
 
 

University of Birmingham

Relationship between Parental Feeding Practices
and Neural Responses to Food Cues in Adolescents
Allen, Harriet A; Chambers, Alison; Blissett, Jacqueline; Chechlacz, Magdalena; Barrett,
Timothy; Higgs, Suzanne; Nouwen, Arie
DOI:
10.1371/journal.pone.0157037

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Allen, HA, Chambers, A, Blissett, J, Chechlacz, M, Barrett, T, Higgs, S & Nouwen, A 2016, 'Relationship
between Parental Feeding Practices and Neural Responses to Food Cues in Adolescents', PLoS ONE, vol. 11,
no. 8, e0157037. https://doi.org/10.1371/journal.pone.0157037

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 03. May. 2024

https://doi.org/10.1371/journal.pone.0157037
https://doi.org/10.1371/journal.pone.0157037
https://birmingham.elsevierpure.com/en/publications/fb61509c-38ac-45cd-bd93-20b2a80322d3


RESEARCH ARTICLE

Relationship between Parental Feeding
Practices and Neural Responses to Food Cues
in Adolescents
Harriet A. Allen1*, Alison Chambers1, Jacqueline Blissett2, Magdalena Chechlacz3,
Timothy Barrett4, Suzanne Higgs2, Arie Nouwen5

1 School of Psychology, University of Nottingham, Nottingham, United Kingdom, 2 School of Psychology,
University of Birmingham, Nottingham, United Kingdom, 3 Department of Experimental Psychology,
University of Oxford, Oxford, United Kingdom, 4 NIHRWellcome Clinical Research Facility, Birmingham
Children’s Hospital, Birmingham, United Kingdom, 5 Department of Psychology, Middlesex University,
London, United Kingdom

*H.A.Allen@nottingham.ac.uk

Abstract
Social context, specifically within the family, influences adolescent eating behaviours and

thus their health. Little is known about the specific mechanisms underlying the effects of

parental feeding practices on eating. We explored relationships between parental feeding

practices and adolescent eating habits and brain activity in response to viewing food

images. Fifty- seven adolescents (15 with type 2 diabetes mellitus, 21 obese and 21 healthy

weight controls) underwent fMRI scanning whilst viewing images of food or matched control

images. Participants completed the Kids Child Feeding Questionnaire, the Childrens’ Dutch

Eating Behaviour Questionnaire (DEBQ) and took part in an observed meal. Parents com-

pleted the Comprehensive Feeding Practices Questionniare and the DEBQ. We were par-

ticularly interested in brain activity in response to food cues that was modulated by different

feeding and eating styles. Healthy-weight participants increased activation (compared to

the other groups) to food in proportion to the level of parental restriction in visual areas of

the brain such as right lateral occipital cortex (LOC), right temporal occipital cortex, left

occipital fusiform gyrus, left lateral and superior LOC. Adolescents with type 2 diabetes mel-

litus had higher activation (compared to the other groups) with increased parental restrictive

feeding in areas relating to emotional control, attention and decision-making, such as poste-

rior cingulate, precuneus, frontal operculum and right middle frontal gyrus. Participants with

type 2 diabetes mellitus also showed higher activation (compared to the other groups) in the

left anterior intraparietal sulcus and angular gyrus when they also reported higher self

restraint. Parental restriction did not modulate food responses in obese participants, but

there was increased activity in visual (visual cortex, left LOC, left occipital fusiform gyrus)

and reward related brain areas (thalamus and parietal operculum) in response to parental

teaching and modelling of behaviour. Parental restrictive feeding and parental teaching and

modelling affected neural responses to food cues in different ways, depending on motiva-

tions and diagnoses, illustrating a social influence on neural responses to food cues.
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Introduction
Social context is an important influence on eating behaviour. How much people eat and what
they choose to eat depends on who they dine with [1]. For instance, adults tend to eat more
when eating with friends and family than when alone but, on the other hand, tend to eat less in
the company of strangers or other people they wish to impress [1]. In addition, people tend to
follow social norms when making food-related decisions even if other people are not present at
the time of decision making [2]. For example, exposing a person to information that others are
consuming the recommended amount of vegetables in their diet results in greater selection of
vegetables at a lunch buffet than when they are simply exposed to the health benefits of eating
vegetables [3]. Children and adolescents are similarly susceptible to the influence of social con-
text on eating [4], in particular, the influence of their parents. Parental feeding practices affect
the eating environment, food availability and learning about foods, which have all been related
to variability in food responsiveness and tendency towards overeating [5].

Several types of parental feeding practice have been previously identified including control-
ling practices, emotional and instrumental feeding and modelling [6, 7]. Some parents are
reported to attempt to use foods to either manage children’s mood state (emotional feeding) or
to reward desirable behaviour (instrumental feeding)[8]. These practices have been associated
with increased responsiveness to food cues. Controlling feeding practices, involving for exam-
ple restricting access to “unhealthy” foods, are often imposed by parents of obese children due
to concerns about their children’s weight [9] [10] but are not effective in improving the quality
of the diet or reducing adiposity in the long term. On the contrary, these feeding practices lead
to increased adiposity through their negative impact on children’s eating behaviour. Percep-
tions of parental controlling feeding practices are associated with greater dietary self restraint,
emotional and external eating in preadolescents [11], extreme weight control behaviours [12]
and unhealthy eating attitudes [13] in adolescent samples. Controlling feeding practices have
also been associated with higher food responsiveness and eating in the absence of hunger [14]
and greater emotional eating [15]. Restrictive control appears to be particularly deleterious in
its effects on subsequent weight gain in samples of children at risk for being overweight on the
basis of parental adiposity [16]. Teaching about eating, on the other hand, especially in the con-
text of modelling intake of foods by parents, has been associated with lower food fussiness and
food responsiveness [17]. For example, children are much more likely to try a new food if they
see a parent also eating that same food [18].

