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Synthesis and Spark Plasma Sintering of Sub-Micron HfB2: Effect of Various Carbon 

sources 

Venugopal Sai, Paul Aa, Vaidhyanathan Ba, Binner JGPa, Brown PMb. 

aDepartment of Materials, Loughborough University, UK, LE11 3TU 

bDSTL, Porton Down, Salisbury, UK, SP4 0JQ 

Abstract 

The difficulties associated with the densification of HfB2 are well known due to the material’s 

high strength covalent bonding, low self-diffusion coefficient, the presence of oxygen 

impurities and the fact that the commercially available HfB2 powders generally have coarse 

particle sizes of around 1 – 2 µm with consequent poor sinterability. Since it is known that the 

sinterability of ceramics increases with a decrease in the particles size [1] and there is a 

growing demand to make complex, dense shapes using HfB2 powder, there is a need to 

synthesise fine HfB2 powders with carefully controlled levels of agglomeration [2]. The present 

work describes a simple process to synthesise HfB2 powder with sub-micron sized particles. 

Hafnium chloride and boric acid were used as the elemental sources whilst several carbon 

sources including sucrose, graphite, carbon black, carbon nanotubes and liquid and powder 

phenolic resin were used. The carbon sources were characterized using thermogravimetric 

analysis and transmission electron microscope. The effect of the structure of the carbon source 

used, on the size and morphology of the resultant HfB2 powder was studied; the HfB2 powders 

were characterized using X-Ray diffraction and scanning and transmission electron microscopy. 

The powder synthesized using powder phenolic resin had a surface area of 21 m2 g-1 and a 
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particle size distribution between 30 – 150 nm. It also contained less agglomeration than the 

powders resulting from other precursors. This was sintered using SPS to a theoretical density of 

94% at 2100oC and 50 MPa pressure without the help of any sintering aids. 

Keywords: Ultra-high temperature ceramics, HfB2, carbon sources, nano particles, SPS, 

sintering 

1. Introduction 

Hafnium diboride (HfB2) is a potential material for high-temperature structural applications due 

to its high melting temperature, high strength, and high thermal and electrical conductivity [3]. 

Its strong covalent bonding and low self-diffusion however, means that either very high 

temperatures and/or high pressures are required to densify it [3,4]. Both reactive hot pressing 

[5,6] and spark plasma sintering [7] have been used typically with additives such as carbon, 

B4C [8], WC, or silicides (Si3N4, HfSi2, TaSi2, TiSi2 and MoSi2 [9]). These form a liquid phase 

and hence reduce the sintering temperature, however the resulting glassy grain boundary phases 

often reduce the high temperature strength and mechanical properties [10]. In addition, to 

achieve a homogeneous diboride-additive mixture extensive milling is typically used which, in 

turn, introduces impurities further decreasing the high temperature performance [11]. This 

work focuses on the preparation of hafnium diboride powders with fine particle size, high 

purity and low levels of agglomeration. Most commercially available powders have an average 

particle size of 1 µm and hence demonstrate poor sinterability.  

A large number of routes have been reported to synthesize HfB2 powder, as shown in Table 1. 

The most widely used is boro/carbothermal synthesis where an oxide or halide precursor of Hf 

is reduced using a suitable carbon and boron source.  
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Table 1: Literature data on synthesis routes for HfB2 

Synthesis Route Precursors Heat treatment 
conditions  

Particle sizes 
yielded References 

Boro/carbothermal 
reduction 

HfO2, B4C, C 
1600oC, 1650oC, 
1875oC, 1 – 2 h 

0.25 – 2 µm 
[4, 12, 13, 14, 

16] 

Borothermal reduction 
HfO2, 

amorphous B 
1550oC, 1 h 0.8 µm [15] 

Mechanically activated 
synthesis 

HfCl4, B, Mg 1100oC 1 µm [16] 

Pressure activated 
synthesis 

HfCl4, NaBH4 600oC, 12 h 25 nm [17] 

Non-self propagating 
high temperature 

synthesis 

Hf sheet, 
amorphous B, 
carbon black 

1500oC - [18] 

 

SPS has been used for fabricating dense HfB2–SiC [19], TiB2–WB2–CrB2 [20], HfB2–MoSi2 

[21], and HfC and HfB2-based composites with MoSi2 additives [22, 23]; however a dense 

HfB2 without any sintering aid is yet to be achieved. 

