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New Findings 

 

The topic of this review is to consider innovative exercise strategies that optimise neuroprotection in 

order to combat cognitive decline and neurodegenerative disease in older age. The review 

summarises current understanding around exercise mode, duration, frequency and intensity, and 

then highlights adaptive roles of select stressors that have equal if not indeed greater capacity than 

exercise per se to induce health-related adaptation in the brain. These stressors include, though are 

not exclusively limited to, hydrostatic and thermal stress, hypoxia, nutritional supplementation and 

cognitive loading, and are effective by targeting specific pathways that collectively contribute 

towards improved brain structure and function.  

 

Abstract 

 

The prevalence of cognitive decline and neurodegenerative diseases (e.g. stroke and dementia) is 

increasing. Numerous studies show that regular exercise has beneficial effects on brain health in 

clinical and non-clinical populations, yet adherence to public health exercise guidelines is notoriously 

poor. Recently, novel exercise strategies have been investigated to allow for more individualised and 

prescriptive approaches that target the key mechanistic pathways that allow exercise to mediate 

adaptation. This work exploring alternative approaches to the traditional model of exercise training 

has demonstrated exciting potential for positive health-related adaptations (especially for metabolic, 

muscle and cardiovascular function). However, few studies to date have focused on brain 

adaptations. The aim of this review is to summarise new and innovative interventions that have the 

potential to optimise exercise for improved brain health (i.e., brain structure and function). First, we 

will briefly summarise current understanding of the nature whereby positive effects of exercise 

deliver their influence on the brain (i.e., underlying mechanisms and factors affecting its delivery). 

We will then introduce the effects of exercise training on cognition and give examples of studies 

showing the beneficial effects of exercise in clinical populations. Finally, we will explore the adaptive 

roles of individual stressors that may induce greater health-related adaptations in the brain than 

exercise alone, including environmental stressors (hydrostatic stress, thermal stress and hypoxia), 

nutritional supplementation and cognitive loading. In summary, optimised interventions that target 

key mechanistic pathways linked to improved brain structure and function could ultimately protect 

against and/or ameliorate cognitive decline and neurodegenerative diseases.  
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Introduction 

Regular exercise can reduce the risk of cerebrovascular and neurodegenerative diseases (e.g. stroke 

and dementia), and has been associated with extended longevity (Lautenschlager, Cox & Cyarto 

2012). Despite these known effects, the underlying mechanisms that ultimately result in improved 

brain health are poorly understood (Lucas et al. 2015). Further, the “how” and “which form works 

best” questions are debated and results remain equivocal. Individuals may therefore be less 

motivated to engage in exercise and professionals are less able to prescribe it systematically in 

accordance with detailed guidelines (in contrast to the pharmaceutical industry). Further, given 

evidence demonstrating the comparable effectiveness of exercise relative to drug treatment (Naci & 

Loannidis, 2013), as well as the cost-effectiveness and wide ranging effects of exercise on health and 

well being, research is required to establish optimal exercise strategies that can be delivered in a 

prescriptive and individualised nature. While a wealth of data from animal models does support 

some basic mechanisms for the exercise-induced beneficial effects on brain structure and function 

(for example, brain plasticity) (Voss et al. 2013), these findings need translating to human 

populations for knowledge of dosing, influence of modality and individualised prescriptions. 

Consequently, we need to develop strategies and perform randomised controlled trials (RCTs) to 

demonstrate exactly what the treatment effects are - both at the mechanistic level and on 

population health. Improving health and wellbeing in the general population is vital, particularly 

considering our ageing and increasingly sedentary population – both of which elevate risk for 

cerebrovascular and neurodegenerative diseases (Deary et al. 2009).  

 

Exercise and Brain Health: Underlying mechanisms and training effects 

Strenuous exercise induces physiological stress on cells, tissues and organs within the body, 

facilitating stimulus-strain responses that mediate adaptation and, mostly, an optimisation in 

function. The benefits of exercise for the human brain are becoming increasingly evident (e.g., 

improved cerebral blood flow/volume (Colcombe et al. 2006), cerebrovascular reactivity (Brown et 

al. 2010; Murrell et al. 2013), angiogenesis, neuroplasticity (Voss et al. 2013), and cognitive 

functioning (Kramer et al. 1999). However, the underlying mechanisms leading to these adaptations 

in the human brain remain poorly understood. We (Lucas et al. 2015) and others (Davenport et al. 