The use of parental feeding practices in young people vary depending on individual child
characteristics, such as their weight. For example, parents of overweight or obese adolescents
report greater use of restriction and monitoring than the parents of lean adolescents [19, 20].
Parents who are anxious about their child's eating and weight are more likely to use restrictive
feeding practices [10]. A factor that has received little attention is how feeding practices and
their consequences relate to the motivations underlying these practices. Restriction of eating
may arise from a concern about weight gain but may be required for medical reasons, for
example to ensure that a child is following a prescribed diet for control of type 2 diabetes [21].
However, little is known about how parental feeding practices interact with such motivations
to influence adolescent eating responses. The specific mechanisms underlying the effects of
parental feeding practices on their children’s eating are also unknown. It has been reported
that social influence more generally affects activity in brain areas associated with the neural
computation of the subjective value of rewards [22, 23]. One possibility is, therefore, that
parental feeding practices affect reward-related responses to food cues and this explains at least
in part subsequent behaviour around food. Based on this evidence, it is possible that parental
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feeding practices of restriction, emotive feeding and teaching will be associated with eating
behaviour via an effect on neural processes related to food reward.

Recent neuroimaging studies suggest a strong link between obesity and activation of reward
related circuits [24]. It has been proposed that obesity, and by extension type 2 DM, results
from distortions in reward saliency, motivation (towards food), learning and inhibitory control
(e.g. [25]). Consistent with this, several studies have found increased activation to food cues in
reward related areas such as caudate, insula, or orbitofrontal cortex in adults with obesity [26].
Furthermore, the activation level of these areas seems to be modulated by context such as stress
[27] in obese, but not lean, adults. Although no studies have investigated the social or familial
context of eating behaviour in adolescents, it has been found that emotional eating modulates
food cue responses in the insula for obese adults (40–70 years old) and in the insula, orbito-
frontal cortex and amygdala for adults with type 2 DM [28]. In younger adults, self-restraint in
eating has been found to be related to modulation of the functional connectivity in temporal
visual association networks (occipital and fusiform regions) [29].

Here we examine how variations in parents’ feeding practices link to adolescents’ respon-
siveness to food cues using fMRI and a measure of eating in the absence of hunger. We pre-
dicted that the use of restriction, emotive feeding and teaching practices will be associated with
enhanced reactivity to food cues in reward-related brain areas. In addition, we examine
whether similar relationships hold for the parental practices of children for whom there may
be specific motivations to control the diet due to weight control (obesity) or medical reasons
(type 2 diabetes mellitus; type 2 DM); specifically, perhaps the effect of parental control on
reactivity to food cues and reward might be less detrimental when control is motivated by med-
ical reasons rather than weight control goals alone.

While traditionally confined to the middle-aged and elderly population, there has been a
marked world-wide increase in type 2 diabetes among younger people [30, 31]. Although its
causes are likely to be multi-factorial, childhood obesity is believed to be an important underly-
ing factor [31]. Progression from prediabetes to full diagnosis can be much quicker in the
young than in the older population [32]. Both obesity and type 2 DM have been associated
with increased activity in brain areas linked to reward when cued to, or reminded of, food [8,
33, 34]. We hypothesise that after diagnosis, adolescents with type 2 diabetes and their carers,
who will have received specific dietary counselling and medical care, will show differential feed-
ing practices. This, then, will alter the social context of food. We were, thus, able to examine
whether enhanced reward related responding in obesity and type 2 DM are related to specific
parental feeding practices.

Methods

Participants
There were 57 adolescent participants, including fifteen with type 2 DM, 21 obese and 21
healthy weight controls (see Table 1). Adolescents with type 2 DM were referred to us by paedi-
atric endocrinologists in the UK Midlands and North-West within the duration of the project.
Selection criteria included: (1) between 12–18 years, (2) being able to understand and read
English and (3) diagnosis of type 2 DM> 6 months. Obese adolescents were referred by dieti-
cians or responded to advertisements and were included if their BMI exceeded defined Interna-
tional Obesity Task Force age specific cut offs [35]. Healthy weight control participants were
recruited from local schools. Exclusion criteria were; major medical conditions (except diabe-
tes, polycystic ovarian syndrome, hirsutism) or learning disabilities, claustrophobia, contrain-
dications to MRI and major changes in diabetes related medication within 6 months. To
confirm group allocation, within a 6-month period, before or after scanning, all control and
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obese participants had their fasting glucose, c-peptide and HbA1c measured and underwent an
oral glucose tolerance test. For participants with diabetes clinical data were obtained from their
medical files. Clinical and demographic data were obtained from the participants’ clinical files
or collected during this study. The groups were matched for (self reported) ethnicity and
recruited from similar geographic areas. Fully informed written consent was taken from all par-
ticipants and their respective parent/guardian prior to participation. The study protocols were
approved by the National Research Ethics Committee and the Birmingham University Imaging
Centre. Two participants were excluded from analysis, not reflected in the numbers above, due
to signal loss and a brain abnormality.

Stimuli
A total of 120 food and 120 non-food visually matched (in shape, complexity, brightness and
colour) control pictures and 1 target picture were used (Fig 1). The non-food pictures were
unrelated to food e.g. buttons, furniture. The food pictures included equal amounts of high fat,
high sugar foods (e.g. cake, ice-cream); high fat, low sugar foods (e.g. fried chicken, nuts); low
fat, high sugar (e.g. sweets, apples); low fat, low sugar foods (e.g. carrots, peas).

