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ABSTRACT  

Background 

Increased microcirculatory flow and perfusion has been reported to improve clinical 

outcomes following shock. The optimal resuscitation fluid to restore the flow 

dynamics of the microcirculation is unknown. This review summarises the preclinical 

literature in order to inform the direction and most important hypotheses for future 

clinical interventional studies.  

 

Methods 

Standard systematic review methodology was utilized, and registered with the 

Collaborative Approach to Meta Analysis and Review of Animal Data from 

Experimental Studies (CAMARADES). Medline and Embase (via OVID SP) and 

SCOPUS were searched for all preclinical studies of haemorrhagic shock that 

compared fluid resuscitation of any kind (e.g. blood products, crystalloids, colloids, or 

haemoglobin based oxygen carriers) to another fluid or haemorrhage only, and 

reported at least one microcirculatory physical endpoint (such as flow rate, velocity, 

vessel diameter, functional capillary density or glycocalyx thickness). Risk of bias 

was assessed using the Systematic Review Centre for Laboratory animal 

Experimentation (SYRCLE) tool. Translatability was also assessed for each study 

based on the most common recommendations.  

 

Results 

There were 3103 potential studies of interest, of which 71 studies fulfilled all eligibility 

criteria. There were 62 rodent, 5 canine and 4 porcine studies. Flow rate, velocity, 

and vessel diameter were the most commonly reported endpoints. Studies reported 
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the importance of the presence of haemoglobin, as well as osmotic potential and 

viscosity in providing optimal restoration of microcirculatory flow dynamics. Others 

reported the restoration of the endothelial glycocalyx and attenuation of inflammation 

as important properties for the choice of fluid. All studies were at potential risk of bias 

due to unclear randomization, concealment, and blinding. There were important 

threats to translatability for all studies.  

 

Conclusion 

The ideal resuscitation fluid for restoration of the microcirculation following 

haemorrhagic shock is likely to contain a preparation of haemoglobin, favour higher 

oncotic potential and viscosity, protect and reconstitute the endothelium, and 

attenuate inflammation. These hypotheses that are derived from preclinical research 

warrant further exploration in the clinical context.  

 

Keywords: Microcirculation; haemorrhagic shock; resuscitation; preclinical 

 

Systematic review registration 

This protocol for this review has been registered with the Collaborative Approach to 

Meta Analysis and Review of Animal Data from Experimental Studies 

(CAMARADES) (http://www.dcn.ed.ac.uk/camarades/research.html#protocols), and 

published Open Access (Naumann DN, Dretzke J, Hutchings S, Midwinter MJ. 

Protocol for a systematic review of the impact of resuscitation fluids on the 

microcirculation after haemorrhagic shock in animal models. Syst Rev. 2015;4:135).  
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INTRODUCTION 

Alterations in the microcirculation have been reported as more reliable than global 

parameters in predicting clinical outcome following septic shock(1) and traumatic 

haemorrhage(2). Improved microcirculatory flow during resuscitation is associated 

with reduced organ failure even when there is no difference in global haemodynamic 

factors(3). Even when global parameters are improved following shock, this may not 

be associated with improvements in the microcirculation and tissue perfusion(4). In 

such circumstances there appears to be a clinically meaningful discrepancy between 

the macro and microcirculatory behaviour. During normal physiological conditions 

both microcirculatory flow and tissue perfusion are determined by the circulatory 

pressure and volume. This phenomenon is known as ‘haemodynamic coherence’(5). 

This coherence may be lost during circulatory shock, and therefore global surrogate 

markers may no longer be relied on as markers of microcirculatory function in that 

context – a rationale for monitoring of the microcirculation following shock. 

 

During resuscitation of patients with haemorrhagic shock, fluid delivery is intended to 

increase oxygen delivery to tissues to meet demand, repay oxygen debt, eliminate 

lactate, and normalise pH. These processes all occur at the level of the 

microcirculation, representing a key anatomical location during shock and 

resuscitation. Although preclinical studies have been conducted to measure global 

haemodynamic parameters (such as blood pressure and heart rate) following 

haemorrhagic shock and resuscitation(6, 7), these surrogate markers of 

microcirculatory flow may not be relevant in the case of loss of haemodynamic 

coherence. Microcirculatory flow and dynamics therefore represent relevant study 
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endpoints for the assessment of resuscitation fluid delivery after haemorrhagic 

shock.  

