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Abstract 

 

Apoptosis, a major form of programmed cell death, is an important mechanism to remove 

extra or unwanted cells during development. In tissue homeostasis apoptosis also acts as a 

monitoring machinery to eliminate damaged cells in response to environmental stresses. 

During these processes, caspases, a group of proteases, have been well defined as key drivers 

of cell death. However, a wealth of evidence is emerging which supports the existence of 

many other non-apoptotic functions of these caspases, which are essential not only in proper 

organism development but also in tissue homeostasis and post-injury recovery. In particular, 

apoptotic caspases in stress-induced dying cells can activate mitogenic signals leading to 

proliferation of neighboring cells, a phenomenon termed apoptosis-induced proliferation. 

Apparently, such non-apoptotic functions of caspases need to be controlled and restrained in 

a context-dependent manner during development to prevent their detrimental effects. 

Intriguingly, accumulating studies suggest that cancer cells are able to utilise these functions 

of caspases to their advantage to enable their survival, proliferation and metastasis in order to 

grow and progress. This book chapter will review non-apoptotic functions of the caspases in 

development and tissue homeostasis with focus on how these cellular processes can be 

hijacked by cancer cells and contribute to tumorigenesis. 
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1 Introduction 

 

Apoptosis was first identified as a form of cell death by its distinct morphological 

characteristics including cellular shrinkage, chromosome condensation, nuclear 

fragmentation and formation of apoptotic bodies (Kerr et al., 1972, Jacobson et al., 1997). 

Studies in C. elegans then uncovered that apoptosis is genetically controlled and plays critical 

roles during development to remove unwanted or unnecessary cells (Ellis and Horvitz, 1986, 

Ellis et al., 1991). Such function of apoptosis further extends to maintenance of tissue 

homeostasis by eliminating damaged or unfit cells (Thompson, 1995, Miura, 2011). 

Apoptosis has therefore been viewed as a monitoring program to identify and kill potentially 

harmful cells that may develop into cancer. Consistent with this idea, evading apoptosis has 

been considered as a hallmark of cancer (Hanahan and Weinberg, 2000, Hanahan and 

Weinberg, 2011). 

 

The key components of the apoptotic machinery are caspases, a family of cysteine proteases 

which cleave their substrates leading to cell death (Thornberry and Lazebnik, 1998, 

Hengartner, 2000). Recently however, in addition to their functions in apoptosis, caspases are 

becoming better understood in their multifunctional nature with an increasing number of non-

apoptotic functions discovered. We acknowledge the abundance of high quality reviews 

which have described with clarity the non-apoptotic functions of caspases in the context of 

development and tissue regeneration (Kuranaga, 2011, Miura, 2012, Connolly et al., 2014, 

Shalini et al., 2015). This chapter therefore focuses on the roles of caspases in sustaining 

cancers and promoting their spread which seems to contradict what we know about their roles 

in apoptosis. There is now certainly a great wealth of evidence to show that the apoptotic 
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caspases actually have multiple functions other than executing cell death, and cancer cells can 

hijack these activities to directly promote their growth, metastasis and recurrence after 

therapy. Here we have synthesised the evidence present in the current literature supporting 

this claim, to highlight that the caspases do indeed have a role in progressing cancers. Issues 

that may exist in current cancer therapies for particular patient subsets are also discussed.  

 

2 The apoptotic machinery: functions of the apoptotic caspases 

 

Apoptosis is an evolutionarily conserved mechanism in multicellular organisms, allowing 

correct pattern formation during development and the removal of cells which are detrimental 

to the health and survival of the organism (Degterev and Yuan, 2008, Fuchs and Steller, 2011, 

Green et al., 2014, Yamaguchi and Miura, 2015). The pathways leading to apoptosis have 

been elucidated in many organisms, including C. elegans, Drosophila and mammals, which 

are summarised in figure 1. A noticeable family of key components in these apoptosis 

pathways are the caspases. By definition, caspases are cysteine-aspartic acid proteases. They 

cleave their substrates after the aspartic acid residue which features at the end of short 

tetrapeptide motifs (Earnshaw et al., 1999, Hengartner, 2000). In addition to their functions in 

apoptosis, caspases are also well known for their roles in inflammatory responses (Lamkanfi 

et al., 2007, Lamkanfi and Dixit, 2014, Vanaja et al., 2015). For examples, there are 18 

known mammalian caspases among which caspase-2, -3, -6, -7, -8, -9 and -10 function in 

apoptosis and thus have been classified as apoptotic caspases (Eckhart et al., 2008, Shalini et 

al., 2015). This review focuses on these caspases especially the caspases-3, -7, -8 and -9 due 

to their multiple non-apoptotic functions reported.  
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Under normal cellular conditions all apoptotic caspases are present as inactive pro-caspases, 

called zymogens, which consist of a prodomain, a small subunit and a large subunit 

(Degterev et al., 2003, Earnshaw et al., 1999). They require cleavage in apoptotic cellular 

conditions to become activated. Based on the structure of N-terminal prodomains, apoptotic 

caspases can be subdivided into the initiator (or apical) and effector (or executioner) caspases. 

The initiator caspases have elongated prodomains which contain either the death effector 

domains (DED, e.g. for caspase 8) or the caspase-recruitment domains (CARD, e.g. for 

caspase 9). In contrast, the effector caspases have small prodomains. These caspases also 

have distinct functions and substrates during the process of apoptosis (Kumar, 2007, 

Chowdhury et al., 2008, Yan and Shi, 2005). The initiator caspases cleave inactive pro-

effector caspases and activate them. They are therefore also called apical caspases. In contrast, 

effector caspases, once activated by the initiator caspases, further cleave their broad range of 

cellular proteins leading to execution of cell death. They therefore have another name as 

executioner caspases. For simplicity, terms of initiator and effector caspases are used in this 

review. 

