen in acute 25 

liver failure. The advent of new therapeutic strategies, and in particular their use in the setting of chronic 26 

liver damage, will require additional measures of liver regeneration that more appropriately reflect the less 27 

profound changes, albeit still clinically relevant, that may occur (Figure 3). 28 

 29 

Clinical symptoms and signs of liver dysfunction:  30 

For the patient with compensated liver cirrhosis it is unlikely that there will be any significant symptoms or 31 

signs that can be used as a measure of regeneration. Symptoms that exist in this setting are often less precise 32 

such as fatigue, sub-clinical hepatic encephalopathy or muscle weakness and can sometimes be multi-33 

factorial in origin. Nevertheless such parameters can be measured using validated questionnaires and may 34 

provide clues to the effect of an intervention88-90. For patients with more advanced chronic liver disease 35 
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there will be more over features of liver dysfunction (hepatic encephalopathy, jaundice, ascites) that can 1 

serve as a point from which to measure improvement in liver function (regeneration). This evaluation can 2 

range from a categorical assessment (clearance of ascites/encephalopathy), to subjective semi-quantitative 3 

scores (grades of ascites or encephalopathy) through to a more formal model such as the modified Child-4 

Pugh score (CPS). The CPS which encompasses both objective (bilirubin, albumin, INR) and subjective 5 

(hepatic encephalopathy & ascites) assessments of liver dysfunction generates a numerical value to reflect 6 

the state of liver dysfunction. This scoring system was originally validated as a prognostic tool to predict 7 

mortality during surgery for patients with liver cirrhosis91, although it is now more commonly used to 8 

determine their overall prognosis. 9 

 10 

Blood measures of liver regeneration:  11 

Simple measures of regeneration include measurement of the cancer neo-antigen alpha-fetoprotein (AFP) in 12 

serum which is also released in response to 92hepatocyte turnover. The rate of increase of serum AFP has 13 

been shown to correlate with survival of patients with acute liver failure, although its utility in the setting of 14 

chronic liver disease is less well established. Higher serum levels of miR-122, miR-21 and miR-221 have 15 

been reported in patients spontaneously recovering from acute liver failure due to a range of aetiologies as 16 

compared to patients that did not recover. Additionally, patients with elevated serum miR levels displayed 17 

increased hepatocyte proliferation and down-regulation of hepatic miRNA target genes that impaired liver 18 

regeneration. Recently the Acute Liver Failure Study Group [ALFSG] index was established and compared 19 

with the long-standing King's College criteria (KCC) and Model for End Stage Liver Disease (MELD). 20 

Hepatic coma grade, INR, serum bilirubin, serum phosphorus and serum M30 value accurately identified 21 

patients that would require liver transplantation or die. The ALFSG index identified these patients with 22 

85.6% sensitivity and 64.7% specificity. The ALFSG Index was superior (AUROC 0.822) to KCC (AUROC 23 

0.654) or MELD (AUROC 0.704) (p=0.0002 and p=0.0010 respectively) in identifying patients that would 24 

require LT. 25 

Recognising the potential limitation of scoring systems such as CPS which include subjective assessments 26 

the MELD score was developed in 2000 and consisted of bilirubin, creatinine and INR93, 94. Its ability to 27 

predict prognosis of patients with liver cirrhosis has been validated in many studies. Prognosis can be 28 

deduced from the absolute value as well as a change in MELD over a defined time-period such as 3 29 

months95, which may be of particular relevance for the assessment of new therapies. Studies using MELD as 30 

an outcome measure will need to determine the durability of any observed change as well as establishing if it 31 

has the same clinical prognosis. 32 
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Less often used tests for liver function include those that test the ability of the liver to metabolise 1 

administered chemicals such as Erythromycin breath test (EBT)96 and Caffeine elimination rate (Caff kelim) 2 

and clearance (Caff Cl)92. Other tests measure hepatic circulation using test compounds with flow-3 

dependent, high first-pass hepatic extraction such as galactose (Galactose elimination capacity; GEC)97 and 4 

cholate clearances (CA Cl) and shunt (CA shunt)98. Whilst attractive candidates to assess response to a 5 

treatment the clinical validity of these parameters have yet to be established and thus the clinical 6 

significance of any change remains uncertain.  7 

 8 

Imaging assessment of liver regeneration:  9 

In the setting of liver resection the rate at which liver volume recovers is commonly used as a measure of 10 

regeneration, and can be undertaken with a range of imaging modalities including CT, MRI and SPECT 11 

scanning (See table 2).  The relevance of this relatively crude measure of regeneration is not entirely clear in 12 

the setting of more subtle interventions and thus new approaches are needed. In the setting of chronic liver 13 

disease imaging modalities are being increasingly used to determine the extent of liver fibrosis through 14 

assessments of liver stiffness. Resolution of liver fibrosis is likely to be an important therapeutic target when 15 

trying to promote liver regeneration. These include ultrasound based modalities (Fibroscan) which are 16 

widely used in clinical practice99 as well as CT and MRI approaches which may be superior in their ability 17 

to provide a more global assessment of fibrosis and hence allow for identification of more subtle changes. 18 