In the current work the effect of different carbon sources with different structures, on the size 

and morphology of the synthesized HfB2 powder particles is reported. Hafnium chloride (HfCl4) 

and boric acid (H3BO3) were used as the sources of Hf and B respectively. The carbon sources 

included liquid and powder phenolic resin, pitch, sucrose, graphite, carbon black and carbon 

nanotubes. The operational mechanism by which the carbon sources affected the particle size 

has been determined and the XRD phase pure sub micron-sized HfB2 powder has been 

synthesized. A comparison between the sinter-ability of a commercially procured HfB2 and the 

fine HfB2 synthesized in the present work using SPS densification is also presented. 
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2. Experimental 

Table 2 provides a list of the different starting materials used and their suppliers. The carbon 

content of each carbon source was obtained from thermo gravimetric analysis (Q5000IR TGA, 

TA instruments, Zellik, Belgium). The samples were heated up to 1000oC in an Ar atmosphere 

using a heating rate of 5oC min-1 and the weight loss curves obtained. In order to study the 

structure of the carbon resulting from the pyrolysis of the different carbon sources, the latter 

were dissolved in ethanol (water for sucrose) and refluxed at 120oC for 24 h with subsequent 

drying and grinding. The product was then heated to 1000oC in an argon atmosphere in a high 

temperature horizontal tube furnace (TSH17/75/450, Elite Thermal Systems Ltd, UK) fitted 

with a 99.7% pure alumina tube. The heating and cooling rates were maintained as 5oC min-1. 

The synthesis approach used was similar to a process described previously [14]. A carbon 

source, dissolved and/or suspended in ethanol ii, was added to a boric acid/ethanol solution held 

at 120oC. HfCl4 that had been dissolved in ethanol was then added and the mixture was allowed 

to stir for 24 hours at 120oC under reflux conditions. This was followed by subsequent drying 

in an oven at 250oC for 2 hours and grinding using a mortar and pestle to get the HfB2 

precursor powders. 

  

 

 

 

 

                                                           
ii Being immiscible in ethanol, the sucrose was dissolved in water and hence the HfCl4 and boric 
acid were also dissolved in water. 
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Table 2: Raw materials used in this study 

Chemical/Raw 
materials 

Molecular formula Source Purity / Carbon 
content @ 1000oC 

Hafnium chloride HfCl4 Sigma Aldrich, 
Dorset, UK 

98% purity 

Boric acid H3BO3 Fischer Scientific, 
Loughborough, UK 

99.5% purity 

 Liquid phenolic 
resin (LPR) 

[(HOC6H4)2CH2]n Cellobond J2027L, 
Momentive 
Speciality 
Chemicals, 

Louisville, USA 

51% carbon content 

Powder phenolic 
resin (PPR) 

[(HOC6H4)2CH2]n Crios resins, SI 
group, Inc, S��o 

Paulo, Brazil 

41.7% carbon 
content  

Sucrose C12H22O11 Fischer Scientific, 
Loughborough, UK 

21.8% carbon 
content 

Pitch Carbores® P Rutgers chemicals, 
Zelzate, Belgium 

65.6% carbon 
content 

Graphite C; 325 mesh Fischer Scientific, 
Loughborough, UK 

99% purity 

Multi walled carbon 
nano tube 
(MWCNT) 

C; 10 – 20 nm 
diameter 

NTP, Shenzhen, 
China 

>97% purity 

Carbon black N115  C; 20 – 40 nm, oil 
absorption co-

efficient* 1.1 ml/g 

Columbian 
Chemicals UK, 

Bristol, UK 

>99% purity 

Carbon black N772 C; 100 – 150 nm, oil 
absorption co-

efficient* 0.65 ml g-1 

Columbian 
Chemicals UK, 

Bristol, UK 

>99% purity 

Absolute Ethanol C2H5OH Fischer Scientific, 
Loughborough, UK 

99.9% purity 

*Oil absorption co-efficient: a measure of the structure i.e. degree of aggregation/agglomeration 

present in the carbon black powder [24].  
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The HfB2 precursor powders synthesized were subjected to boro/carbothermal reduction 

(BCTR) in the same horizontal tube furnace (TSH17/75/450, Elite Thermal Systems Ltd, UK). 