 

2.1 Apoptosis in C. elegans 

The caspases were first identified in C. elegans in which 131 cells undergo apoptosis during 

development by the action of a simple and linear pathway (Fig.1A) (Ellis and Horvitz, 1986, 

Ellis et al., 1991, Fuchs and Steller, 2011). Before an apoptotic stimulus is detected by a cell, 

CED-4, a homolog of the mammalian adaptor protein apoptosis activating factor 1 (Apaf-1), 

exists as a dimer, which is sequestered on the outer leaflet of the outer membrane of the 

mitochondria by contact with a Bcl-2 family member called CED-9 (Lettre and Hengartner, 

2006). Upon apoptotic stimulus, Egl-1, a pro-apoptotic BH3-only protein (Bcl-2 homology 3), 

is expressed, binding CED-9, thus releasing CED-4. Ced-4 is then free to form a tetramer. 



   6 

 

Once the CED-4 tetramer is assembled, it can cleave and activate the caspase CED-3, which 

in turn activates other downstream apoptotic effector proteins leading to cell death (Fig.1A) 

(Conradt and Xue, 2005, Lettre and Hengartner, 2006).  

 

2.2 The intrinsic apoptosis pathway in Drosophila and mammals 

Unlike the linear pathway in C. elegans, apoptotic pathways of extrinsic and intrinsic origin 

have been identified in both Drosophila and mammals (Fig.1). The intrinsic pathway has 

been extensively studied in Drosophila (Fig.1B). Initially, apoptotic stimuli cause the 

expression of the pro-apoptotic genes of the RHG family: mainly reaper, hid (head involution 

defective) and grim (Kornbluth and White, 2005, Steller, 2008). These gene products act to 

relieve the repression exerted by the inhibitors of apoptosis (IAPs) (Wang et al., 1999, Lisi et 

al., 2000, Goyal et al., 2000), which, under normal cellular conditions, inhibits activities of 

the Drosophila initiator caspases such as Dronc (Meier et al., 2000, Wilson et al., 2002) and 

effector caspases such as DrICE and Dcp-1 (Hawkins et al., 1999, Yan et al., 2004). The 

major IAP in Drosophila is Diap1 whose function as an E3-ubiquitin ligase. Under no 

apoptotic stimuli, it binds to Dronc via its own BIR2 domain and causes ubiquitin to be 

tagged to Dronc (Wilson et al., 2002). Such ubiquitylation was believed to stimulate 

degradation of Dronc via the proteasome. However, a recent genetic analysis suggests that 

Diap1-mediated ubiquitylation blocks processing and activation of Dronc but does not lead to 

its protein degradation (Lee et al., 2011). When RHG proteins antagonise Diap1 by 

competitively binding to its BIR domains, Diap1 can no longer perform its function on 

inhibiting Dronc (Wilson et al., 2002, Ryoo et al., 2002, Yoo et al., 2002). From here released 

Dronc, although inactive, can induce formation of the apoptosome by the adapter protein Ark 

(Chai and Shi, 2014, Pang et al., 2015). Upon such interaction Dronc can autocleave and 

become activated. Activated Dronc further cleaves and activates its downstream effector 
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caspases, mainly DrICE and Dcp-1, leading to apoptosis (Fig.1B) (Hawkins et al., 2000, 

Dorstyn and Kumar, 2008, Snipas et al., 2008). Notably, pro-apoptotic proteins need to 

localize to the mitochondria and execute their apoptotic functions in Drosophila (Abdelwahid 

et al., 2007, Claveria et al., 1998, Claveria et al., 2002, Freel et al., 2008, Haining et al., 1999, 

Olson et al., 2003, Thomenius et al., 2011, Morishita et al., 2013). Two Bcl-2 family 

members, Debcl and Buffy, have been identified in Drosophila (Brachmann et al., 2000, 

Colussi et al., 2000, Igaki et al., 2000, Zhang et al., 2000, Quinn et al., 2003). Debcl is 

localized to the mitochondria and has pro-apoptotic functions, while Buffy may localize to 

endoplasmic reticula to carry out its own anti-apoptotic roles (Doumanis et al., 2007). 

 

In the mammalian intrinsic pathway, the mitochondrion plays a central and more decidedly 

important role (Fig.1C). The Bcl-2 family proteins can be subdivided into three groups: the 

BH3-only proteins (such as Bid, Bad, Bik, Bim, Noxa and Puma), the pro-apoptotic Bax 

subfamily members (such as Bax, Bak and Bok) and the anti-apoptotic Bcl-2 family members 

(such as Bcl-2 and Bcl-XL) (Vander Heiden et al., 1997, Yang et al., 1997, Gabriel et al., 

2003, Xiong et al., 2014). In response to apoptosis, BH3-only proteins either activate the Bax 

subfamily members or antagonize the anti-apoptotic Bcl-2 members to regulate mitochondrial 

outer membrane permeabilisation (MOMP) which then leads to release of cytochrome c (cyt 

c). Released cyt c binds to the adaptor protein Apaf-1, via the WD repeat domain at the 

carboxyterminus of Apaf-1, forming the apoptosome. Pro-caspase-9 can in turn interact with 

Apaf-1 in the apoptosome, via their mutual CARD domains (Srinivasula et al., 1998). Pro-

caspase-9 then autocleaves and becomes active (Kumar and Colussi, 1999). The activated 

caspase-9 further cleaves its downstream effector caspases, caspase-3 and -7, to trigger 

apoptotic cell death (Xiong et al., 2014). In addition to cyt c, pro-apoptotic proteins such as 

Smac (or Diablo) and HtrA2 (or Omi) are also released from mitochondria during the process 
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of MOMP (Silke et al., 2000, Suzuki et al., 2001, Green and Kroemer, 2004). Similar to what 

happens in Drosophila, these pro-apoptotic proteins antagonize IAPs such as XIAP leading to 

activation of caspase-9, -3 and -7 and apoptosis. In addition to Smac and HtrA2, another 

mammalian IAP antagonist is ARTS which is not released from mitochondria (Larisch et al., 

2000, Gottfried et al., 2004). Similar as the RHG proteins in Drosophila, it is localized to the 

mitochondrial outer membrane and inhibits XIAP (Edison et al., 2012).  