2012; Lautenschlager, Cox & Cyarto, 2012; Voss et al. 2013; Jackson et al. 2016) have recently 

reviewed the possible mechanistic candidates that may mediate such exercise-induced adaptation in 

the brain. Briefly summarised here (see Figure 1.), proposed mediators of adaptation include 

humoral, metabolic and molecular factors that can directly affect brain structure and function via 

their release within the brain or from systemic tissues and cells (e.g., skeletal muscle, liver, adipose 

tissue, pancreas and lymphocytes). Further, given established beneficial effects of exercise 

throughout the body, changes in cardiovascular and immune function also have indirect benefits on 

brain structure and function, for example improved glycaemic control and reduced inflammation 

(see Lucas et al. (2015) for further details). Therefore, it is crucial we improve understanding of these 

mechanisms and their relative contributions to help develop exercise strategies that optimise the 

exercise stimulus-response interaction. Specifically, how exercise mode, duration, frequency and 

intensity stimulate adaptive responses and ultimately protect against deteriorations in brain and 

cognitive health. 
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Studies have shown that aerobic-based exercise interventions lasting between 3 and 12 months 

involving gym-based circuit training (Colcombe et al. 2006; Murrell et al. 2013) or walking (Kramer, 

et al. 1999) can improve markers of brain structure and function (e.g., brain volume, cerebrovascular 

reactivity and neurocognition). Further, smaller individual bouts of exercise or ‘exercise snacks’ (e.g., 

3 bouts (‘snacks’) of exercise spread across the day consisting of 6x1 minute intense incline walking 

intervals) in prediabetic participants revealed immediate health improvements through improved 

glycaemic control (Francois et al. 2014).  In addition, simply being less sedentary can improve 

‘health’ in older adults (Sjogren et al. 2014) and young girls (McManus et al. 2015). While caution 

should be taken when generalising findings across such studies covering different populations, 

methodological approaches and markers of health, one key message here is that there may be many 

approaches to optimising exercise strategies, and even simply being less sedentary may be enough 

to promote improvements in brain structure and function.  

 

Another barrier to people engaging in exercise may be the heterogeneity in the cardiorespiratory 

fitness response (Ross, de Lannoy & Stotz, 2015), with ‘non-responders’ losing motivation to 

continue with exercise. Related to this, Ross and colleagues adjusted intensity and volume of 

exercise on inter-individual cardiorespiratory fitness and found that increasing the intensity of 

exercise eliminated the non-response in a dose-dependent manner. Whether these beneficial effects 

carry over to the brain requires further exploring.  

 

Numerous cross-sectional studies and supervised aerobic-based training studies have shown 

evidence of the effectiveness of traditional exercise training (e.g., 30 min of moderate intensity 

exercise, 5 days per week), where higher physical activity levels are associated with improved brain 

structure and function (Kramer et al. 1999; Killgore, Olson & Weber, 2013; Smith et al. 2014). 

However, there is also well-documented poor adherence to regular engagement in exercise (Lee et 

al. 2012). Therefore, alternative strategies are required to encourage participation and adherence. 

Considering the community level where ‘lack of time’ is often a barrier to engaging in physical 

activity, exercise strategies that can achieve similar benefits for less time commitment may offer an 

attractive solution. 

 

High-intensity interval exercise training (HIIT) is emerging as an effective alternative to current 

health-related exercise guidelines due to its more time-efficient and superior metabolic, cardiac and 

systemic vascular adaptations (Weston, Wisloff & Coombes, 2014). However, use of HIIT is 

controversial and debated, particularly in patients with pre-existing disease (Holloway and Spriet, 

2015; Wisløff, Coombes & Rognmo, 2015). Regardless, the reported positive effects and potential of 

HIIT to provide greater access to the health benefits that exercise provides is exciting; although the 

lack of evidence to date examining how HIIT affects the brain raises concerns about its global 

promotion at this stage (Lucas et al. 2015). Moreover, given the unique regulation of the cerebral 

vasculature, determining the specific effects of HIIT on the brain is required since short bursts (10-60 

s) of all-out exercise, one form of HIIT, will likely elicit large and rapid increases in blood pressure 

that may increase risk of an adverse event (as discussed in Lucas et al. (2015)). One other 

consideration is the profile of cerebral blood flow (CBF) across the range of exercise intensities, 

typically described as returning towards resting values when intensity increases above ~60%VO2max  
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(Brugniaux et al. 2014). This profile is seemingly at odds with the potential for HIIT to mediate 

greater cerebrovascular adaptation via exercise-induced shear-stress mediated endothelial 

adaptation (Bolduc, Thorin-Trescases & Thorin, 2013). However, this pattern of blood flow is 

typically reported from cycling-based studies, and an alternative profile may exist for other exercise 

modalities; supported by the different CBF profiles recently reported with rowing (Faull, Cotter & 

Lucas, 2014) and running (Lyngeraa et al. 2013). Further, adjunct therapies (e.g., water-based 

treadmills) may mitigate such an effect across the range of exercise intensities. This highlights the 

potential for differences in exercise mode  and exercise intensity-mode interactions for brain-related 

adaptation. 