 

Current clinical resuscitative practice favours the utilisation of blood products (rather 

than crystalloid fluids) following haemorrhagic shock, but there are no randomised 

clinical studies that compare the microcirculation during different fluid resuscitation 

regimes. In order to guide clinical investigation and form credible hypotheses for 

testing in clinical research, it is timely to review the preclinical literature and 

determine the current state of evidence. No previous systematic reviews on this topic 

were identified during preliminary searches on MEDLINE and the Cochrane library. 

We hypothesised that provision of haemoglobin and plasma, in particular by whole 

blood, may be superior to other fluid characteristics in the restoration of the 

microcirculation following haemorrhagic shock.   

 

Aim 

The current systematic review aims to examine all available preclinical  

studies of haemorrhagic shock that use microcirculatory parameters as research 

endpoints and compare the efficacy of at least one type of fluid for resuscitation.  
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METHODS 

This systematic review is intended to address the impact of resuscitation fluids on 

the behaviour of the microcirculation in animal models of haemorrhagic shock.  

The protocol for this systematic review has been published previously(8), and made 

freely available through Open Access and registration at the Collaborative Approach 

to Meta Analysis and Review of Animal Data from Experimental Studies 

(CAMARADES)(9). Systematic review methodology is reported according to the 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

guidelines(10).  

 

Study subjects 

This systematic review includes studies that utilise animal models of haemorrhagic 

shock (any size, age, strain and species). Any volume of haemorrhage (survivable or 

non survivable) was allowed as long as the intention was to create a period of 

circulatory shock after which fluid resuscitation was delivered. Study protocols with 

additional elements such as trauma were still eligible for inclusion. Studies that 

utilised isovolaemic exchange transfusion, ischaemia-reperfusion, or septic shock 

models were excluded unless they also contained a subgroup of haemorrhagic 

shock. 

 

Interventions 

Studies that used at least one type of fluid intervention for resuscitation following 

haemorrhage were eligible for inclusion. There were multiple interventions of 

interest, broadly categorised as: (i) blood products (e.g. whole blood, packed red 

cells (PRBCs), plasma); (ii) haemoglobin-based oxygen carriers (HBOC) (e.g. 
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modified bovine haemoglobin); (iii) crystalloids (e.g. Ringer’s lactate, 0.9% or 

hypertonic saline); and (iv) colloids (e.g. albumin, dextran, starch).  

 

Comparisons 

The studies included in this systematic review were varied in both methodology and 

research question. Multiple permutations of fluid comparisons were made (for 

example blood product versus crystalloid, and colloid versus crystalloid). Some 

studies use haemorrhagic shock alone as a control, and some use surgical 

instrumentation (sham) as a control. These comparisons are summarised in 

narrative form.  

 

Outcomes 

The outcomes of interest included any parameter that was intended to represent the 

physical microcirculatory behaviour. These included: flow rate (nL/s); red blood cell 

velocity (mm/s), vessel diameter (μm); Functional capillary density (%); glycocalyx 

thickness (μm); Shear rate (s-1); proportion of perfused vessels (%); vessel density 

(n/mm); perfused vessel density (n/mm); microcirculatory flow index; blood flow 

intensity; and heterogeneity index. Studies that only examined physiological aspects 

of the microcirculation such as lactate, oxygen partial pressures, and delivery of 

oxygen but did not report physical (flow dynamics) parameters(11-19) were 

excluded. 

 

Study design 

Studies were included if they were controlled prospective animal studies with 

detailed reporting of the type and amount of fluid(s) used and at least one 
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microcirculatory physical parameter. Although randomised studies with blinded 

outcome assessment were considered preferable, prospective studies without such 

design were still eligible for inclusion. Single case reports and letters were rejected. 

Conference proceedings and abstracts were screened for new data and adequate 

methodological detail. They were only included if they contained new data (not 

replicated by full papers from the same authors and time period). Uncontrolled 

studies were recorded but not included in the analysis. 