 

2.3 The extrinsic apoptosis pathway in Drosophila and mammals 

In contrast to the intrinsic pathway, the extrinsic pathway is initiated by the binding of a 

death ligand to a death receptor in the cell (Fig.1C). In mammals, examples of the death 

ligands are tumor necrosis factor (TNF) family members including Fas ligand (FasL) and 

TNF-related apoptosis-inducing ligand (TRAIL) (Ashkenazi and Dixit, 1998, Peter and 

Krammer, 1998, Lavrik et al., 2005). These ligands bind to their specific receptors Fas and 

DR4/5, forming complexes. Once such a ligand-receptor complex is formed, the adaptor 

protein Fas-associated Death Domain (FADD) can bind the cytosolic region of Fas and 

DR4/5. There, FADD acts as a platform on to which procaspase-8 can bind, by interaction of 

the death effector domain (DED) of FADD with the DED at the extended N-terminus of pro-

caspase-8, forming the death-inducing signaling complex (DISC) (Medema et al., 1997, Juo 

et al., 1998, Varfolomeev et al., 1998). Due to receptor clustering in the plasma membrane, 

the pro-caspase-8 monomers are brought within close proximity of each other in DISC 

complexes, and once in this newly established close proximity they can autocleave and 

become activated (Chang et al., 2003, Guicciardi and Gores, 2009). Upon activation, caspase-

8 can then cause the cleavage and activation of effector caspases caspase-3 and -7 leading to 

cell death (Hengartner, 2000, Chowdhury et al., 2008). Homologs of death ligands, receptors 

and their functions in apoptosis induction have also been found in Drosophila (Fig.1B). 
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There is only one TNF homolog, Eiger (Egr), identified in Drosophila so far (Moreno et al., 

2002, Igaki et al., 2002). Two TNF receptors including Wengen (Wgn) and, more recently, 

Grindelwald (Grnd) have been reported (Kanda et al., 2002, Andersen et al., 2015). 

Activation of Egr triggers both apoptosis and a type of non-apoptotic cell death through the 

Jun N-terminal Kinase (JNK) pathway, a stress-response signaling pathway (Moreno et al., 

2002, Igaki et al., 2002, Kanda et al., 2011, Ma et al., 2012). For the aspect of apoptosis, JNK 

induces expression of pro-apoptotic genes and activation of the apoptotic machinery (Moreno 

et al., 2002, Ma et al., 2012). Interestingly, in stress-induced apoptosis, the initiator caspase 

Dronc can activate not only effector caspases DrICE and Dcp-1 but also JNK which then feed 

back to the apoptosis pathway to further amplify it (Shlevkov and Morata, 2012). Notably, 

although different in their nature of inducing apoptosis, connections between the extrinsic and 

intrinsic pathways also exist in mammals. Caspase-8 can act on the pro-apoptotic BH3-only 

proteins such as BID leading to activation of the intrinsic pathway which further ensures a 

robust apoptotic response (Tang et al., 2000, Anto et al., 2002, Kantari and Walczak, 2011).  

 

3 Apoptosis, development and non-apoptotic functions of caspases 

 

Apoptosis and development are interconnected. On the one hand, apoptotic caspases were 

originally identified as key players in the developmental program (Ellis and Horvitz, 1986). 

Their apoptotic functions are critical for removal of extra cells produced at the early stage of 

development and elimination of unwanted cells in tissue patterning and morphogenesis 

(Fuchs and Steller, 2011). A recent study on Apaf-1 knock-out mice suggests that apoptosis is 

required to remove Fgf8 morphogen-producing cells and terminate Fgf8 production at the 

correct developmental time, thus ensuring proper development of the forebrain (Nonomura et 
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al., 2013). Apoptotic cells can even actively drive epithelial folding during morphogenesis 

(Monier et al., 2015) and cell extrusion during tissue repair (Kuipers et al., 2014). These 

examples have certainly underlined the developmental role of apoptosis. On the other hand, it 

is also becoming clear that the developmental program can modulate cellular apoptotic 

responses. Many key components in the apoptosis pathway can be targeted by the 

developmental program to define distinct cellular susceptibilities to apoptosis. For example, 

in Drosophila 3
rd

 instar larvae, a pulse of hormone ecdysone increases the whole organismal 

sensitivity to apoptosis by upregulating the basal level of Ark, Dronc and DrICE (Kang and 

Bashirullah, 2014). Furthermore, in the developing Drosophila eye tissue, multiple 

mechanisms were employed to control cellular levels of IAPs as well as pro-apoptotic 

proteins (Fan and Bergmann, 2014, Hilgers et al., 2010). Similarly, in mouse embryos, 

primed stem cells are very sensitive to apoptosis due to their low levels of BIM regulated by 

microRNAs (Pernaute et al., 2014). Therefore, cellular apoptosis susceptibility can be 

modulated by developmental programs. However, the links between apoptotic caspases and 

development are far beyond death.  Increasing evidence is now demonstrating the actual, true 

multifunctional nature of the caspases with somewhat surprising and fascinating roles in 

diverse cellular processes. These functions include regulating immune responses, promoting 

cell proliferation, and regulating cell differentiation and fate specification which have been 

extensively reviewed elsewhere (Jacobson et al., 1997, Kuranaga and Miura, 2007, Lamkanfi 

et al., 2007, Chowdhury et al., 2008, Kuranaga, 2012, Miura, 2012, Connolly et al., 2014, 

Shalini et al., 2015). Here, we highlight some of these non-apoptotic functions, in particular 

roles of caspases in tissue homeostasis, in the context of cancer development. 