Cognition and the role of exercise in clinical populations   

Interventions involving physical and cognitive activity (e.g., motor tasks requiring sustained attention 

and concentration) have been investigated in humans. A randomised controlled trial in older women 

found a 16-week multimodal exercise programme lead to improvements in cognition (working 

memory, inhibition, shifting, verbal fluency and reaction times) and physical function (six-minute 

walk test and timed up and go) (Vaughan et al. 2014). This exercise programme utilised a multimodal 

intervention of exercise including cardiovascular, strength conditioning and motor fitness training. 

Similarly, Barcelos and colleagues examined a combination of stressors by observing the effects of 

physical exercise (cycling) whilst undertaking cognitive tasks of varying loads (virtual bike tour and 

video gaming) (Barcelos et al. 2015). They found that everyday function improved in both conditions 

though those in the high cognitive demand group performed better than those in the low cognitive 

demand condition, providing support to further ‘stressing’ the system by using multiple approaches 

and the additive benefits that can occur in a dose-dependent manner. Such findings are consistent 

with observations from cross-sectional studies. For example, Eskes et al (2010) demonstrated that 

the diversity of cognitively stimulating activities was an independent predictor of cognitive fucntion 

in older (female) adults, and that there was an additive effect on neuropsychological performance 

with the combination of fitness, cerebrovascular reserve and cognitive stimulation. Research should 

further explore the underlying mechanisms driving these adaptations with additional cognitive 

loading, as well as focusing on particular brain areas affected through neurodegenerative disease.  

 

The beneficial role of exercise for brain health in clinical populations and older adults has been 

demonstrated in numerous studies. For example, physically active dementia patients may 

deteriorate at a slower rate than their sedentary counterparts (Buchner, 2007; Zschucke, Gaudlitz & 

Ströhle, 2013). Moreover, in older adults with genetic risk for sporadic Alzheimer’s disease (i.e., in 

individuals who express Apolipoprotein-E 4 (APOE-4)), exercise attenuates the age-related reduction 

in gray matter hippocampal volume involved in the formation of episodic memory (Smith et al. 

2014). Gray matter hippocampal volume and performance on memory tasks has also been positively 

correlated with physical exercise in healthy adult human populations and those at risk for dementia 

(Erickson et al. 2011; Killgore, Olson & Weber, 2013). While such findings suggest that exercise 

improves markers of brain health (e.g., brain volume and memory performance), many tend to use 

self-report questionnaires to assess levels of exercise. Further, they do not reveal the specific nature 

of activity or the fundamental mechanisms that drive these improvements. More research is 
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needed, particularly in the form of RCTs to improve our understanding of these treatment effects 

and the mediating mechanisms driving them. 

 

Exploring novel targeted approaches  

Recent focus has been on alternative conditioning strategies that have potential to selectively target 

the brain (see Jackson et al. 2016; Lucas et al. 2015). These have included supplementing exercise 

with environmental stressors (e.g., hydrostatic pressure via water immersion, thermal stress and 

hypoxia), nutritional supplements (e.g., antioxidants, dietary nitrate) as well as cognitive challenges 

included with the physical training, as previously mentioned. The rationale for using such 

approaches centres on targeting a proposed mechanistic pathway for neurovascular adaption and 

are discussed in more detail below and illustrated in Figure 1. 

 

Hydrostatic stress 

Exercising in water has recently been promoted as a method by which to enhance shear-stress 

mediated vascular adaptation in the brain (Pugh et al. 2014). Pugh and colleagues demonstrated 

greater increases in CBF velocity (by ~10%) during water-based activity compared to matched 

intensity land-based activity. They proposed that a summative relationship may exist where 

increases in mean arterial pressure and partial pressure of carbon dioxide (PCO2) in the blood may 

contribute to increases in CBF velocity. The potential for such enhanced stimulus-response 

adaptation and therefore improved vascular function serve as additives to other advantages for 

water-based activities, particularly in populations whereby mobility has been compromised through 

injury or disease.  

 

Thermal stress 

Heat stress combined with exercise can provide a strong cardiovascular challenge to humans 

(Rowell, 1986), but also mediates enhanced stimulus-response adaptation. For example, we 

observed that a single bout of hot yoga whilst hypohydrated led to higher heart rate and blood 

pressure responses, along with greater (compared to control) post-exercise hypotension and 

subsequent expansion of plasma volume following the exercise (Akerman, Lucas & Cotter, 2015). 

Further, studies utilising thermal stress have indicated that the consequential shear stress stimulates 

vascular adaptation, particularly related to the endothelium and nitric oxide (NO) mediated 

vasodilation (Green et al. 2010).  Similar to hydro-based approaches, thermal approaches could be 

administered to patients with limited mobility (e.g., peripheral arterial disease) and therefore 

provide an alternative or adjunct strategy to improve access to exercise-related adpaptation.  