Procedure
Participants were asked to consume their usual breakfast at home, at approximately 8am, or
arrived at 8am and were given breakfast (cereal, juice, toast). All adolescents were then asked to
complete the following questionnaires: the Kid’s Child Feeding Questionnaire (KCFQ), to

Table 1. Demographics and relevant histories of participants, by group. Age differences were controlled for in the analysis.

Characteristic Type 2 diabetes mellitusa

(N = 15)
Obeseb (N = 21) Healthy weight controlsc

(N = 21)
F df p Results Tukey Post-hoc

Tests

Age (years) 16.08 ± 1.53 14.89 ± 1.98 16.0 ± 1.91 2.88 2,54 0.065 ns

BMI (SD) 2.16 ± 1.51 3.19 ± 0.81 0.25 ± 1.01 38.30 2,54 <
.001

C<T2DM<O

HbA1c (%, sd, mmol/mol,
n)

8.26 ± 2.26, 67 (n = 14) 5.55 ± 0.38, 37
(n = 20)

5.29 ± 0.32, 34(n = 17) 27.80 2,48 <
.001

T2DM>C,O

Fasting blood glucose 9.92 ± 3.92 (n = 12) 4.91 ± 0.523
(n = 21)

4.80 ± 0.48 (n = 20) 33.16 2,53 <
.001

T2DM>C,O

Duration of diabetes
(months)

35.8 ± 30.7 NA NA

Diabetes treatment (n) (n)

Tablets (Metformin) 7 4 NA

Insulin 3 NA NA

Tablets+Insulin 1 NA NA

GLP-1 1

GLP-1+Tablets 1

Values are means ± SD
a n = 15: female only
b n = 20: 15 female
c n = 20: 14 female, T2DM = type 2 disbetes mellitus.

A note on sample size: Chechlacz et al. (2009) found that the smallest between groups contrast for food images was found for the insula (Z = 2.79), which

corresponds with a Cohen’s d of 1.17. Using an alpha of 0.5 and power of 0.80 the minimum required sample size for the fMRI study was 13 participants per

group. Hill et al. (2008, International Journal of Obesity, vol. 32, no. 10, pp. 1499–1505.) examined eating in the absence of hunger in 9–12 year olds and

found an effect size for comparison of two groups of .52. Therefore with 3 groups, an alpha of .05, and power of .95, the ideal sample size is 63.

doi:10.1371/journal.pone.0157037.t001
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examine perceived parental feeding practices [36], the Perceived Deprivation Scale [37], the
Children’s Dutch Eating Behaviour Questionnaire (DEBQ-C) to examine their external, emo-
tional and restrained eating styles [38], and dietary self-efficacy [39] and the adapted motiva-
tion for dietary self-care [40, 41]. A parent/guardian was asked to complete the adult version of
DEBQ, and the Comprehensive Feeding Practices Questionnaire (CFPQ) [42]. Adolescents
with type 2 DM were also asked to complete the Summary of Diabetes Self-Care Activities
scale [43] and the Diabetes Responsibility Scale [21]. Participant weight and height was mea-
sured while wearing light clothes without footwear to allow calculation of BMI. Height was
measured with a Seca 213 portable stadiometer. Weight was measured with Tanita 384 digital
scales. BMI was calculated and converted to z scores adjusted for age and gender according to
British 1990 growth reference (UK90) curves [44].

Participants' current disposition to eat (hunger, thirst and fullness) was measured using
a10cm Visual Analogue Scale, from 0 (not at all) to 10 (very much). There were no differences
between the groups on pre-scan hunger, thirst and fullness scores (F(2, 55) = .205 p = .82; F
(2,55) = 1.409 p = .23; F(2,55) = .166 p = .89).

Immediately, prior to the scanning session, at 10.30am, blood glucose was measured by the
finger prick method, using a FreeStyle Optium Blood Glucose Monitor. Where necessary, par-
ticipants were encouraged to take their normal medication or consume a small snack.

fMRI. Participants viewed food and non-food pictures within the MRI scanner. Pictures
were presented using an event-related design in a pseudo random order. Each picture was pre-
sented for 1.5s and followed by a fixation cross (3.5s to 9s). Each picture was presented once
and the experiment was split into 3 separate runs. Participants were instructed to look carefully
at each picture and to imagine eating the food item. Participants were asked to press a button
when they saw a yellow smiley face, presented five times per run at random intervals.

After exiting the scanner, participants then rated the food pictures that were shown to them
during the scan on how appetising they thought the food was on scale from 1 (not appetising)
to 7 (very appetising) and also their current desire to eat each food from 1 (not at all) to 7 (very
much).

Fig 1. a) illustration of extract of stimulus sequence. b) examples of stimulus and control pairs from each
condition.

doi:10.1371/journal.pone.0157037.g001
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Post-scanning. After the scanning session both adolescent and parent were taken to a
behaviour-recording suite. Participants were invited to have lunch, sat at a table and were each
given a tray containing a set prepared meal consisting of: cheese sandwich (150g, 370kcal),
individual Chicago Town cheese pizza (150g, 453kcal), bowl of cherry tomatoes (50g, 18kcal),
Activia strawberry yoghurt (125g, 123kcal), Granny Smith apple (188kJ, 45kcal), satsuma
(approx 75kJ, 18kcal), Walkers ready salted crisps (25g, 130kcal), two Maryland double choco-
late cookies (22g, 106kcal) and jug of water and glasses. They were asked not to share food
from each other's trays and told that they were not expected to eat all the food, but to eat until
they were full. After the participants indicated they had finished, the parent was asked to leave
the room to complete further questionnaires and the adolescent was asked to wait. A tray with
4 bowls filled with Maltesers (50g, 253kcal), cucumber (80g, 253kcal), grapes (100g, 60kcal)
and Hula-Hoops (25g, 127kcal) were placed in front of the adolescent together with books,
magazines and food rating scales. The adolescent was told they could eat the snacks, whilst
they waited, and was left for 10 minutes. Food was weighed before and after eating. The
researcher left the room during the meal and snack. A remotely adjustable Sony camera
(EVI-D70) recorded the eating behaviour.