 

4 Caspases in tissue homeostasis: apoptosis-induced proliferation (AiP)   
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Organisms are constantly exposed to environmental stresses. Damaged cells are frequently 

removed by apoptosis. Meanwhile, new cells are generated by proliferation to compensate for 

the cell loss thus to maintain tissue homeostasis. For example, up to 60% of cells in the 

developing Drosophila wing epithelial tissue can be lost in response to radiation without 

affecting final adult wing size and morphology (Haynie and Bryant, 1977). A similar 

phenomenon has also been found in the processes of wound healing and liver regeneration in 

mammals (Li et al., 2010c). Apparently, tissue homeostasis is important for tissue function to 

remain optimal and critical to organism survival. Evidence in multiple organisms including 

Hydra (Chera et al., 2009), Drosophila (Huh et al., 2004, Kondo et al., 2006, Fan and 

Bergmann, 2008b) and mouse (Li et al., 2010c)  is now demonstrating that apoptotic caspases 

have non-apoptotic functions to trigger compensatory proliferation, a process therefore 

termed apoptosis-induced proliferation (AiP) or apoptosis-induced compensatory cell 

proliferation (Fan and Bergmann, 2008a, Bergmann and Steller, 2010, Ryoo and Bergmann, 

2012, Mollereau et al., 2013). For simplicity we use the term apoptosis-induced proliferation 

(AiP) in this review. Recent studies in Drosophila provided mechanistic insights on how AiP 

occurs (Fig.2A,B) (Ryoo et al., 2004, Perez-Garijo et al., 2004, Huh et al., 2004, Wells et al., 

2006, Kondo et al., 2006, Fan and Bergmann, 2008b, Fan et al., 2014). Intriguingly, 

depending on the developmental state of the affected tissue, i.e. proliferating versus 

differentiating tissues, either initiator or effector caspases drive distinct mechanisms of AiP in 

Drosophila (Fan and Bergmann, 2008b).   

 

4.1 The initiator caspase-driven AiP in Drosophila   

The molecular mechanism of AiP was first addressed in Drosophila by taking advantage of 

caspase inhibitors (Ryoo et al., 2004, Perez-Garijo et al., 2004, Huh et al., 2004). P35, a 

baculovirus inhibitor of apoptosis, acts as a peudosubstrate of Drosophila effector caspases 
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e.g. DrICE and Dcp-1 (Hay et al., 1994). Expression of P35 thus blocks activity of DrICE 

and Dcp-1 and execution of cell death. To determine how stress-induced apoptotic cells may 

contribute to compensatory proliferation, such cells were kept “undead” by P35 (i.e. the 

apoptotic machinery is activated but execution of cell death is blocked). Surprisingly, 

“undead” cells stimulate overgrowth of surrounding tissues despite the presence of P35 

(Ryoo et al., 2004, Perez-Garijo et al., 2004, Huh et al., 2004). This suggests that dying cells 

release mitogenic signals to induce AiP independent of effector caspases. Further loss-of-

function analyses revealed that the initiator caspase Dronc, which is not inhibited by P35, 

actually coordinates apoptosis and AiP (Fig.2A). It appears that, at least in the “undead” 

model of AiP, Dronc activates JNK in dying cells leading to activation of several mitogenic 

signaling pathways including the Wingless (Wg, a homolog of the mammalian Wnt) and 

Decapentaplegic (Dpp, a TGF-β-like homolog of the mammalian BMP) signaling pathways 

which are required for AiP (Ryoo et al., 2004, Perez-Garijo et al., 2009). Drosophila 

homolog of p53 is also required for AiP, probably through its role in a feedback regulatory 

loop including JNK, p53 and pro-apoptotic genes (Shlevkov and Morata, 2012, Wells et al., 

2006). However, one concern of the “undead” model of AiP is that it may not represent what 

happens in the physiological process of AiP (Perez-Garijo et al., 2009, Martin et al., 2009, 

Bergantinos et al., 2010). For example, it has been suggested that Wg and Dpp are not 

required for AiP when there are no “undead” cells (Perez-Garijo et al., 2009). Nevertheless, a 

Drosophila model of regenerative growth without using P35 has identified Wg as an 

important factor which is induced in response to tissue damage and is required for tissue 

regeneration (Smith-Bolton et al., 2009). In addition to these, a recent genetic screen using 

both an “undead” model and a P35-independent regenerative model has discovered a role of 

EGFR signaling in AiP and tissue regenerative growth (Fan et al., 2014). In this process, JNK 

transcriptionally induces Spi, one of EGF ligands in Drosophila, in dying cells which then 
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activates proliferation of neighboring cells via EGFR signaling. JNK can also activate the 

transcription factor Yorkie (Yki) in the Hippo signaling pathway to regulate AiP in 

developing Drosophila wing tissues (Sun and Irvine, 2011, Sun and Irvine, 2013). 

Interestingly, such a role of Yki in AiP seems to be tissue-specific as it is not required for AiP 

in proliferating eye tissues (Fan et al., 2014). 

 

4.2 The effector caspase-driven AiP in Drosophila   

A second form of AiP was identified in the differentiating Drosophila eye tissue which is a 

monolayer epithelium with differentiated photoreceptor cells at the apical side and cell-cycle-

exited but unspecified cells at the basal side (Fan and Bergmann, 2008b).  At the late 3
rd

 

instar larval stage, both types of cells have relatively low susceptibility to apoptosis 

presumably due to their post-mitotic status and protection of survival signals such as high 

Diap1 and the EGFR signaling (Fan and Bergmann, 2014). Therefore under apoptotic stresses, 

e.g. expression of the pro-apoptotic gene hid, these cells do not die immediately. Instead, the 

stressed photoreceptor neurons release Hedgehog (Hh), another evolutionarily conserved 

growth signaling ligand, to trigger cell cycle re-entry of unspecified cells (Fig.2B). Such an 

AiP event can be blocked by P35 or double mutants of DrICE and Dcp-1 suggesting an 

effector caspase-driven form of AiP is employed in the differentiating eye tissue (Fan and 

Bergmann, 2008b). Interestingly, mechanisms of AiP seem to be operated in a context-

dependent manner. This is best shown in the developing Drosophila eye tissue. The late 3
rd

 

larval eye tissue consists of an anterior proliferating portion where all cells are actively 

dividing and a posterior differentiating portion where most of the cells present have exited the 

cell cycle. The initiator caspase-driven AiP appears to be employed in proliferating tissues, 

while the effector caspase-driven AiP is employed in differentiating tissues (Fan and 