Dynamic contrast enhanced CT (DCE-CT) and MRI (DCE-MRI) imaging allow100 for measurement of 19 

hepatic perfusion, and in the setting of liver cirrhosis may be able estimate the extent of portal hypertension 20 

which is commonly elevated in this setting. A commonly used measure is the hepatic perfusion index which 21 

is calculated by estimating the slope of arterial perfusion divided by the sum of the slope of the arterial and 22 

portal perfusions101. The ability to non-invasively measure portal hypertension would be an important 23 

outcome although as yet this has not been achieved. It represents a clinically relevant parameter against 24 

which the effectiveness of new therapies can be judged and is accepted as a licensing end-point by 25 

regulatory authorities. 26 

 27 

The future:  28 

The most immediate developments will likely focus on non-invasive assessment of portal hypertension 29 

which will represent a significant step forward. There is also a requirement however for the development 30 

and validation of new non-invasive tests to inform on early signals of hepatocyte turnover and fibrosis re-31 

modelling. 32 

15 
 



 1 

 2 

5. The management and therapeutic targeting of liver regeneration 3 

 4 

Regenerative mechanisms are present during liver injury, even after chronic damage, but in many cases they 5 

are insufficient to overcome the ongoing insults, necessitating additional measures to be explored (see table 6 

3).  7 

 8 

Reduction or removal of injurious process:  9 

In many cases the optimal method to promote liver regeneration is to either stop or interfere with the 10 

injurious process. In many cases this involves stopping or reducing the aetiological factors such as alcohol 11 

cessation or losing weight, whilst in the case of viral hepatitis the use of new anti-viral medications has had 12 

a major impact on disease progression/resolution102, 103. In many situations though there are either no 13 

effective treatments (non-alcoholic fatty liver disease104/autoimmune liver disease105) or patients continue to 14 

consume alcohol, and thus in these settings additional interventions to promote liver regeneration. Moreover, 15 

there are occasions where even after the injurious agent has been removed the residual liver damage is so 16 

advanced, and/or continues to progress such that adjunctive measures are needed.  17 

 18 

In many forms of liver disease there is a superimposed immune-driven component to the ongoing liver 19 

damage, leading to strategies to modulate immune responses in this setting. This has taken the form of either 20 

pharmacological approaches to reduce lymphocyte ingress to the liver as well as cell therapy approaches to 21 

reduce the activity and ingress of inflammatory cells106. 22 

 23 

Encouraging endogenous liver regeneration:  24 

In the setting of chronic liver disease hepatocyte proliferation is impaired, and the presence of liver fibrosis 25 

is recognised as a major factor inhibiting hepatocyte proliferation107. Thus approaches to reduce liver 26 

fibrosis as discussed below may be effective in promoting liver regeneration. Other strategies include the use 27 

of pharmacological agents or cytokines to stimulate hepatocyte proliferation. Granulocyte colony 28 

stimulating factor (GCSF) has been used extensively in pre-clinical models where it has been demonstrated 29 

to stimulate proliferation of endogenous hepatocytes resulting in both less liver damage and less fibrosis108. 30 

GCSF has also been demonstrated to increase both the proliferation and motility of hepatic progenitor 31 

cells109, which may in turn also aid regeneration. However, there still remains uncertainty about the efficacy 32 

of GSCF in liver disease with the majority of clinical studies being small in nature and not powered to 33 

confirm efficacy110. A notable exception to this relates to a randomised controlled trial in acute on chronic 34 

liver failure, where GCSF administration was demonstrated to improve survival of patients. The mechanism 35 

of this effect was not established although the authors speculated that GCSF may improve neutrophil 36 
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function, which is commonly diminished in the setting of chronic liver disease. Thyroid hormone (T3) has 1 

been demonstrated by several groups to be a strong inducer of liver cell proliferation in rats and mice3, and 2 

recent studies have shown that the hepatocyte mitogenic response is mediated by PKA-dependent β-catenin 3 

activation111. Enthusiasm for T3 is reinforced by the observation that its administration helps inhibit/reverse 4 

non-alcoholic fatty liver disease112 and lowers the risk of hepatic tumour development113. An important 5 

concern when the promotion endogenous regeneration is considered is the potential development of 6 

hepatocellular carcinoma (HCC). This is pertinent in the context of cirrhosis when the risk if HCC is raised 7 