fMRI acquisition
Participants were scanned on a Phillips 3T Achieva MRI scanner with 8-channel phased array
SENSE head coil. Functional scans were acquired using a blood oxygen level-dependent
(BOLD) contrast weighted echo planar sequence (TR = 2500ms, TE = 35ms, 82° flip angle, 4
slices, 2.5x2.5x3mm voxels, 96x96 pixel matrix). A T1-weighted image was acquired for co-reg-
istration and display of functional data (TR 8.4ms, TE 3.8ms, flip angle 8°, matrix resolution
288x288, 175 slices, 1x1x1mm voxels).

fMRI Analysis
FMRI data processing used FMRI Expert Analysis Tool Version 5.98, part of FSL (FEAT, www.
fmrib.ox.ac.uk/fsl). The following pre-statistics processing was applied; motion correction
using MCFLIRT [45]; slice-timing correction using Fourier-space time-series phase-shifting;
non-brain removal using BET [46]; spatial smoothing using a Gaussian kernel of FWHM
5mm; grand-mean intensity normalisation of the entire 4D dataset by a single multiplicative
factor and highpass temporal filtering. Melodic ICA was used to identify and remove artefacts
from the data. FILM was used for time series statistical analysis with prewhitening [47]. Regis-
tration of functional to high resolution and standard images was done using FLIRT [45].

Responses to food cues were evaluated in a whole brain analysis. The first level (within
scan) design matrix included regressors for the food, non-food and target trials and motion
related regressors. Scans were averaged first within participants and then between groups. Age
and gender were entered as covariates of no interest, in addition, to check whether gender
affected our results, we re-ran the analysis with only females and found qualitatively the same
results. For the reported analyses, Z (Gaussianised T/F) statistic images were thresholded using
clusters determined by Z>2.3 and a (corrected) cluster significance threshold of P = 0.05 [48].
To test whether responses to food cues were modulated by behavioural measures (i.e. restric-
tion, emotional feeding etc, see below) these were added as regressors to the general linear
model at the group stage. Specific group comparisons are described in the results section.

Factor Analysis
To generate parsimonious variables for describing feeding and eating behaviour, factor analy-
ses of the feeding and eating behaviour variables were conducted for data reduction purposes
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before examining relationships between the psychological and neuro-imaging variables.
Responses from the CFPQ, DEBQ and KCFQ were combined to create factors for parental
behaviour. Responses from the DEBQ-C, dietary self-efficacy and the adapted motivation for
dietary self-care were analysed to create factors describing adolescent behaviour.

Results

Behavioural Measures
A series of ANOVAs were used to compare measures between groups (see Tables 1 and 2).
Each adolescent’s BMI was converted to a Z score (SD-BMI) based on the British 1990 growth
reference for height, weight, and body mass index (Cole, Freeman and Preece, 1995). Obese
adolescents were defined as having a SD-BMI exceeding 1.96 standard deviations from the
mean (>95th percentile). Results are reported for analysis without controlling for education
but pattern of results is the same if this is controlled. Participant groups differed in terms of age
as well as BMI and diabetes related measures, as expected (Table 1). They did not differ on any
other characteristics. There were small group differences in dietary self-efficacy, and adapted
motivation for healthy diet measures with the control group scoring highest on the self-efficacy
measure and those with obesity scoring higher for amotivation (Table 2). Both the adolescents
with type 2 DM and their parents ate the least sugar at lunch, other than this there were no
overall significant differences between the groups for the amount eaten (Table A and Table B
in S1 File), or in overall hunger or thirst ratings. The ratings of desirability and appeal of the
food images did not differ.

The factor analyses revealed 3 factors each for the parent and adolescent behaviours
(Table C and Table D in S1 File). Parental behaviours loaded on to factors that we labelled
Teaching and Modelling (discussion of foods, promoting variety and modelling behaviours),
Emotive Feeding (using food to modulate emotion, or as reward) and Restrictive Feeding
(monitoring and guiding food intake and the child's perception of this). Adolescent question-
naire responses loaded on to three similar factors labelled Self Efficacy (perception of their own
ability to control their diet), Emotion/External regulation (the desire to eat when emotional, in
the presence of palatable food or other people) and Self Restraint (controlling food to avoid
weight gain).

For healthy weight controls and obese participants, none of our factors correlated signifi-
cantly with eating behaviour or intake (Table E in S1 File). Teaching and Modelling was nega-
tively associated with snack intake for participants with type 2 DM (Table E in S1 File).

fMRI Results
The factors above were used as regressors in the analysis of fMRI data to find areas that were
responsive to food images and modulated by feeding or eating behaviour (Fig 2, Tables 3 and
4). To facilitate comparison with existing literature we also report results of the contrast of
food images vs. non food images without modulation by these factors (Fig 3, Table F in S1
File). We report the results from analysis of all participants but the pattern of results was not
different when we analysed only girls (self-defined by participants), or only those without poly-
cystic ovary syndrome (n = 5).

Modulation of food cue activations
There was greater activity for healthy weight controls, compared to those with obesity and type
2 DM, to food images relating to Restrictive Feeding in posterior (predominantly visual)
regions of the brain (Fig 2B, Table 3). Teaching and Modelling was associated with increased
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Table 2. Questionnaire measures for eating style and reported desirability of the food images. The table shows the results of comparisons between
the group. Significance values reflect results of one way ANOVAs between groups.