 

Search strategy 

The detailed search strategy for this systematic review has been published 

previously(8). In short, Embase, Medline and SCOPUS were searched to identify 

eligible studies. A combination of terms were used that referred to the model (e.g. 

“haemorrhage”, “shock”), the intervention (e.g. “transfusion”, “fluid”, “resuscitation”), 

and the endpoint (e.g. “microcirculation”, “endothelium”). An example search is 

included in the prior publication(8).  There were no restrictions applied to study type, 

date, or language. Reference lists of included studies and relevant reviews were 

screened for further eligible studies. 

 

Study Selection 

All titles and abstracts were screened by two independent reviewers, and full texts 

were obtained for studies that appeared to be of interest. Eligible studies were 

identified from reading the full texts.  
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Data extraction    

Data extraction was performed by one reviewer (D.N.N.) and confirmed by another 

(A.B.). Data were extracted with regards to study characteristics and design (author, 

year, type of study, hypothesis), animal model (species, age, experimental groups, 

size/weight, housing), number of animals (haemorrhagic shock and resuscitation 

only), and haemorrhage protocol (technique, percentage and volume of bleeding, 

timings, and target pressures). Details regarding interventions (type and timings), 

and microcirculatory monitoring (technique, anatomical location) were also extracted. 

A summary of the extracted data fields is shown in Supplementary Table 1.     

 

Quality assessment  

Two reviewers (D.N.N. and A.B.) assessed the included studies based on the 

Systematic Review Centre for Laboratory animal Experimentation (SYRCLE) risk of 

bias tool(20). This tool assesses selection, performance, detection, attrition, and 

reporting biases.  

 

Translatability 

The validity of study design with regards to translatability to clinical practice was 

examined by two authors (D.N.N. and A.B.) for each study based on the three 

domains described by Henderson et al: (i) threats to internal validity; (ii) threats to 

construct validity; and (iii) threats to external validity(21).  The domain relating to 

outcome measure validity was omitted since this systematic review only includes 

studies with pre-defined outcome measures (microcirculatory physical parameters) 

that are considered valid endpoints of shock resuscitation.  
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RESULTS 
 

Search results 

Figure 1 shows the PRISMA diagram for the study selection. The initial search 

strategy identified 3103 studies, from which 369 full texts were examined. There 

were 71 studies that measured the impact of resuscitation fluids on the 

microcirculation in an animal model of haemorrhagic shock(22-92).  

 

Study characteristics 

The 71 included studies were published between 1990 and 2015, and include 67 

original articles and 4 conference proceedings/abstracts with 45 individual first 

authors. Countries of origin are listed as: Austria, Brazil, Canada, China, France, 

Germany, Hungary, Italy, Japan, Spain, Taiwan, and the USA. All studies were 

prospective, experimental controlled studies. Although random allocation of 

intervention and control arms was implied by all studies, the words “random” or 

“randomly” were only explicitly reported in 52/71 (73%) of studies. The extracted  

 

Animal characteristics  

All studies included a single species experimental model. Animal characteristics are 

summarised in Table 1, and included 62 rodent, 5 canine and 4 porcine studies. A 

total of 1959 animals underwent haemorrhagic shock and resuscitation in the 

included studies. There were 55 studies that reported the sex of the animals, of 

which 48 included only male animals, 4 studies had mixed male and female animals, 

and 3 included only female animals.  
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Haemorrhagic shock protocols 

A haemorrhagic shock protocol was described in all studies, and was heterogenous, 

as illustrated in Table 2. Some studies bled the animals to target values or 

percentage of mean arterial pressures, whereas others bled to a percentage of total 

blood volume or weight. The length of time of the “shock” phase was also variable.  

 

Microcirculatory monitoring techniques 

Several different techniques and anatomical locations were used to determine 

microcirculatory parameters, as summarised in Table 3. Five studies(41, 56, 69, 88, 

89) examined the microcirculation in multiple regions, and the remainder studied only 

one anatomical location. One study conducted haemorheological analysis externally 

(from blood samples) without specific anatomical location(92). Some studies used a 

combination of techniques at the same anatomical location(40, 58). Intravital 

microscopy was the most common technique used for microcirculatory visualisation, 

with dorsal skin fold and bowel/mesentery being the most common anatomical 

locations. Only five studies used sidestream darkfield microscopy (SDF)(43, 44, 58, 

61, 69), which is considered the most appropriate technique for clinical 

assessment(93).   