Bergmann, 2008b). However, what controls such distinction is not yet known. 
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4.3 AiP in other organisms including mammals   

In addition to Drosophila, roles of AiP in regeneration have also been implicated in other 

multi-cellular organisms particularly in Hydra, Xenopus and mouse (Chera et al., 2009, Tseng 

et al., 2007, Li et al., 2010c, Bergmann and Steller, 2010). In the freshwater Hydra, both head 

and foot can regenerate completely after bisection at the midgastric area. Massive localized 

apoptosis was observed for the head regenerating tip, but not the foot regenerating 

counterpart, preceding increase of cell proliferation (Chera et al., 2009). Interestingly, ectopic 

activation of apoptosis at the foot regenerating tip resulted in regeneration of head instead of 

foot. In this process, caspases activate Wnt3, a homolog of Drosophila Wg, in dying cells 

leading to regenerative proliferation (Chera et al., 2009). This study suggests that apoptosis 

can direct certain regenerative programs. Similar requirements of caspases in regeneration 

were also reported for Xenopus tadpole tail regeneration which is abolished by inhibiting 

caspase-3 (Tseng et al., 2007). Notably, in other regeneration models such as planaria and 

newt, massive apoptosis at the amputation site has been observed (Pellettieri et al., 2010, 

Pellettieri and Sanchez Alvarado, 2007, Vlaskalin et al., 2004). However, it is not yet clear 

whether apoptotic caspases actually drive release of mitogenic signals such as Wnt, TGF-β 

and Hh in these processes. More recently, roles of AiP in mammals were reported in mouse 

models of wound healing and liver regeneration (Li et al., 2010c, Jung et al., 2010). The rate 

of skin wound healing and liver regrowth after partial hepatectomy were significantly 

reduced in caspase-3 or -7 deficient mice due to impaired post-injury cell proliferation. It was 

further revealed that activated caspase-3 and -7 cleave calcium-independent phospholipase 

A2 (iPLA2) to increase its catalytic ability and promote synthesis of prostaglandin E2 

(PGE2). Release of PGE2 from the dying cell then induces compensatory proliferation 

(Fig.2C) (Li et al., 2010c). Although detailed mechanisms on how PGE2 triggers 



   15 

 

compensatory proliferation are not yet revealed, the link between PGE2 and the Wnt 

signaling cascade have been established in both zebrafish and mice (Goessling et al., 2009). 

PGE2 binds to the EP2, a G-protein coupled receptor, leading to activation of β-catenin, a 

key intracellular transducer of Wnt signaling (Castellone et al., 2005, Moon et al., 2004, Jager 

and Fearnhead, 2012).  

 

5 Caspases in cancer development: non-apoptotic functions 

 

Current cancer therapies such as chemo- and radiotherapies frequently aim to activate 

apoptosis of cancer cells. Therefore activating apoptosis has long been viewed as an “anti-

cancer” process. However, increasing evidence is now suggesting that apoptotic caspases can 

play oncogenic roles through their non-apoptotic functions (Fig.3). Intriguingly, such “pro-

cancer” functions of caspases seem not to be an invention by cancer cells. As discussed above 

the roles of the apoptotic caspases are essential in proper organism development and tissue 

homeostasis. Apparently such multi-functional nature of caspases needs to be tightly 

controlled and restrained by cellular contexts in order to prevent their detrimental effects. In 

the context of cancer, these non-apoptotic functions of caspases can be hijacked to ensure 

survival of cancer cells and promote their spread. Thus, the multifunctional nature of the 

apoptotic caspases is becoming clinically important. 

 

5.1 Caspases promote cell survival and cell proliferation 

The crucial function of caspases in cell survival and proliferation has been reported during 

development. Targeted disruption of caspase-8 in mice causes embryonic lethality, a feature 

not shared by the other caspases (Varfolomeev et al., 1998, van Raam and Salvesen, 2012). 
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Caspase-8
-/-

 mouse embryos exhibited abnormal phenotypes prior to death, namely 

hyperemia, with the number of hematopoietic precursors significantly reduced (Varfolomeev 

et al., 1998). This suggests that caspase-8 is required for either maintenance or proliferation 

of hematopoietic precursors. As further supports for this view, depletion of caspase-8 in 

lymphoid tissues inhibits antigen-induced T and B lymphocyte proliferation (Salmena et al., 

2003, Beisner et al., 2005, Su et al., 2005). Although it was originally thought that caspase-8 

regulates cell proliferation in these cases, it is more likely that caspase-8 has pro-survival 

functions due to its inhibitory role on necroptosis, another form of programmed cell death 

(Oberst and Green, 2011, van Raam and Salvesen, 2012). The key factors involved in such 

regulation are caspase-8, the long isoform of cellular FLICE-like inhibitory protein (FLIPL), 

and two kinases, RIPK1 and RIPK3, which are required for activation of necroptosis. FLIPL 

is structurally similar to caspase-8 but without its catalytic activity (Zhou et al., 2004). It can 

bind to pro-caspase-8, forming a heterodimer which prevents caspase-8 from completing its 

apoptotic functions by occupying all binding sites of caspase-8 in the DISC. This 

consequently prevents caspase-8 homodimer formation. Therefore, when the FLIPL levels are 

low, homodimerization of pro-caspase-8 occurs which activates caspase-8 for its apoptotic 

function. In contrast when FLIPL levels are high, e.g. triggered by survival signals mediated 

by a transcription factor NFκB, formation of the pro-caspase-8-FLIPL heterodimer does not 

trigger apoptosis. Instead, it can bind to the RIPK1-containing complex to suppress its 

activation on RIPK3 and necrotic cell death, although the underlying mechanism remains 

unclear (Oberst and Green, 2011). Hence, the level of FLIPL is crucial for caspase-8-

regulated cell survival. Interestingly, an increase in FLIPL expression has been detected in a 

variety of tumor types, including B-cell chronic lymphocytic leukaemia, pancreatic cancer 

and ovarian cancer, amongst many others (Ghavami et al., 2009, Ili et al., 2013). Down-

regulating FLIPL levels in tumors sensitises the cells to apoptosis (Ghavami et al., 2009, 
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Sharp et al., 2005). This is most likely due to decreased ability for caspase-8-FLIPL 

heterodimers to form and increased ability of caspase-8 homodimerization, which can then 

activate caspase-3 and apoptosis. In a study of cervical cancers, high grade tumors were 

found to have higher expression of FLIPL (Ili et al., 2013). Moreover, increasing grade of 

lesions was directly associated to increased c-FLIP expression, where 12.5% of normal 

cervical epithelia stained positive for relevant expression of FLIPL compared to 82.1% of 

squamous cervical carcinomas stained positive for FLIPL (Ili et al., 2013). This shows the 

significance in correlation of uncontrolled caspase-8-FLIPL dimer formation and cancer 

progression. Interestingly, infection by high-risk human papillomavirus (HPV), particularly 