The heating and cooling rates were maintained at 5oC min-1 up to 1000oC and 3oC min-1 above 

1000oC and a flowing argon atmosphere was used throughout. The BCTR synthesis 

temperature used in this study was 1600oC for 2 h. An estimation of the particle size of the 

powders was obtained using field emission electron microscopy (FEGSEM 1530 VP, Carl 

Zeiss (Leo), Oberkochen, Germany) and transmission electron microscopy (TEM 100 CX, 

JEOL JEM, Munich, Germany). Phase analysis was performed by XRD (Bruker D8 X-Ray 

Diffractometer, Bruker, Coventry, UK) using Cu Kα radiation. The d spacings were calculated 

from the 2θ values and were compared with the standard values from the JCPDS powder 

diffraction files to identify the phases. The particle size distribution was obtained using a 

Mastersizer 2000 (Malvern, Worchestershire, UK) using prop-3-ol (99%, Fisher Scientific, 

Loughborough, UK) as the solvent. The BET surface area was analysed using a gas adsorption 

analyser (Micrometrics TriStar 3000, Norcross, USA).  

The finest of all the synthesized HfB2 powders achieved was sintered using spark plasma 

sintering (SPS) in vacuum at 1900, 2000 and 2100oC for 10 min. 10 grams of the powder was 

cold pressed at 62 MPa pressure and placed in graphite foil-lined, 20 mm diameter graphite 

dies, the latter being covered with graphite felt to reduce heat loss. A load of 50 MPa was 

applied from 1000oC and was maintained thorough the sintering and cooling step. The heating 

rate and the cooling rates were 100°C min-1 and 50°C min-1 respectively. The linear change in 

shrinkage was recorded during sintering by monitoring the displacement of the sample along 

the pressing direction. It should be noted that the optical pyrometer was focused on the surface 

of the graphite die and not directly on the specimen, which will have given rise to a difference 

between the temperature of the die and that of the specimen, especially at the faster heating 

rates and shorter hold times. Similar runs were carried out for 99% pure HfB2 powder with d50 
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= 2 µm procured from Treibacher, Austria. The density of the sample was measured using the 

Archimedes principle, using the theoretical density as 11.1 g/ cm-3 [25], and the grain size was 

studied by imaging their surfaces using Solid state retractable backscatter detector with low 

voltage capability (Nova 600 Nanolab Dual Beam, Eindhoven, The Netherlands). 

3. Results and Discussion 

i. Synthesis and effect of carbon sources  

The thermogravimetric analysis of the carbon sources, excluding graphite, carbon nanotubes 

and carbon black since they have no volatiles, is shown in Figure 1. All of the carbon sources 

tested showed an initial weight loss curve that plateaued as the temperature increased over 

600oC. The weight loss was highest for sucrose with a residual carbon content of just 21.8%; 

pitch had the lowest weight loss with a residual mass of 65.6%. The sucrose was stable up to 

200oC after which there was a very significant weight loss caused by dehydration, 

dehydrogenation and volatilization of CO and CO2 [26]. The pitch showed no mass loss up to 

350oC due to the absence of both physically and chemically bonded water, after which it slowly 

began to lose weight due to breaking of the aromatic chains and dehyrdrogenative cross linking 

during the process of pyrolysis [27]. The liquid and powder phenolic resins lost water until they 

cured at around 145oC. Beyond this temperature the weight loss remained almost stable up to 

400oC and only CO and CO2 degassing occurred. The degradation of the resin then started, 

involving the release of volatile compounds like phenol, cresol, and toluene [28]. The residual 

weight of each carbon source after pyrolysis in argon, which was the weight of the carbon 

present in the chemical, was obtained and used for further calculations. 
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Figure 1: TGA of carbon sources 

In every case the final powders obtained by heat treating the hafnium and boron precursors 

with the different carbon sources at 1600oC for 2 h was single phase hexagonal hafnium 

diboride; the XRD result for one system is shown in Figure 2.   
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Figure 2: XRD of the HfB2 powder prepared using Hf, B and LPR after heat treatment at 

1600oC for 2 h 

The peaks are indexed according to JCPDS 00-038-1398. Figure 3, shows the TEM images (on 

the left) of the different carbon sources after pyrolysis and FEGSEM images (on the right) of 

the corresponding HfB2 powders synthesized from these sources. Since the only difference 

between the different precursor powders was the carbon source, the differences in the size 

and/or structure of the particles in the final powders can be attributed to the carbon source used. 