and there is frequently activation of the ductular compartment. The cellular origin of the HCC is therefore a 8 

consideration. Recent data from the Schwabe group convincingly found that in 2 mouse models of HCC that 9 

the cancers arose from lineage traced hepatocytes rather than the biliary/progenitor compartment114.  The 10 

important study, reviewed above, by Ninomiya et al. in the 90% hepatectomy model raises the idea that 11 

when there is a small liver remnant and significant liver volume gain is required, then controlling the rate of 12 

liver regeneration and thus minimising architectural and sinusoidal disorganisation is a valuable concept that 13 

may be worth translating toward the clinic14.  14 

 15 

Degradation of fibrosis:  16 

There has been extensive investigation of potential effective anti-fibrotic agents in pre-clinical models of 17 

liver disease, predominantly in the carbon tetrachloride (CCl4) model. Resolution of liver fibrosis is known 18 

to be more difficult in its more advanced stages, and thus there are uncertainties about the generalizability of 19 

pre-clinical models such as CCl4 to the clinical situation of liver cirrhosis. One of the other major challenges 20 

in the translation of such agents into the clinical arena, is the lack of any satisfactory non-invasive methods 21 

to quantify liver fibrosis, and hence the reliance on liver biopsy for measurement of fibrosis which poses 22 

significant logistical issues. Nevertheless, several anti-fibrotic drugs have been studied in early phase 23 

clinical trials115 with no compelling signal for efficacy seen with Colchicine116, IL10117, IFNγ118 and a 24 

possible signal with Losartan119. 25 

 26 

Cell therapies have also been studied in pre-clinical models of liver fibrosis, with macrophages120, bone 27 

marrow121 and mesenchymal stromal cells122 all having demonstrated efficacy in models of CCl4-induced 28 

liver fibrosis (see table 3). Smaller scale clinical studies in patients with chronic liver disease have also 29 

suggested reductions in liver fibrosis alongside improvements in liver synthetic function123. These studies 30 

have predominantly used haematopoietic stem cells or mononuclear preparations which have either been 31 

harvested from bone marrow or mobilised into the circulation by the use of GCSF, which as indicated 32 

earlier, may have additional beneficial effects on liver regeneration. Whilst these improvements in synthetic 33 

function came from small non-powered studies there was little to suggest any significant safety concern, 34 

with the exception of when cells were infused intra-portally124. In that setting there was an increase in portal 35 

hypertensive bleeding, which serves as a caution for such routes. Indeed, homing of stem cells to the liver is 36 
17 

 



enhanced after liver injury and given that trial data do not suggest superior efficacy with liver-directed 1 

infusions logistically easier routes can be used. To determine the mechanisms by which these potential 2 

effects are achieved in the clinical setting requires further investigation, as does their confirmation in larger 3 

clinical trials. To date there are no adequately powered randomised trials of cell therapy that show a positive 4 

effect125. 5 

 6 

 7 

6. Conclusions 8 

Liver regeneration in the normal liver is well described in validated model systems such as the rat and 9 

mouse partial hepatectomy models. The cellular and signalling mechanisms described using these models 10 

have provided a general template for understanding liver regeneration and to plan therapeutic interventions. 11 

New models such as the zebrafish are bringing the ability to rapidly screen compounds for their ability to 12 

improve liver repair and regeneration following injury.   13 

In the clinical setting, the deficiencies of regeneration usually impact when there is a grossly abnormal liver 14 

architecture or when normal liver regeneration is severely impaired. Understanding the abnormal 15 

regenerative responses, and how they differ from “normal healthy regeneration” will be critical to accurately 16 

targeting new therapies. Such strategies may have several broad targets such as the excessive fibrosis, 17 

abnormal ductular responses and the impaired innate immunity which is a feature of liver dysfunction. 18 

Advances in imaging technology such as MRI combined with liver spectroscopy may provide more 19 

complete picture of the liver volume and anatomy, liver blood flow data, measures of whole liver fibrosis 20 

and whole liver signatures of metabolic function that could provide a “whole liver” picture of structure and 21 

function to guide surgical resection and other therapeutic decisions. Overall, we conclude that where there is 22 

good animal data of efficacy for a particular intervention, and there is an acceptable risk-benefit ration, then 23 

the time is right to translate this knowledge and perform appropriate prospective clinical studies.  24 

 25 

  26 
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Schemata of Normal and Abnormal liver regeneration 3 

 4 
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 6 
Figure 1:  Animal models of liver regeneration: A. the rat is the classic model for studying liver 7 

regeneration following 70% hepatectomy which results in rapid activation of regenerative signals peaking at 8 