HPV-16, was highly significantly correlated with high expression of FLIPL (Wang et al., 

2007). Although the viral infection does not explain the cause of high FLIPL expression in 

other cancer types, high expression of FLIPL was determined to be a marker of early cervical 

carcinogenesis and therefore has the potential to be utilised for early diagnosis (Ili et al., 2013, 

Wang et al., 2007). This evidence highlights that the caspase-8-FLIPL heterodimer can be 

hijacked by cancer cells to promote tumor survival, by avoiding the apoptotic functions of 

caspase-8. 

 

In addition to the initiator caspases, the effector caspases have also been implicated in 

promoting cell survival and cell cycle progression. In cultured cancer cell lines with the 

origin of leukemia or hepatocellular or cervical carcinoma, caspase-3 and -7 are found to be 

required in cell cycle progression through the G1 and G2/M checkpoints (Hashimoto et al., 

2011, Hashimoto et al., 2008). Overexpression of the BIR2 domain of XIAP inhibits caspase-

3 and -7, and when added to cells also induced cell cycle arrest. In contrast, inhibition of 

caspase-9 by expression of the BIR3 domain of XIAP did not cause the same effect, which 

indicates that caspase-3 and -7 have functions independent of caspase-9 activity. Although it 
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is not yet clear how caspase-3 and -7 may promote cell cycle without being cleaved by 

caspase-9, the anaphase-promoting complex/cyclosome (APC/C), which regulates 

degradation of various cell cycle regulators through ubiquitylation, failed to form when 

caspase-3 and -7 were inhibited (Hashimoto et al., 2011). This suggests that pro-caspase-3 

and -7 may contribute to cell proliferation. Interestingly, direct substrates of caspases 

including cell cycle regulators can also promote cell survival or cell cycle progression at least 

in some circumstances. For example, the cyclin-dependent kinase inhibitor P27
Kip1

 can be 

cleaved by caspase-3 which then becomes activated and anti-apoptotic to protect human 

leukemic cells from death (Eymin et al., 1999). In addition to this, a more recent study 

suggested that caspase-3 can act as a sensor to extracellular stresses, therefore determining 

whether the cells live or not (Khalil et al., 2012). In this study, caspase-3-knockout mice 

become more sensitive to UV radiation with increased number of cells undergoing necrosis 

compared to the control animals. In response to doxorubicin, an anticancer drug inducing 

apoptosis of cardiomyocytes, the caspase-3 deficient mice also show significantly increased 

number of apoptotic cardiomyocytes which die through the caspase-7 instead (Khalil et al., 

2012). Caspase-3, but not caspase-6 and -7, cleaves the p120 RasGAP protein in vitro to 

activate a kinase Akt leading to survival functions of the PI3K signaling (Yang and Widmann, 

2002, Yang et al., 2004). Consistently, Akt activity, indicated by the level of phosphorylated 

Akt, increases in response to stresses such as UV radiation and doxorubicin injection. But 

such increase is strongly reduced in caspase-3-knockout mice. Knockin mice with a RasGAP 

mutant resistant to caspase-3 cleavage can restore their apoptotic sensitivity (Khalil et al., 

2012). Given these findings of caspases in cell survival and proliferation, could they 

contribute to tumorigenesis? As discussed below (see Sect. 5.3), the answer becomes clear by 

discovering roles of AiP in tumor reoccurrence following cytotoxic cancer therapies.   
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5.2 Caspases and metastasis 

Metastasis is a crucial process during cancer development as it is the cause of approximately 

90% of cancer related deaths (Hanahan and Weinberg, 2011). Yet it is an incredibly complex 

process consisting of multiple key steps for a cancer cell, or a group of cancer cells, to 

progress through (Geiger and Peeper, 2009).  These steps include breaking away from a bulk 

tumor, disseminating in the blood or lymph, exiting the circulation, then establishing and 

repopulating at a new site, where a secondary tumor forms. Interestingly, caspases have been 

implicated in aiding some of these steps through their non-apoptotic functions in cell 

migration, angiogenesis, and possibly cell dedifferentiation.  

 

Caspases have been reported for their functions in controlling cell motility during 

development. In Drosophila, Dronc, the caspase-9 homolog, is required for migration of 

border cells in the ovary (Geisbrecht and Montell, 2004), a process critical for oocyte 

development. In mammals, caspase-8
-/-

 mouse embryos die with a circulatory failure 

suggesting roles of caspase-8 in migration of endothelial cells (Varfolomeev et al., 1998, 

Kang et al., 2004). Similarly, in cancer specific studies, caspase-3 and its downstream targets 

have been implicated in causing tumor cell migration, thus contributing to achieving 

metastasis. Caspase-3 has been shown in ovarian cancer cells to be involved in the process of 

initiating cell migration, via activation of arachidonic acid, the precursor of PGE2 similarly 

as in the context of AiP described above (Fig. 2C) (Zhao et al., 2006, Jager and Fearnhead, 

2012, Portela and Richardson, 2013). Ovarian cancer cells have strong migratory responses 

towards laminin-10/11, a protein component of the extracellular matrix. This is probably due 

to the high levels of β1 integrin in ovarian cancer cells because binding of laminin-10/11 to 