 

Fluid comparisons 

There were multiple comparisons made between fluids in the included studies, 

summarised in Supplementary Table 2. There were 29 permutations of sham (no 

haemorrhage), haemorrhage only, blood product, HBOC, crystalloid and colloid fluid 

administration.   
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Risk of bias 

The majority of studies fulfilled SYRCLE criteria to control for risk of bias by 

specifically reporting a random allocation sequence generation for the different 

interventions, and also reporting similar baseline characteristics (illustrated in 

Supplementary Table 3). No studies met all SYRCLE criteria. All studies were at risk 

of selection bias due to lack of reporting of allocation concealment, and performance 

bias due to lack of reporting of blinding of caregivers/investigators. All studies were 

also at risk of detection bias due to lack of reporting of random outcome assessment.   

 

Translatability  

Assessment of the translatability of the animal model to clinical relevance found 

some consistently under-reported details, which threaten the validity of the studies in 

humans (illustrated in Supplementary Table 4). Most of the studies did not describe a 

power calculation in their methodology, did not have blinded outcome assessment, 

and did not include a dose-response relationship. Only one study reported a 

rationale for the age of the animals(43), and none reported their experimental model 

had been tested with different transgenic strains, different species, or in collaboration 

with different research groups (for the same experiment).  

 

Data synthesis 

An assessment of feasibility of meta-analysis was made, but was considered to be 

unwarranted due to high heterogeneity of haemorrhage protocol (5 permutations), 

interventions (29 permutations), and endpoints (6 permutations) between studies. In 

particular there were variations in study hypotheses and research questions that 

rendered meta-analytic synthesis impossible. Descriptive narrative is therefore 
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utilised to synthesise findings across similar studies. Studies were summarised 

according to study hypothesis and research question. The included studies could be 

broadly divided into 5 hypotheses as summarised in Tables 4–8. These primarily 

investigated fluids containing haemoglobin, physical properties (viscosity and 

oncotic/osmotic potential), and the restorative and anti-inflammatory properties of the 

resuscitation fluids. Some studies reported data related to more than one of these 

hypotheses. Of these studies, 55/71 (77.5%) reported one fluid being superior to 

another, with the remainder reporting equivalence between fluids or only testing one 

fluid.  

 

a.  Fluids containing haemoglobin 

There were 27 studies that considered resuscitation fluids containing haemoglobin 

for the restoration of microcirculatory flow dynamics as summarised in Table 4. 

There were 21 studies that examined HBOC fluids, including 10 studies that tested 

HBOC versus whole blood and non haemoglobin (Hb) carrying fluids; 8 studies that 

tested HBOC versus non Hb carrying fluids; and 3 studies that tested HBOC versus 

whole blood only. HBOC preparations included bovine haemoglobin(24, 25, 34, 78), 

modified human haemoglobin(87), mixed human/bovine haemoglobin(65), diaspirin 

cross-linked haemoglobin (DCLHb) (46, 56, 62, 83), o-raffinose cross-linked 

oligomerized haemoglobin(52), and nitric oxide-scavenging recombinant 

haemoglobin(47). In the 13 studies in which HBOC fluids were directly compared to 

whole blood, three HBOCs (bovine haemoglobin glutamer-250(63), modified human 

haemoglobin(87), and DCLHb(62)) were superior to whole blood in the restoration of 

microcirculatory flow dynamics. All except one(71) of the remaining studies reported 

that HBOC fluids were equivalent to whole blood in terms of flow dynamics. HBOC 
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fluids were superior to non Hb carrying fluids in 13 studies, and equivalent to non Hb 

carrying fluids in 5 studies.  

Some of the studies that tested HBOC fluids also addressed the potential 

unwanted side effects of HBOCs such as vasoconstriction, nitric oxide (NO) 

scavenging and leucocyte/endothelial interactions. They reported that HBOCs did 

not cause vasoconstriction(25), did not increase leucocyte/endothelial 

interactions(25, 49, 62, 83), and do not have toxic or lethal effects(38) when 

compared to other non-HBOC fluids. Some preparations of Hb are superior to 

others(65), and lower Hb concentrations appeared to be superior to higher 

concentrations with regards to vasoconstriction(34, 63). Furthermore specific 

modification of HBOCs to reduce NO scavenging has been reported as effective(47). 