The carbon from pitch was spherical and very uniform and so was the final HfB2 powder 

produced, Figure 3a; the particle size was approximately 1.5 µm. Sucrose and graphite both 

form sheet-like carbon and the HfB2 particle sizes obtained from them were around 1 µm and 3 

µm respectively, Figure 3b and c. The effect of the carbon being in the form of sheets will be 

discussed shortly.  
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Figure 3: TEM images of the carbon structures (left) resulting from the pyrolysis of different 

carbon sources at 1000oC for 0.1 h and the corresponding FEGSEM images of the resultant 

HfB2 powders after heat treatment at 1600oC for 2 h using a) pitch, b) sucrose, c) graphite, d) 

C-Black N115, e) C-Black N772 and f) MWCNT 
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For the HfB2 powders resulting from the carbon black and multi-walled carbon nano tubes, 

Figures 3d – f, the final particle size was influenced by the level of agglomeration of the 

pyrolysed carbon sources. For instance, carbon black N115 had much finer particles at ~20 nm 

than carbon black N772 at ~150 nm, but the structure factor was higher for the former, meaning 

that it was more heavily agglomerated. This led to the resultant HfB2 particles actually being 

coarser when made from N115. The average particle size of HfB2 powders obtained from these 

sources was between 1 – 3 µm. Similarly, although the diameter of the MWCNT were only 10 

– 20 nm, the tubes were heavily entangled and the resulting HfB2 particles were 0.8 – 1 µm in 

size. 

Figure 4 shows the electron micrographs of the carbon structures resulting from heat treating 

the liquid phenolic resin (LPR) to 1000oC for 0.1 h and the resulting HfB2 powder. The carbon 

resulting from LPR was in the form of a sheet as for the sucrose and graphite, and the size and 

the level of agglomeration of the sheets directly influenced the size of the HfB2 particles in the 

final product formed as illustrated in Figure 5.  

 

Figure 4:  a) TEM image of the carbon structure resulting from pyrolysis at 1000oC for 0.1 h 

and b) a FEGSEM image of the resultant HfB2 powder 

It is believed that the sheet-like carbon resulting from the LPR acted like a matrix with the Hf 

and B precursors being embedded in it. Figure 5a, shows the structure after heating to 1000oC 
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for 0.1 h; several islands of the carbon sheets may be seen with the embedded ceramic particles 

appearing clearly within them. The different situations are illustrated in Figure 5b, c, d and e, 

one with excess carbon and one with the stoichiometric carbon content. If excess carbon was 

present then the carbon matrix prevented the ceramic particles from coalescing and growing 

larger, resulting in fine HfB2 particles of 20 – 80 nm, Figure 5b, but retaining a significant 

carbon impurity. On the other hand, if the stoichiometric amount of carbon was present then the 

matrix was consumed in the process of HfB2 formation and the ceramic particles tended to 

coalesce, becoming 1 – 3 µm in size, Figure 5d and e. It is believed that this explanation is also 

valid for other carbon sources, sucrose and graphite, where pyrolysis yielded sheet-like carbon. 

 

Figure 5: Method of formation of HfB2 powder with LPR as the carbon source 

The finest HfB2 was obtained when using the powder phenolic resin (PPR) as the carbon source. 

The latter yielded tiny, well dispersed particles of carbon on pyrolysis, Figure 6a-e and 

consequently the resultant HfB2 particles were 30 – 150 nm in size. Figure 6c shows the 

formation of the HfB2 particles as a result of different calcination temperatures.  
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At 700oC the ceramic particles and the carbon from the PPR were well dispersed and 

intermixed, with the carbon forming tail-like structures for the ceramic particles. As the 

calcination temperature increased the carbon appeared to prevent much growth of the ceramic 

particles in a similar manner to LPR but on a finer scale. After heat treatment at 1600oC for 2 h 

the carbon was consumed and each ceramic particle grew at the expense of its neighbours, 

yielding HfB2 particles of the approximate shape and size of the carbon island in which it was 

contained.  

 

 

Figure 6:  a) TEM image of carbon structure resulting from heat treating PPR to 1000oC for 

0.1 h, b) FEGSEM picture of HfB2 powders made using PPR and c, d, e) formation of HfB2 

powder from PPR 
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 Figure 7 shows the particle size analysis of the HfB2 powder formed from the PPR carbon 

source as measured using the Malvern mastersizer. The d10, d50 and d90 number % values were 

30, 70 and 130 nm respectively, whilst the volume % values were 90, 200, 2331 nm 

respectively; the BET surface area was 21.8 m2 g-1. The particle size obtained from the BET 

surface area value was 26 nm. The volume % shows very little agglomeration in the sample. 

Table 3 summarises the carbon sources used and the size of the resultant powders produced. 