 

Hypoxia 

Remote ischaemic preconditioning also provides an excellent means of altering flow and creating 

shear stress in a sinusoidal fashion. Recently, studies have looked at hypoxia as a conditioning 

strategy, similar to heat and water therapy (Verges et al. 2015). These studies indicate that hypoxia 

may be an effective non-pharmacological therapeutic intervention that can enhance physiological 

functions (e.g., by enhancing neurogenesis to preserve spatial learning and memory).  
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Collectively, these studies suggest that combining exercise with heat and/or water and/or hypoxia 

may provide a greater neurovascular-signalling stimulus for brain adaptation than exercise alone, 

and may eliminate the non-response phenomenon mentioned previously and so encourage 

participation. Whether short-term changes translate into long-term benefits is less clear, and further 

research is needed to explore these additive stimuli in long-term exercise training studies to confirm 

whether they are indeed more beneficial than exercise alone. 

 

We should also consider the potential for additional stress to cause maladaptations if not 

administered at a correct dosage/pattern and monitored appropriately, particularly in patient 

populations where function is already compromised. We should also consider efficient approaches in 

studying these mechanisms, both in isolation and combination. We need to ascertain a sufficient 

basic understanding or proof-of-concept from which we can progress onto considering advanced 

applications of combination strategies. 

 

Nutritional supplementation 

Nutritional supplementation and its potential for improving markers of brain health has also 

received recent attention. For example, antioxidants such as flavanol have a role in lowering 

excessive reactive oxygen species (ROS), increasing NO and thereby improving cerebrovascular 

function. The most robust biomarkers affected by flavanol include endothelial function, blood 

pressure and cholesterol levels. Flavanol also affects NO synthesis and breakdown of the substrate 

arginine (Ellam & Williamson, 2013). Sorond and colleagues observed that both cognition and 

neurovascular coupling can be improved with regular flavanol (i.e. cocoa) consumption in older 

adults (Sorond et al. 2013) and others suggest flavanol may improve CBF regulation (Secher, 2015). 

Despite these promising observations, calorie and sugar content of chocolate (a rich source of 

flavanol) and its contribution to the total diet should also be considered. Therefore, dietary nitrate 

(e.g. beetroot juice) may be preferable and has been linked with improved CBF regulation and 

cognitive performance (Wightman et al. 2015). Taken together these studies suggest nutritional 

supplementation may serve as an attractive optimisation strategy to compliment exercise and 

provide additive benefits, but requires further research.  

 

Conclusion 

When considering the health of the general population, a change in societal attitudes towards 

exercise is required to encourage participation and adherence. Insights highlighting the benefits of 

different exercise intensities, duration, modes and timing across the day may encourage people to 

exercise more, particularly if educational information is disseminated regarding improvements in 

cognitive health and the neuroprotective role of exercise leading to reduced risk for disease 

including dementia and stroke. Alternative approaches used in conjunction with exercise such as 

heat, water, hypoxia, cognitive loading and nutritional supplementation may lead to similar or 

additive benefits, and pave the way for exciting and innovative strategies that need to be developed 

and studied in more detail. Research so far indicates that a more multifaceted approach would be 

beneficial for a number of populations, particularly if they can be delivered in a prescriptive and 

individualised nature. Further studies are required to examine the impact of optimised exercise 

strategies that target the brain, and consider how these mechanisms translate to patient health and 
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well-being. Optimised interventions that target key mechanistic pathways linked to improved brain 

structure and function could ultimately protect against and/or ameliorate cognitive decline and 

neurodegenerative diseases, projected to cost the UK and Europe billions in the years to come 

(Wimo et al. 2013). 
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Figure 1.  
 
A mind-body dualism approach illustrating potential mechanistic pathways through which the 
components of optimised intervention strategies may lead to beneficial brain adaptations of 
structure and function, and ultimately, improve brain and cognitive health. Strategies can occur 
concurrently to create multi-modal and individualised interventions. They include: physical activity; 
cognitive activity; nutritional supplementation; hydrostatic stress; thermal stress, and hypoxia. Such 
strategies induce physiological stress on cells, tissues and organs that facilitate stimulus-strain 
responses within the brain and systemic organs, tissues and cells and involve a number of mediators 
that can be adaptive or maladaptive depending on their concentrations. Thus, emphasising the 
potential hormesis effect for dose-response requirements to avoid toxicity (which may lead to 
dysfunction) and optimise physical and cognitive health. Mediators include:  NO (nitric oxide); eNOS 
(endothelial nitric oxide synthase 3); BDNF (brain-derived neurotrophic factor); free radicals; ROS 
(reactive oxygen species); IGF-1 (insulin-like growth factor) and antioxidants. 
 

 

 

 