Conversely, one study did report hepatotoxic effects of HBOC(55).  

There were 6 studies that tested fluids containing Hb that were not HBOCs. 

These included 4 studies testing whole blood versus crystalloid(35, 51, 61) or 

colloid(70), and two studies examining preparations of PRBCs(68, 79). These 

studies reported that whole blood was superior to crystalloid and colloid. When 

PRBCs were tested, one oxygen carrying emulsion (perflubron emulsion) was 

reported as being superior to red cells(68). Another study reported that lower oxygen 

affinity PRBCs were superior to higher oxygen affinity(79).  

 

b.  Osmotic and oncotic potential 

There were 19 studies that tested the hypothesis that the osmotic/oncotic properties 

of a resuscitative fluid are most important in the restoration of the microcirculation 

following haemorrhage, of which 14 studies reported findings in keeping with this 

hypothesis. These are summarised in Table 5. Hypertonic-hyperosmotic solutions of 
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saline-dextran(59), saline-HES(64, 77, 81), and HES(42, 82) were reported as 

superior to isotonic solutions. One study reported that hypertonic saline/dextran fluid 

improved microcirculatory parameters better than whole blood(72). One study 

reported that hypertonic saline resuscitation was superior to isotonic fluid but only if 

whole blood was also returned to the animal(91). Increase colloid pressure and 

volume expansion was reported as superior for microcirculatory restoration when 

comparing colloid to crystalloid solutions(53, 88), and when using modified 

colloids(29). One study reported that the duration of time of oncotic force was 

important in restoring the microcirculation(28), and another showed that hypertonic 

solutions may restore microcirculatory flow for longer than isotonic solutions(41). 

One study reported that hypertonic fluid is superior due to its reduced effects on red 

blood cell deformability when compared to isotonic fluids(92). 

Five studies did not report superiority of higher osmotic/oncotic potential 

fluids; these included reports of equivalence(23) or inferiority(50). Although some 

studies reported that the microcirculatory fluid dynamics were unaffected by higher 

oncotic/osmotic properties when compared to isotonic fluids, it was noted that the 

permeability of microvessels(66, 67) and haemoglobin oxygen saturation(58) may be 

improved with such solutions nevertheless.  

Some studies reported that the hypertonic-hyperosmotic nature of the 

resuscitative fluids influenced the behaviour of leucocytes to a greater effect than 

isotonic solutions in their actions towards improving the microcirculation(66, 67, 81), 

as described later. 
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c.  Viscosity 

There were 12 studies which tested the hypothesis that increased fluid viscosity was 

superior to normal or reduced viscosity in the restoration of microcirculatory flow 

following haemorrhage, as summarised in Table 6. Ten of these studies had findings 

in keeping with this hypothesis. Higher viscosity preparations of hydroxylethyl starch 

(HES) are reported as superior to lower viscosity HES(26, 33, 85). Higher viscosity 

preparations of Ringers Lactate (by addition of 0.3% alginate) were superior to 

conventional Ringers Lactate in restoring the microcirculation(80). Solutions with 

increased molecular weight (with higher viscosity) were show to be superior to lower 

molecular weight (and therefore lower viscosity) solutions; for example using higher 

density polymerised human serum albumin (HSA)(60) or higher molecular weight 

HES(32).  

The viscosity—rather than the oxygen carrying capacity—has been reported 

as the factor of importance even when using oxygen-carrying solutions(27, 31). 

Furthermore increase in viscosity was reported as more important than the increase 

in oncotic pressure(30). High viscosity preparations of pegylated bovine albumin 

were superior than the same preparations combined with red blood cells, 

demonstrating that transfusion haemoglobin triggers might be lowered if higher 

viscosity fluids are used(86).  