Measure type 2 DMa Obeseb Healthy weight controlsc F p

DEBQ-C

Emotion 1.50 ± 0.59 1.39 ± 0.58 1.31 ± 0.44 0.544 0.584

Restraint 2.16 ± 0.43 1.90 ± 0.61 1.65 ± 0.55 3.873 0.027*

External 1.86 ± 0.49 1.78 ± 0.64 1.88 ± 0.47 0.194 0.825

KCFQ

Pressure 0.54 ± 0.38 0.54 ± 0.38 0.59 ± 0.40 1.607 0.210

Restriction 0.96 ± 0.30 1.09 ± 0.32 0.60 ± 0.27 14.076 < .001**

Perceived deprivation scale 153.67 ± 26.27 153.65 ± 46.96 153.50 ± 43.00 0.000 1.000

Motivation for healthy diet

Identified 4.40 ± 0.78 4.07 ± 0.88 4.04 ± 0.73 1.038 0.361

Extrinsic 2.66 ± 0.83 2.61 ± 1.06 2.40 ± 0.82 0.379 0.686

Amotivation 1.87 ± 0.78 2.13 ± 0.87 1.39 ± 0.65 4.596 0.015*

Intrinsic 3.74 ± 0.97 3.44 ± 0.81 3.26 ± 0.82 1.329 0.274

Self-efficacy healthy diet 46.52 ± 14.14 45.20 ± 18.48 58.86 ± 12.69 4.580 0.015*

CFPQ

Child control 2.99 ± 0.60 2.98 ± 0.69 3.17 ± 0.78 0.450 0.640

Emotional regulation 1.64 ± 0.87 1.57 ± 0.54 1.55 ± 0.68 0.086 0.918

Balance and variety 4.32 ± 0.63 4.45 ± 0.69 4.31 ± 0.63 0.168 0.846

Environment 4.02 ± 0.66 3.70 ± 0.71 3.88 ± 0.88 0.754 0.476

Reward 2.00 ± 1.15 2.13 ± 1.04 1.70 ± 0.90 0.902 0.412

Involvement 3.84 ± 1.18 4.25 ± 0.87 3.82 ± 1.04 1.082 0.347

Modelling 3.92 ± 0.84 4.01 ± 0.71 3.91 ± 0.88 0.094 0.911

Monitoring 4.38 ± 0.76 4.08 ± 0.67 3.37 ± 0.84 8.328 0.001**

Pressure 2.27 ± 0.66 2.17 ± 0.88 2.65 ± 1.02 1.643 0.203

Restriction health 3.83 ± 0.98 4.16 ± 0.76 3.18 ± 1.05 5.307 0.006**

Restriction weight 3.73 ± 0.85 3.43 ± 0.81 2.47 ± 0.90 10.75 < .001**

Teaching 4.12 ± 0.59 4.05 ± 0.70 4.00 ± 0.81 0.125 0.883

DEBQ

Emotion 2.46 ± 0.82 2.76 ± 0.57 2.68 ± 0.60 0.940 0.397

Restraint 3.26 ± 0.69 3.04 ± 0.75 2.82 ± 1.09 1.089 0.344

External 2.00 ± 1.06 2.32 ± 0.89 2.01 ± 0.84 0.761 0.472

Picture ratings

Appeal

HFHSd 4.53 ± 1.43 4.71 ± 1.60 4.34 ± 1.17 0.318 0.729

HFLSe 3.95 ± 0.98 4.01 ± 1.60 3.98 ± 1.05 0.011 0.989

LFHSf 4.17 ± 1.39 4.36 ± 1.16 4.94 ± 1.02 2.098 0.133

LFLSg 3.29 ± 1.00 3.16 ± 1.41 3.56 ± 1.08 0.598 0.554

Desire to eat

HFHSd 2.66 ± 1.74 3.02 ± 1.91 2.64 ± 1.55 0.294 0.746

HFLSe 2.48 ± 1.19 2.64 ± 1.60 2.60 ± 1.44 0.060 0.942

LFHSf 2.85 ± 1.51 3.20 ± 1.61 3.80 ± 1.52 1.700 0.193

LFLSg 1.97 ± 1.01 1.87 ± 1.39 2.38 ± 1.29 0.920 0.405

Hunger Ratings

Before lunch 58.8 ± 25.6 54.4 ± 19.7 57.8 ± 10.4 .197 .822

(Continued)

Neural Responses to Food Cues in Adolescents

PLOS ONE | DOI:10.1371/journal.pone.0157037 August 1, 2016 8 / 19



activity for obese participants (compared to the other groups) to food images in visual brain
areas, the thalamus and the parietal operculum (Fig 2, Table 3).

There was greater activity compared to the other groups to food images relating to Restric-
tive Feeding in the adolescents with type 2 DM in the posterior cingulate, precuneus and mid-
dle frontal gyrus (MFG) compared to the other participants (Fig 2, Table 3). Restrictive
Feeding related activation in the MFG was negatively correlated with HbA1c in this group, sug-
gesting that when there is Restrictive Feeding, increased frontal activation to food is associated
with better diabetes control. There was also unique activation for those with type 2 DM in

Table 2. (Continued)

Measure type 2 DMa Obeseb Healthy weight controlsc F p

After lunch 14.5 ± 17.6 14.9 ± 16.7 10.4 ± 13.2 .500 .609

Values are means ± SD
a n = 15: female only
b n = 20: 15 female, 5 male
c n = 20: 14 female, 6 male
d High fat, high sugar
e High fat, low sugar
f Low fat, high sugar
g Low fat, low sugar

*p<0.05

**p<0.001.

doi:10.1371/journal.pone.0157037.t002

Fig 2. a) Areas where activation for Restrictive Feeding (blue) and Self Restraint (red) was
significantly higher for the Type 2 diabetes mellitus group compared to the other groups. b) Areas
where there was significantly greater activation related to Restrictive Feeding in the control group
compared to the other groups. c) Areas where there was significantly greater activation related to
Teaching of Healthy Eating in the obese group, compared to other groups. Activations are shown on the
average brain for the study. Insert: Relationship between HbA1c test value and MFGmodulation to
restriction. MFG =Middle Frontal Gyrus, SMG = Supramaginal Gyrus, LOC = Lateral Occipital,
OFS = Occipital Fusiform Gyrus, MOG =Medial Occipital Gyrus/occipital cortex.

doi:10.1371/journal.pone.0157037.g002
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relation to adolescents' own reports of Self Restraint in the intraparietal sulcus and the angular
gyrus (Table 4).