24hours. Hepatocyte proliferation can be inhibited efficiently by toxins, when additional injury such as 9 

partial hepatectomy is added then a widespread “oval cell response” is activated. B. The mouse has similar 10 

properties to the rat but with the additional advantage of good transgenic technologies. Hepatocyte 11 

proliferation is not readily inhibited using standard methodologies. C. The zebrafish is rapidly gaining 12 

favour because it is rapid to use, is cost effective, allows excellent imaging and permits chemical screening.   13 
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 2 

Figure 2: A: Regeneration in the normal liver follows partial hepatectomy or moderate liver injury. In this 3 

setting bile acids are rapidly upregulated, and serum factors are able to rapidly induce regeneration in the 4 

liver. Non-parenchymal cells; macrophages, stellate cells and LSECs signal to hepatocytes to leave their 5 

mitotically quiescent state and enter mitosis. Stellate cells are not activated to myofibroblasts and there is 6 

little or no scar tissue. B: Regeneration in the abnormal chronically damaged liver is hampered by several 7 

factors. Hepatocytes are increasingly senescent and unable to divide efficiently, the stellate cells are 8 

activated to myofibroblasts and excessive scar tissue inhibits regeneration. Excessive cellular debris inhibits 9 

efficient liver regeneration.  10 

  11 

A 

B 

26 
 



 1 

 2 

Strategies to improve liver regeneration 3 

 4 

 5 
Figure 3: Strategies to improve liver regeneration include the removal of injurious agents, the promotion of 6 

fibrosis resolution and the direct stimulation of hepatocyte proliferating. The balance between these two sets 7 

of processes is key in determining the clinical outcome. 8 
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Animal Models  Clinical Studies 

Have helped to define many signals and cellular 
sources controlling liver regeneration 

Transgenic technology enables cell specific and 
temporally controlled gene deletion to define gene 
function during liver regeneration 

Lineage tracing studies help define the cells that 
actually regenerate the liver 

Liver pathology studies show static pictures of 
cellular and extracellular architecture during 
regeneration 

Gene expression studies complement the 
pathological studies 

Studies of injury and regeneration in animals are often 
relatively short lived and mild 

Chronic injury can develop over decades in humans 
and produce very abnormal liver architecture 

Animal models usually study one form of injury  Patients often have multiple factors affecting their 
liver physiology and regeneration 

Imaging modalities are developing rapidly but are 
often not widely clinically applicable 

Clinical studies rely heavily on serum markers and 
non-invasive markers of liver function 

  

 1 

Table 1: the differences between animal models of liver regeneration and clinical studies of liver 2 
regeneration  3 
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Modality Mode of action Purpose 

Elastography Measurement of shear wave 

velocity after stimulus 

Measure liver stiffness 

(fibrosis) 

Computed tomography (CT) 2-D reconstruction of x-ray 

imaging 

Information on liver structure 

and size 

Magnetic resonance imaging 

(MRI) 

2-D/3-D reconstruction based 

on radiofrequency wave 

detection 

Information on liver structure 

and size 

Dynamic contrast enhanced 

CT (DCE-CT) and MRI 

(DCE-MRI)  

Measurement of changes in 

contrast enhancement over 

time in vascular beds/organs 

Measurement of hepatic 

perfusion and guide to portal 

pressure 

Single-photon emission 

computed tomography 

(SPECT) 

Measurement of  uptake of 

radioactive tracer by 

metabolically active cells 

Visual measure of hepatic 

metabolic function 

 1 

Table 2: non-invasive methods of assessing liver injury, structure, volume, and function   2 
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Cell type Indication Advantages Disadvantages 

Haematopoietic 

stem cells 

Promote hepatocyte 

proliferation; Reduce 

liver fibrosis 

Safe; Supportive pre-

clinical and early phase 

clinical data 

Autologous therapy; Cost; 

Still unproven 

Macrophages Reduce liver fibrosis Supportive pre-clinical 

data 

Autologous therapy; Cost; 

Possible off-target effects; 

Still unproven 

Endothelial 

progenitor cells 

Reduce liver fibrosis; 

Promote 

revascularisation 

Supportive pre-clinical 

data 

Autologous therapy; cost; 

Possible off-target effects; 

Still unproven 

Regulatory T 

cells 

Reduce immune-

mediated damage 

Supportive pre-clinical 

data; efficacy in renal 

transplant clinical studies 

Autologous therapy; cost; 

still unproven 

Mesenchymal 

stromal cells 

Reduce immune-

mediated damage; 

Reduce liver fibrosis 

Allogeneic; Supportive 

pre-clinical data; Efficacy 

in non-liver transplant 

clinical studies; Safety 

profile encouraging. 

Still unproven; Phenotypic 

characterisation of infused 

cells poorly defined 

 1 

Table 3: different types of potential cell therapies for liver injury and regeneration 2 
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