Two studies did not find that higher viscosity was superior to lower; one of 

these compared higher and lower viscosity HBOCs(69) and another higher versus 

lower viscosity non-oxygen carrying fluids(45).  
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d.  Attenuation of inflammation 

There were 9 studies that considered the anti-inflammatory properties of 

resuscitation fluids, as summarised in Table 7. Using albumin as a resuscitative fluid 

has been reported to both improve the microcirculatory parameters as well as 

reducing the inflammatory response(48). A number of studies have proposed that 

small volume resuscitation with hypertonic-hyperosmotic solutions may affect the 

flow behaviour of leucocytes and reduce their stagnation(40), margination(22), 

rolling(67) and adhesion to the endothelium(81), as well as attenuating the number 

of endothelium-leukocyte interactions(23, 66, 90). Reduction of leucocyte adhesion 

has also been reported when using gelatine serum protein solutions as a 

resuscitative fluid(57).  

 

e.  Restorative properties 

There were 5 recent studies from the USA that tested the hypothesis that endothelial 

glycocalyx is shed following haemorrhagic shock, and may be restored by 

components of plasma (but not crystalloid), restoring the microcirculatory 

dysfunction. All studies reported that their results were in keeping with that 

hypothesis as summarised in Table 8 (54, 73-76). 

 

Notable exclusions 

Some studies were ineligible for inclusion due to lack of comparator. This was either 

due to the same fluid being given in different volumes(94) or no control(95). Some 

study protocols varied the amount of haemorrhage rather than resuscitation fluid(96, 

97).  Isovolaemic exchange transfusion(98-100), haemodilution(101), and ischaemia-
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reperfusion(102-105) protocols were excluded. Small volume acute blood loss 

without haemorrhagic shock(106, 107) were also excluded. 

 There were multiple studies that used drug delivery as interventions (rather 

than purely comparing different fluids), including additives(108-111), 

noradrenaline(112), polydatin(113), nitric oxide(114) and naloxone(115). 

Although of interest in the basic science of endothelial behaviour, in vitro 

studies(116) and those that measured endothelial relaxation(117, 118) and 

activity(119) were excluded. Similarly, conformational changes in red blood cells 

(such as deformability and fragility(99, 106)), and the modulation of the inflammatory 

components of haemorrhagic shock(120) and leucocyte behaviour(48, 81) were 

ineligible for inclusion.  

Studies that only reported perfusion endpoints (such as delivery of oxygen) 

rather than any microcirculatory flow dynamics were also excluded(17, 18).   

 

 

DISCUSSION 
 

According to the preclinical available evidence, the most favourable properties of 

resuscitative fluids for the restoration of the microcirculation are: (i) the presence of a 

haemoglobin preparation (HBOC being mostly equivalent to whole blood); (ii) higher 

viscosity; (iii) higher oncotic/osmotic potential, and (iv) having the physical and 

constituent properties that enable attenuation of endothelial-leucocyte interactions, 

reduced inflammation and endothelial permeability. The evidence for these 

properties comes from 71 published preclinical studies that have each tested the 

basic scientific questions regarding physical properties of resuscitation fluids, as well 

as the influence of their constituents. Since none have tested all of these properties 
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in a single experiment, it is only by summation and consideration of all available 

evidence that translatable research questions might be considered for the clinical 

context.  

 

After catastrophic haemorrhage whole blood is not usually readily available, and 

fractionated parts of blood such as PRBCs, FFP, and platelets are precious 

resources. Furthermore the most appropriate ratios of these fractions is a matter of 

controversy(121). Availability is also not the only limitation, since whole blood or 

components may not be the ideal fluids to deliver following haemorrhagic shock; 

some of these preclinical studies have demonstrated superiority of other fluid 

strategies to delivery of whole blood. Regardless of the type of fluid delivered in the 

emergency scenario, the priority is to restore tissue perfusion by enabling the 

transport of oxygen at the microcirculatory surface. This goal requires consideration 

of which characteristics of the resuscitative fluid are most important for that task. Not 

only should the fluid restore the microcirculatory flow dynamics, but may also 

contribute to the mitigation and repair of endothelial injury that has occurred following 

haemorrhage. Restoration of the endothelium and endothelial glycocalyx and 

prevention of leucocyte-endothelial interactions may be key for longer-term 

outcomes, but such a question has not been answered in animal models. All of the 

individual fluid characteristics reported here provide a sound basis for further clinical 

research.  