Responses to food images vs. non food images without modulation by
behaviour
For comparison with the literature we also report areas where there was higher activation for
food images, compared to non-food images, for each group separately. There were no

Table 3. Food related areas that were more active in participants with reported higher parental Restrictive feeding and Teaching and Modelling.
The table shows areas that were significantly active in the groups alone as well as areas that were found to be significantly more active in one group con-
trasted with the other groups, indicated in the left column. IPS: Intra Parietal Sulcus. WM: White matter.

Contrast/ Factor Size (vox) Z MAX Peak & sub- peak MNI co-
ordinates

Region

X Y Z

Restrictive Feeding

Healthy weight control mean 2585 4.63 -20 -90 -2 Left occipital pole

4.58 -26 -92 -2 Left occipital pole

4.16 24 -92 0 Left occipital pole

4.12 -38 -86 -8 Left lateral occipital cortex

3.85 40 -50 -20 Right temporal occipital fusiform

3.83 -4 -100 8 Left occipital pole

T2 Diabetes mean 2889 4.36 -2 -50 40 Precuneus

2397 4.12 54 -24 -14 Right middle temporal gyrus

42 2 -18 Right planum polare

1936 4.29 -46 -28 -12 WM/Left middle temporal gyrus

-36 18 -18 Left orbital frontal

-68 -40 14 Left superior temporal gyrus

1256 3.7 8 54 2 Right paracingulate

-4 34 12 Anterior cingulate

1183 4.1 -4 28 60 Left superior frontal gyrus

Healthy weight controls > T2 Diabetes + Obese 2817 4.22 40 -72 -6 Right lateral occipital cortex

42 -56 -20 Right temporal occipital fusiform

2660 4.79 -36 -64 -10 Left occipital fusiform gyrus

-40 -64 -8 Left lateral occipital cortex

-42 -86 22 Left superior lateral occipital cortex

T2 Diabetes >Obese + Healthy weight controls 1242 3.73 -4 -40 44 Posterior cingulate gyrus

-2 -36 50 Precuneus cortex

610 3.23 24 22 20 WM/Frontal Operculum

52 22 36 Right middle frontal gyrus

• Teaching and Modelling

Obese mean 625 4.47 -28 -34 48 Left somatosensory cortex

-34 -30 44 Left somatosensory cortex

-24 -48 50 Left superior parietal lobule

618 4.25 18 -14 16 Right thalamus

36 -38 22 Right Parietal Operculum

Obese > Healthy weight controls+ T2 Diabetes 745 3.65 -16 -90 -8 Left visual cortex

-40 -82 -8 Left lateral occipital cortex

-18 -86 -12 Left occipital fusiform gyrus

622 4.05 34 -38 22 Thalamus, Parietal Operculum

doi:10.1371/journal.pone.0157037.t003
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significant differences between the groups for activation to food (compared to non-food)
images. Healthy weight participants showed extensive activation to food compared to non-
food images (Fig 3, Table F in S1 File). There were peaks in gustation-related areas and

Table 4. Food related areas that were more active in participants with reported higher self emotional/external regulation, self restraint and self-effi-
cacy. The table shows areas that were significantly active in the groups alone as well as areas that were found to be significantly more active in one group
contrasted with the other groups, indicated in the left column.

Contrast/Factor Size (Vox) Z Max Peak & sub- peak MNI co-ordinates Region

X Y Z

emotional/external regulation

Obese mean 739 4.43 26 22 -6 Right putamen

3.75 20 4 2 Right putamen

3.63 34 -6 0 Right insula

3.46 48 -12 -10 Right superior temporal gyrus

3.26 10 -2 -2 Right thalamus

• Self-Restraint

T2 Diabetes mean 1486 4.66 -44 -46 36 Left anterior IPS

3.94 -56 -56 40 Left angular gyrus

755 3.9 62 -54 30 Right angular gyrus

681 3.73 6 -76 48 Precuneus

T2 Diabetes -obese-control 1141 4.29 -44 -46 36 Left anterior IPS

3.53 -44 -54 54 Left angular gyrus

Self-Efficacy

Healthy weight controls 1810 4.06 32 56 2 Right frontal pole

988 4.05 44 -54 56 Right angular gyrus

doi:10.1371/journal.pone.0157037.t004

Fig 3. Areas of the brain where there is higher (cluster corrected p<0.05, Z>2.3) activation for food
images compared to visually matched non-food images for the three groups.Note that there was no
significant difference between the groups when these were directly contrasted so this figure should be
interpreted with caution. Colour scale is from red (z score = 2.3) to yellow (z score = 6.6). All images are
shown at 2.3–6.6, x = -4, y = -54, z = 30 (MNI). Activations are shown on the average brain for the study.
Activations for the three groups overlapped at the right frontal pole, left and right anterior and posterior
cingulate, left supramarginal Gyrus, and in the precuneus (mostly left).

doi:10.1371/journal.pone.0157037.g003
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activations in areas typically associated with food and reward, such as insula and operculum
[49, 50]. In obese participants, food images (compared to non-food images) activated regions
in the left precuneus, thalamus, left supramaginal and angular gyrus and regions around the
frontal pole and superior frontal gyrus (Fig 3, Table F in S1 File). As expected, participants
with type 2 DM had higher activation to food, compared to non-food images, without account-
ing for behaviour, in an extensive network of brain areas (Fig 3, Table F in S1 File). The regions
found were similar to those previously reported to be responsive to food cues and associated
with gustation and reward [50].