β1 integrin leads to a moderate increase of caspase-3 activity (Zhao et al., 2006). Although 

the intermediate molecules determining caspase-3 activation from integrin-laminin binding 
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are unknown, Zhao et al. (2006) determined the moderate increase of caspase-3 activity does 

not lead to apoptosis, instead, it cleaves iPLA2 and activate its enzymatic activity to produce 

arachidonic acid and then PGE2. Consistently, pan caspase inhibitors, caspase-3-specific 

inhibitors or knockdown of iPLA2 inhibits migration of these cells. Interestingly, cleaved 

iPLA2 also activates the Akt survival signaling to protect these cells from apoptosis (Zhao et 

al., 2006). This further enhances cancer cell migration. Not surprisingly the arachidonic acid 

has also been implicated to be the driving factor of cell migration in other cancers including 

prostate cancers (Brown et al., 2014). Further support to roles of caspase-3 in cell migration 

comes from a study on lung cancer metastasis (Cheng et al., 2008). In this study, however, a 

protease-independent function of caspase-3 was suggested to promote metastasis. The authors 

used A549 cells, derived from high malignancy lung adenocarcinoma cells with high levels 

of caspase-3, for their study. Knockdown of caspase-3 in A549 cells diminishes their 

metastatic activities in the lungs when these cells were injected into the nude mice via tail 

vein suggesting roles of caspase-3 in promoting metastasis. Consistently, ectopic expression 

of caspase-3 in MCF-7 cells, derived from caspase-3-deficient and low malignancy breast 

cancer cells, enhances metastatic ability of these cells. Following these, the authors found that 

high levels of caspase-3 actually lead to high activity of the extracellular signal-regulated 

kinases (ERK) which are required for the observed lung metastasis. But intriguingly, such 

increased ERK activity and cell migration are not affected by the caspase inhibitor Z-DEVD-

FMK. Furthermore, expression of protease-dead mutants of caspase-3 in MCF-7 cells still 

enhances their migration through increased ERK activities. Although it is not yet clear, the 

acid sphingomyelinase and its downstream signal molecule ceramide were suggested to be 

the molecules linking caspase-3 and ERK (Cheng et al., 2008). Interestingly, another 

mechanism of caspase-3-dependent cell migration has been reported for the “undead” cells in 

Drosophila models (Rudrapatna et al., 2013). In this case, DrICE, a caspase-3 homolog in 
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Drosophila, activates JNK leading to cell migration and tissue invasion. Therefore, cellular 

contexts may determine how caspase-3 promotes cell motility.  

 

Following invasion and migration of cancer cells, angiogenesis is essential to further cancer 

progression, enabling tumor growth above a diameter of 1mm and metastasis (Geiger and 

Peeper, 2009). Knockdown of caspase-8 suppressed the vascular endothelial growth factor 

(VEGF)-mediated angiogenic signaling (Na et al., 2014). Interestingly, such requirement of 

caspase-8 in promoting angiogenesis is not affected by Ac-IETD-cho, a caspase-8 inhibitor 

that maintains high levels of pro-caspase-8. In contrast, the same study also showed that 

caspase-8 is required in TRAIL signaling to antagonize angiogenesis which can be inhibited 

by Ac-IETD-cho (Na et al., 2014).   Therefore, pro-caspase-8 and caspase-8 appear to have 

distinct functions during angiogenesis mediated by VEGF. 

 

Another cellular process that can potentially impact on cancer metastasis is cell 

dedifferentiation. Although it is still a subject of debate, existence of “cancer stem cells”, a 

small fraction of stem cell-like cancer progenitor cells, may facilitate or even establish the 

metastatic colonies for cancer progression (Geiger and Peeper, 2009). If this is true, 

maintenance and reprograming, thus dedifferentiation, of cancer cells may be crucial in the 

process of metastasis which, again, may involve caspases. Notably, both caspase-8 and 

caspase-3 are required for the dedifferentiation of murine fibroblasts to form induced 

pluripotent stem cells (iPSCs) in vitro (Li et al., 2010a). Activation of caspase-8 and -3 are 

induced by expression of Oct-4, one of the four transcription factors used to program iPSCs. 

By inhibiting caspase-8 the cells were completely unable to develop into iPSCs, whereas 

some could if only caspase-3 was inhibited suggesting potential roles of other effector 
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caspases such as caspase-7 in induction of iPSCs. The authors further showed that the 

caspases act upon retinoblastoma susceptibility protein (Rb), but how from here the 

phenotype of a pluripotent stem cell is produced is unknown although p53 and its 

downstream cell cycle regulator p21 have been implicated in the process (Li et al., 2010a). 

Interestingly, studies of human tumors in relation to their Oct-4 expression showed that 

tumors expressing high levels of Oct-4 resulted in increased metastases, shorter survival and 

furthered disease progression in comparison to tumors low in Oct-4 expression (Chang et al., 

2002). A recent study further sorted murine breast cancer 4T1 cells with either high or low 

Oct-4 expression and tested their tumorigenic potential in vivo by injecting sorted cells into 

the mouse mammary glands (Kim and Nam, 2011). The results support that Oct-4 can 

enhance cancer stem cell properties. This fits in vitro data and hypotheses theorising on the 

capacity of cancer stem cells in disease progression, though of course more studies are 

required in a greater range of tumor types. 