 

The design of an ‘ideal’ fluid for resuscitation after haemorrhagic shock appears to 

depend on several factors of importance. The careful balance of osmotic potential 

and viscosity in resuscitative fluids appears to allow the fluid to inhibit endothelial cell 
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swelling, minimise shear stress, and keep the individual microcirculatory segments 

open long enough to allow the exchange of oxygen between the circulation and the 

end tissues. Some studies in this review have reported that Hb preparations and red 

cells improve the microcirculatory function by their osmotic and viscous effect on 

microcirculatory flow dynamics rather than their oxygen carrying capacity. Reduction 

in cell swelling and maladaptive endothelial-leucocyte interactions might lead to 

reduction in shunting of flow and subsequent systemic inflammatory response. The 

fluid itself has potential to deposit glycoproteins and essential components of the 

endothelial glycocalyx that may enable the microcirculation to improve its function. 

Although HBOCs are thought to interfere with the endothelium derived relaxing factor 

and NO system and increase vasoconstriction, unwanted oxidative reactions, and 

endothelial-leucocyte interactions, the studies included in this review appear to 

report that appropriate modification of HBOCs can reduce such unwanted effects.  

 

As well as the usual limitations in translatability that arise when attempting to apply 

results of animal studies to the clinical context, the studies included in this review 

were all at risk of threats to their validity according to the most widely common 

recommendations for animal studies(21). The majority of studies were undertaken 

with rodent models rather than large animals, which may provide further issues for 

translatability; testing the same research question from a rodent study in a large 

animal study may result in a different answer(122). Furthermore all studies had a 

potential risk of bias according to the SYRCLE tool; indeed the majority of studies 

were only assessed as positive in 3 or fewer domains (out of a possible 10). In 

particular the general lack of blinding of investigators and outcome assessments 

mandate a cautious approach to their interpretation. It is not known whether these 
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studies failed to fulfil all domains of the assessment tools due to methodological 

deficiencies or whether they simply did not report the relevant details. If further 

animal studies are to be conducted in this field we would recommend that the 

experimental protocols and reporting technique are designed according to the 

SYRCLE tool domains of importance. This tool is based on the Cochrane 

Collaboration’s Risk tool for assessing bias in randomised controlled trials, and 

should therefore be the gold standard for animal studies that hope to establish 

clinically sound hypotheses(123). It is also important to note that a limited number of 

studies used sublingual video-microscopy, which is the most appropriate technique 

for human translatability.  

 

Limitations 

Meta-analytical tests could not be undertaken for the studies included in this review 

since there were too many permutations of animal model, intervention, and outcome 

measure to provide consistent grouping of studies. Such a feasibility assessment 

was pre-defined in the original review protocol. Statistical heterogeneity could not be 

assessed and funnel plots could not be used to assess publication bias. This is a 

notable limitation since significant results are more likely to be published(124), and it 

is likely that unpublished and unavailable studies have not been included in the 

current systematic review. Nevertheless, this systematic review summarises the 

available published literature with regards to haemorrhagic shock resuscitation in 

preclinical models, and provides a basis on which to test hypotheses in the clinical 

context.  

 There are some clinically relevant omissions in the preclinical literature with 

regards to haemorrhagic shock resuscitation and the microcirculation. For example 
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there were no studies that tested platelets as a resuscitation fluid. When plasma was 

delivered and shown to be superior, the exact constituent components of benefit 

have not been identified. There were also no clinically relevant long-term outcomes 

analysed. The experimental protocols were not intended to assess clinically relevant 

outcomes such as 24-hour mortality or complications of treatment. Such questions 

could only be reliably tested in the clinical context.  

 

Based on the available preclinical evidence, the ideal resuscitation fluid for 

restoration of the microcirculation following haemorrhagic shock is likely to contain a 

preparation of haemoglobin, favour higher oncotic/osmotic potential and viscosity, 

protect and reconstitute the endothelium, and attenuate inflammation. These 

hypotheses are derived from an extensive series of preclinical studies that have 

tested the basic biological questions regarding the physical properties of a wide 

range of fluids. Because of the potential risk of translatability, further evaluation in 

clinical studies are warranted in order to determine the ‘ideal’ resuscitative fluid to 

restore the microcirculation in humans. 
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