Activation for food images was correlated with BMI in the type 2 DM and obese groups in a
range of regions including the left superior frontal gyrus, left and right inferior frontal gyri, left
precuneus, left cingulate and right medio-temporal gyri (Table G in S1 File). For the healthy
weight and obese participants, BMI modulated responses to food cues in a similar set of frontal
regions, but also the operculum and cingulate.

Activation for images of greater fat food content was higher for people with type 2 DM than
for those with obesity in a range of predominantly visual or visual assocation or attention areas
(Table H in S1 File) including the calacrine sulcus, right termporal gyrus, right angular gyrus
and inferior parietal regions. Activation for high fat food was greater in healthy weight controls
than in people with obesity in regions including the left and right insula, left and right opercu-
lum and around the right supramarginal gyrus and left inferior frontal gyrus.

Discussion
We investigated the differences in eating styles and behaviour between control (healthy weight)
adolescents and adolescents who were obese or had type 2 diabetes. We show that parental
feeding practices had different associations with brain responses to food among different
groups of adolescents. We found that the three groups demonstrated different responses to
food that could not be captured by observational, behavioural or brain imaging results alone.
Healthy weight participants showed higher visual activation to food cues when there was
higher Restrictive Feeding. For adolescents with obesity the Teaching and Modelling factor was
related to higher brain activity in visual and reward related areas. Participants with type 2 DM
showed unique food related brain activations modulated by parental Restrictive Feeding prac-
tices. This is despite only small differences in food judgements or food consumed (although it
should be noted that this was a single recorded eating episode in a laboratory setting). We
show, therefore, that parental behaviours are associated with food responses in their children
and that this depends on individual differences in motivations to control diet.

We hypothesised that parental restriction would be associated with enhanced reactivity to
food cues in reward related areas. Consistent with this, for those with type 2 DM at least,
Restrictive Feeding increased activity in the precuneus and posterior cingulate. The areas par-
tially overlap with areas implicated in hedonic hunger [51] this might be consistent with
increased reward response to food. These areas, however, are not consistent with more conven-
tional reward or food motivation driven areas. For instance, they do not overlap with areas
implicated in the anticipation of chocolate milk reward or that are moderated by treatments
known to moderate food reward such as glucagon-like peptide 1[52].

Brain responses to different eating and feeding practices showed different relationships in
groups of adolescents believed to have specific motivations to control the diet. Those with a
diagnosis of type 2 DMmight be considered to have the highest motivation to improve their
diet and will have received advice from medical professionals. Consistent with this, the type 2
DM group scored highest on the motivation for dietary change questionnaire and were higher
on the Monitoring and Restriction questionnaire measures. For this group there were clear
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differences in brain activity modulations in response to Restrictive Feeding (see above). In con-
trast, Restrictive Feeding did not modulate brain activity in those with obesity. For the healthy
weight controls, Restrictive Feeding increased activation in brain regions specialised for vision
consistent with increased attentional weight (or ‘saliency’) for restricted food rather than
reward per se. This suggests that the pattern of activity for those with type 2 DM was linked
specifically to the increased motivation for dietary change. This perhaps suggests a mechanism
by which behavioural effects of parental restriction have different effects depending on chil-
dren's tendency to overeat [53].

We expected that the influence of parental feeding would depend on diagnosis (or lack of
it). Consistent with this, for obese participants (without diagnosis with type 2 DM), higher
scores on the Teaching and Modelling factor, but not Parental Restriction, were related to
higher brain activity in visual and reward related areas. This occurred despite the obese group
not being significantly higher than the other groups on teaching and modelling related ques-
tionnaire scores. This illustrates that within this group, activity is modulated by these parental
behaviours, even if the overall level of these behaviours is not higher. Consistent with our
results, activation to both food cues and learnt rewards has previously been found to be higher
in the parietal operculum in obese adolescents [54] but we extend this to relate specifically to
parental teaching. In the obese participants, even Teaching and Modelling may be linked to a
heighted orienting of attention to food and linking of food with reward. Indeed, weight change
after a weight loss intervention has been found to be positively correlated with food related
activation in both reward and visual areas i.e. more activation in visual areas was correlated
with weight gain, rather than loss [55].

We found this relationship between teaching and enhanced reward only existed in the obese
group. Our data do not allow us to establish the direction of this relationship, nor examine the
content or manner of teaching used by parents, so it is possible that the obese adolescents’
focus and attention to food elicits parental teaching about eating. It is worth noting, however
that some of our obese group is likely to already have impaired glucose metabolism and that we
lack data on weight changes prior to the study. This is almost inevitable in such a sample since
the progression for obese adolescents to type 2 diabetes is known to be faster than in adult
groups [32]. It is also possible that there is a qualitative difference in the type of teaching
received by obese adolescents in comparison to adolescents who are healthy weight or who
have type 2 DM that could not be captured by the measures used in this study. Even with these
caveats, it is possible to say that parental feeding practices influence neural responses to food
differentially, depending on diagnosis.