Table 3: Carbon sources used and the size of the resultant HfB2 powders 

Carbon source HfB2 particle size / µm 

Liquid phenolic resin 0.5 – 2 

Pitch 1.5 – 2  

Sucrose 1 – 2  

Graphite 3 – 4  

Carbon black N 772 1 – 2 

Carbon black N 115 2 – 3 

Multi walled carbon nano tube 0.8 – 1 

Powder phenolic resin 0.03 – 0.15 
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Figure 7:  Particle size analysis for the HfB2 powder synthesized using PPR as the carbon 

source and calcined at 1600oC for 2 h a) Number %, b) Volume % 

ii) Sintering 

The fine HfB2 powder obtained when using PPR as the carbon source and the commercial 

powders obtained from Treibacher, Germany (fine grade) were sintered at different 

temperatures using spark plasma sintering as outlined in the experimental section. The time, 

temperature and force profiles are given in Figure 8. The pressure was kept as a constant at 16 

kN in all the cases. The time-displacement curves at 1900oC, 2000oC and 2100oC for the 

commercial and LU powders is given in Figure 9. The densification of both the commercial and 

LU HfB2 appeared to start around 1400oC in all the cases. However, the percentage 

densification of LU powder seemed to overtake the commercial powder with every 100oC rise 

in temperature, due to its higher surface area leading to more shrinkage.  
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Figure 8: Time temperature force profile used for SPS of the fine HfB2 powders 

 

Figure 9: Time evolution of SPS parameters during densification at a) 1900oC, b) 2000oC and 

c) 2100oC 
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Figure 10a-c shows the FEGSEM images of the Treibacher powders (left) and Loughborough 

(LU) synthesized fine powders (right) sintered at 1900oC, 2000oC, and 2100oC for 10 mins, 

along with their theoretical density values. As seen from the images, the LU HfB2 powders 

have a finer grain size, which is indicative of the fine size of the starting powder. The density of 

the commercial samples did not increase with the increase in temperature, however, the grain 

size did increase, trapping pores within the grains. For the sample sintered at 2100oC and 50 

MPa pressure, the grain size ranged between 20 – 40 µm and the theoretical density was 93%. 

On the other hand, the density along with the grain size of the LU HfB2 increased linearly with 

the increase in temperature, reaching a maximum theoretical density of 94% and a grain size of 

1 – 2 µm at 2100oC and 50 MPa pressure. With its covalent bonding and low self-diffusion co-

efficient, HfB2 is difficult to sinter without any addition of sintering aids, however the 

nanometer sized powder sintered to 94% of theoretical density at 2100oC whilst retaining a fine 

grain size. Sciti et al. [29] obtained monolithic HfB2 ceramics with relative density of ~ 80.0% 

by SPS at 2200oC and 95 MPa pressure using commercially available powders. The smallest 

grain size and highest density ever achieved was through reactive SPS at 1700oC and 95 MPa. 

A 98% dense and ≈10 µm wide grains was attributed to the absence of surface oxidation in this 

single step synthesis and sintering [30]. 

In order to further improve the density of the monolith sintered bodies, the pressure applied 

during SPS could be increased up to 200 MPa, or reactive SPS similar to the approach used by 

Munir et.al [30] could be exploited. 
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Figure 10: BS images of the polished surface of commercial (left) and LU fine (right) HfB2 

powders spark plasma sintered at a) 1900oC, b) 2000oC and c) 2100oC for 10 min under 50 

MPa pressure 
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4. Conclusion 

HfB2 powders were synthesized at 1600oC for 2 h using various carbon sources like LPR, pitch, 

sucrose, graphite, carbon black, carbon nanotubes and PPR.  It was found that the structure and 

the level of agglomeration of the carbon source had a direct influence on the particle size of 

HfB2 powder. LPR, sucrose, graphite, and PPR on pyrolysis resulted in a sheet like carbon that 

engulfed the ceramic particles. Tiny and well dispersed sheets resulted in finer and 

agglomeration free HfB2 particles. For carbon black and carbon nanotubes the size of the 

resultant HfB2 particles was directly dependent on the level of agglomeration of carbon sources. 

The finest HfB2 powder was obtained when using PPR as the carbon source and the particle 

size was between 30 – 150 nm and a surface area of 21.8 m2 g-1. SPS sintering of the sub-

micron sized HfB2 powders obtained using PPR as the carbon source at 2100oC and 50 MPa 

resulted in 94% dense body and a grain size of 1 – 2 µm, whilst under the same sintering 

conditions commercial powders had grain sizes ranging between 20 – 40 µm. 
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