 

5.3 Caspases in tumor repopulation following cytotoxic cancer therapies 

Cytotoxic therapies exert their anti-tumor properties by inducing apoptosis as a result of 

DNA damage (Fulda and Debatin, 2006). As discussed above, AiP is a process utilised in 

non-cancerous tissue in order to maintain tissue homeostasis that allows tissue regeneration 

and recovery from damage. Consequently, this means that cytotoxic therapies can potentially 

induce not only cell death but also the AiP pathway which may in fact counteract cancer 

treatment. Tumors, to some extent, are comparable to standard developmental tissues (Dick, 

2008), and, conceivably, when damaged they can respond in the same way to regenerate and 

to compensate for the inflicted damage, thus to repopulate and reoccur. Recent studies on AiP 

in cancer models suggested this is the case. In one study, experiments were conducted to find 

out how caspase-3 is responsible for promoting accelerated tumor repopulation following 
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cytotoxic therapy in 4T1 murine breast cancer cells (Huang et al., 2011). It was found that the 

AiP pathway, activated in either cancer cells or stromal cells, could become hijacked by 

cancer cells following radiotherapy, causing accelerated tumor repopulation in vitro and in 

vivo, in nude mice. These were also confirmed with human breast cancer cell lines in the 

nude mice (Huang et al., 2011). The results gained in this study were further developed upon 

in studies on metastatic melanoma, showing that chemotherapy too can result in AiP and 

tumor repopulation (Donato et al., 2014). As in the tissue regeneration mouse model, it is 

PGE2 which is secreted from apoptotic cells and stimulates recipient living cells to proliferate 

in the tumor repopulation model (Fig.2C) (Donato et al., 2014, Huang et al., 2011). The 

authors also found that tumors with elevated caspase-3 were more resistant to radiotherapy 

than those with reduced caspase-3 (Huang et al., 2011). This at first seems paradoxical 

however with regards to the AiP model this observation seems to be logical. Higher caspase-

3 expression allows for greater production of PGE2, which in turn stimulates the increased 

growth rate of surviving cells, thus ensuring the maintenance of a larger tumor mass. Huang 

et al. found that the therapy sensitive cells were induced to undergo apoptosis, and the release 

of prostaglandins from the therapy sensitive cells caused the therapy resistant cells to 

proliferate at an accelerated rate and repopulate the treated tumor (Huang et al., 2011). 

 

Statistical studies have been conducted to give a measure of how higher expression of 

particular caspases in tumors can affect outcome and survival likelihood. In a study of breast 

cancer, 103 out of 137 tumors were deemed to have high levels of caspase-3, although some 

activity was noticed in all of the tumors (Nakopoulou et al., 2001). Increased caspase-3 level 

significantly correlated with worsened survival of the patients sampled and, in the tumors 

sampled, caspase-3 was only found in the cytoplasm, not the nucleus where the apoptotic 

target of caspase-3 resides. This suggests a possible mechanistic block preventing the effector 
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caspase-3 from reaching its target molecule, the inhibitor of caspase-activated DNase (iCAD), 

to free caspase-activated DNase (CAD) which can cause DNA fragmentation and subsequent 

cell death (Nakopoulou et al., 2001). Another study assessing implications of caspase-3 in 

gastric, ovarian, cervical and colorectal cancers concluded that patients possessing tumors 

which expressed higher caspase-3 had shortened survival time and also found that caspase-3 

expression was significantly associated with tumor stage (Hu et al., 2014). Both studies 

concluded that higher caspase-3 expression resulted in worsened prognosis. Notably, 

participants of these studies had not undergone any form of therapy. However, these findings 

of statistical significance were further confirmed by Huang et al. (2011), on patients who had 

undergone radiotherapy or chemotherapy.  

 

Given these new insights of mechanisms causing tumor repopulation following cytotoxic 

therapy, if repopulation is to be prohibited in tumors, then the AiP pathway needs to be 

blocked while still allowing caspase-3 to carry out its apoptotic functions. As described for 

AiP (Fig.2C), PGE2 is synthesised from arachidonic acid by cyclooxygenases (COX). Thus, 

COX inhibitors in theory should prevent the AiP pathway from progressing. This has been 

shown in practice, where administering a COX inhibitor in conjunction with cytotoxic 

therapy significantly decreases rate of tumor repopulation (Huang et al., 2011, Donato et al., 

2014). Therefore, use of a COX inhibitor in conjunction with the cytotoxic therapy may 

benefit patients possessing tumors with high levels of caspase-3. Notably, caspase-3 may not 

be the only components in the apoptosis pathway that can promote cancer tumorigenesis as 

suggested by studies on lymphoma (Michalak et al., 2010, Labi et al., 2010). Further 

mechanistic understanding of AiP in various cellular contexts will be the key to maximize its 

clinical benefits. Interestingly, in addition to AiP, engulfment of apoptotic cells by 

macrophages can create a tumor-promotive microenvironment by releasing signaling 
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molecules (Steidl et al., 2010, Qian et al., 2011, Willems et al., 2014) and regulating various 

aspects of tumor progression (Ford et al., 2015). Again, caspases play key roles here. 

Activation of iPLA2 by caspase-3 leads to production of lysophosphatidylcholine (LPC), as 

well as PGE2, from dying cells (Lauber et al., 2003). LPCs, together with several other 

molecules such as sphingosine-1-phosphates (S1Ps) and the nucleotides ATP and UTP, 

recruit macrophages to engulf apoptotic cells (Ravichandran, 2011). Therefore, apoptotic 

caspases can promote tumorigenesis directly through AiP or indirectly through recruiting 

macrophages (Jager and Fearnhead, 2012). This is further discussed in the Chapter 3.     

 

6 Concluding remarks  

 

For many years the apoptotic function of caspases has been considered, both in 

developmental settings and in a cancer setting, where activation of apoptotic proteins is 

considered to be essential in causing cell death and reducing tumor burden (Hanahan and 

Weinberg, 2011). While these considerations of caspase function remain valid, increasing 

evidence suggested that non-apoptotic functions of the apoptotic caspases exist in a context-

dependent manner. These functions are crucial in development and tissue homeostasis, where 

caspases have been implicated in stem cell pool maintenance by enhancing survival pathways 

and in AiP for tissue recovery upon cell loss, in which we have learned a lot from Drosophila 

models. Intriguingly, a wide range of non-apoptotic functions of caspases have been 

implicated in promoting tumor growth, metastasis and recurrence post-cytotoxic therapy 

(Fig.3). It is therefore worthwhile to consider not only how to kill the tumor cells, but also 

how to prevent tumour spread and repopulation. Further understanding of molecular 

mechanisms and cellular contexts leading to various non-apoptotic functions of caspases 

would certainly be beneficial.  
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