As well as differences in motivations towards food, the three groups received different medi-
cal treatments. Most participants with type 2 DM were receiving Metformin, Insulin, GLP-1 or
some combination of the three. Four (of 21) obese participants were receiving Metformin. This
study was not designed to investigate the differences between medications, so conclusions
about the differential effects cannot be drawn here. Nevertheless it should be noted that insulin
has been proposed to have a protective effect in the brain against cognitive decline, at least in
older people [56, 57]. Furthermore, insulin administered to young people over 8 weeks has
been shown to improve memory and performance on a set of cognitive tests [58]. Similarly
there is some evidence that metformin treatment (in rats) improves performance on memory-
based tasks [58]. It is possible that the medication received by those with a diagnosis of type 2
DM (or obesity) improves their ability to develop appropriate coping mechanisms or feeding
behaviours, as well as acting directly on metabolism.

This study cannot fully elucidate the relationship between Restrictive Feeding and food
responses in type 2 DM, but it is worth noting that activity in one of the areas activated, the
MFG, was positively correlated with diabetes control (i.e. HbA1c). This area has been
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implicated in emotional control [59] suggesting that adolescents may be starting to automati-
cally invoke control mechanisms. This is also consistent with our previous finding in older peo-
ple with type 2 DM that inhibiting emotional responses to food supports dietary management
[34]. Alternatively, those with better diabetes control may then have more cognitive resources
to support dietary control [60]. Longitudinal studies are necessary to disambiguate this
question.

Adolescents with type 2 DM own reports of Self Restraint were also linked to increases in
activity in parietal regions commonly linked to spatial attention [61]. These areas are also
within the postulated temporal visual association network, activation within which has been
correlated with self restraint scores in young adults [29]. This is consistent with both parental
Restrictive Feeding and Self-Restraint leading to more complex processing of food cues per-
haps involving consideration of duties and obligations [62] and decision making [63] all of
which might be consistent with participants’ responses to external restriction of food. Restric-
tion in those with type 2 DM leads to intense processing of food cues, perhaps connected to
emotional control, duties or decision-making, despite minimal differences in observed behav-
iour. This is in contrast to the healthy weight controls where Restrictive Feeding was related to
increases in brain regions associated with visual processing, consistent with simple increases in
saliency.

Unmodulated responses to food cues
Several studies have suggested that people with T2DM or obesity show alterations in striatal
regions (e.g. Nucleus Accumbens, caudate, putamen) limbic (amygdala, hypothalamus, thala-
mus) and cortical areas such as the insula or inferior parietal cortex in response to food cues or
images [64, 65]. It is proposed that obesity increases the anticipatory reward to food cues (but
reduces the reward of food itself) [25]. Although we did find responses to food cues in a set of
similar areas to those found previously, including parts of the striatal and limbic systems, in
the three groups (Table F in S1 File), we did not find the expected between group differences.
Furthermore, although activity in frontal and medial areas (i.e. precuneus and cingulate) corre-
lated with BMI (Table G in S1 File), we did not find correlations between food cue responses
and activation in striatal or limbic areas. This suggests that in our groups, at least, the proposed
reward pathways to simple presentation of food images, are not yet clearly discriminable
between groups.

Previous studies have suggested that people with obesity, and, where tested, type 2 DM also
show higher activations to images of high calorie food, particularly in the regions described
above [64]. This subject has been studied extensively; see [50] for a review. For instance, in a
group of obese women, high- calorie food images (compared to low calorie images) activated
the putamen [66]. On the other hand, an analysis restricted to reward related regions of interest
found that obese women had higher activation in a range of areas (e.g. orbitofrontal regions,
insula, anterior cingulate, caudate, hippocampus) but not the putamen [67]. Contrary to these
previous findings, we found lower activation for obese, compared to healthy weight partici-
pants, in operculum, insula, inferior and orbitofrontal cortex for high fat foods (Table H in S1
File), suggesting, counterintuitively, lower anticipatory reward responses. Those with type 2
DM show higher activation (compared to obese) in predominantly visual or visual association
areas, suggesting greater salience of food cues in the diabetic group. Thus, our results, whilst
replicating typical gustation reward activations, do not seem to show the same pattern of effects
of obesity or type 2 DM.

Chechlacz et al. (34) found that activations in the orbitofrontal cortex and left insula were
not only positively associated with external eating and predicposition to eat, but also to dietary

Neural Responses to Food Cues in Adolescents

PLOS ONE | DOI:10.1371/journal.pone.0157037 August 1, 2016 14 / 19



self-efficacy and dietary self-care in adults with T2DM. This suggests that, in adults, these areas
might be involved restraint immediate desire in favour of long-term outcomes. The data pre-
sented here imply that this function may be impaired in the obese group.

One important difference between our participants and those in previous studies is their
age. There is some evidence that responses to food cues change with age, at least with healthy
weight participants. It has previously been reported that whilst (healthy weight) adolescents
show activation to food images in predominantly visual areas (e.g. fusiform gyrus), adults show
activation in prefrontal cortex, and it has been suggested that there is an increased role of pre-
frontal regions in the processing of food with age [50, 68]. There have been few studies of brain
activation to food cues in obese adolescents, but what evidence there is suggests that there is lit-
tle difference in responses to food cues between obese adolescents with, and without insulin
resistance, although there were differences in reward related brain activation between lean and
obese participants [64]. In our groups, activations are consistent with increasing reward and
saliency for only the participants with the highest BMI. It is possible that the documented
reward pathways to food take some years to develop, but that the restraint, restriction and
teaching behaviours above facilitate and shape these pathways.

Conclusions
We demonstrate that different motivations towards food lead to both different brain activation
patterns and different modulations of brain responsivity to food cues. Those with high motiva-
tions to improve their diet show neural modulation in proportion to the degree of parental
restriction. Parental Teaching and Modelling, on the other hand, was linked to increases in
activation in reward related areas. We conclude that social and external factors can influence
food based brain activity in the absence of intake and eating behaviour differences.
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