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Abstract: The Urban Heat Island (UHI) is one of the most well documented phenomena in urban
climatology. Although a range of measurements and modelling techniques can be used to assess
the UHI, the paucity of traditional meteorological observations in urban areas has been an ongoing
limitation for studies. The availability of remote sensing data has therefore helped fill a scientific
need by providing high resolution temperature data of our cities. However, satellite-mounted sensors
measure land surface temperatures (LST) and not canopy air temperatures with the latter being the
key parameter in UHI investigations. Fortunately, such data is becoming increasingly available via
urban meteorological networks, which now provide an opportunity to quantify and compare surface
and canopy UHI on an unprecedented scale. For the first time, this study uses high resolution air
temperature data from the Birmingham Urban Climate Laboratory urban meteorological network
and MODIS LST to quantify and identify the spatial pattern of the daytime and night-time UHI in
Birmingham, UK (a city with an approximate population of 1 million). This analysis is performed
under a range of atmospheric stability classes and investigates the relationship between surface and
canopy UHI in the city. A significant finding of this work is that it demonstrates, using observations,
that the distribution of the surface UHI appears to be clearly linked to landuse, whereas for canopy
UHI, advective processes appear to play an increasingly important role. Strong relationships were
found between air temperatures and LST during both the day and night at a neighbourhood scale,
but even with the use of higher resolution urban meteorological datasets, relationships at the city
scale are still limited.

Keywords: urban heat island; land surface temperature; air temperature; urban
meteorological networks

1. Introduction

1.1. Background

The Urban Heat Island (UHI) continues to be a widely researched phenomenon concerning
the difference in temperature between an urban area and the rural surroundings of a conurbation.
A range of factors contribute to the occurrence of the UHI; increased emissions of anthropogenic
heat flux, changes to urban geometry and the replacement of vegetation cover by construction
material (e.g., asphalt and concrete)—all of which directly change surface albedo, emissivity and
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evapotranspiration [1]. The result is that it is common to find urban–rural temperature differences in
excess of 5–10 ˝C under “ideal” conditions (e.g., clear skies and light winds). In many cases, the UHI
is strongest at night; for example, a study a Paris showed that the magnitude of the night-time UHI
was up to 7 ˝C more than the daytime UHI [2]. However, the daytime UHI is still a significant
phenomenon, but is far more complicated to characterise. For example, it was found that urban
temperatures tend to be slightly warmer than rural ones during the daytime in London with morning
urban and rural temperatures being similar, but scenarios also exist where urban temperatures can
be cooler than surrounding rural areas [3]. Systematic reviews of the UHI literature are available
in [4,5] and both document a range of studies that have investigated both nocturnal and daytime
temperature differences.

The UHI can impact many aspects of everyday life, such as critical infrastructure [6], health [7]
and energy consumption [8], with impacts becoming exacerbated under heatwave events. For example,
a study of the 2003 heat wave in Paris indicates that, at night-time, a surface temperature increase
of ~0.5 ˝C could double the risk of elderly mortality [9]. Such events provide an indication of the
increased impacts of the UHI in the increasingly warming climate projected to be experienced over the
next few decades. Furthermore, the ever-increasing number of people in urban areas will not only
further contribute to the exacerbation of the UHI effect, but will also increase the number of people
exposed to its potential risks [10].

Studies into the UHI can be largely subdivided into three different types: the surface UHI
(UHIsurface), the canopy UHI (UHIcanopy) and the boundary layer UHI (UHIboundary) [4,11]. The urban
canopy is the thin layer of the atmosphere between ground level and roof top height and is strongly
influenced by urban geometry and microscale energy exchange. The layer is just beneath the urban
boundary layer [11] located above roof level and whose characteristics are affected by both mesoscale
processes (i.e., prevailing wind) and the microscale processes below [1]. Air temperature (Tair) is the
key parameter to measure for UHIcanopy and UHIboundary whereas land surface temperature (LST: often
derived from satellites) is the parameter reported for UHIsurface. LST modulates the air temperature
of lower layers, impacting on energy exchanges between the surface and air and therefore influences
thermal comfort in the canopy layer as well as the internal climate of buildings [12].

1.2. Measuring the Urban Heat Island

Traditional ways in which UHIcanopy are measured include station pairs (e.g., [13]) or the use
of transects (e.g., [10]). Given the paucity of traditional Tair observations, and their limited spatial
resolution [10,14], there has been an ongoing challenge to quantify the intensity and spatial extent
of the UHIcanopy. A compromise is nearly always needed, whether it be temporal (i.e., the transect
approach) or spatial (i.e., the station pair approach). Techniques for measuring the UHIboundary are
even more limited and rely on the use of tethered balloons, radiosondes or ground based remote
sensing techniques [15].

It is for these reasons that numerical modelling techniques have proven to be so popular in
urban climatology [16]. A range of models can be applied to estimate temperature variations in
an urban area, such as the Weather Research and Forecasting model (WRF) [17], Joint UK Land
Environment Simulator (JULES) [18], and the Met Office Reading Urban Surface Exchange Scheme
(MORUSES) [3]. WRF is a mesoscale numerical weather prediction model, with incorporated urban
schemes and used operationally for forecasting and research. JULES and MORUSES are land surface
models that effectively provides information of land conditions (e.g., surface energy balance), which is
subsequently passed on to atmospheric models, such as the Met Office Unified Model. Although
modelling has brought tremendous advances in our understanding of urban atmospheric processes,
models need observation data for initialisation and verification meaning that a wider number of
urban measurements, other than data from one or two weather stations, would help to evaluate
models’ output.
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To this end, there has been a recent increase in interest in the deployment of high resolution
Urban Meteorological Networks (UMNs) [19], driven by advances in technology, communications and
the ever-increasing miniaturisation of low cost electronics [14]. Such networks enable atmospheric
processes to be observed at both high temporal and spatial resolutions, which is especially important
when considering the heterogeneous nature of urban areas [20]. Variables monitored by UMNs can
include wind speed and direction, humidity, Tair and others. These data can be incorporated into
microclimate models that can be further integrated into planning tools and other industrial applications
to inform policy and decision-making. However, despite the advantages, the logistics of operating high
resolution networks means that the number of fully working UMNs across the world is limited [14].
However, new approaches (e.g., crowdsourcing [21]) may help to improve this over time.

There are numerous studies in the literature that have quantified the UHIsurface using remote
sensing techniques [9,10,22–29]. The key advantages being that regardless of the scale of study, remote
sensing provides a consistent, repeatable and relatively cheap methodology for the end-user [7].
Although the initial cost of remote sensing platforms remains high, the data availability and
temporal and spatial coverage available of LST measurements and other co-located variables
(e.g., cloud, vegetation, surface emissivity) are important for UHIsurface measurements and spatial risk
mapping [7,9,29].

Despite the advantages, there are complexities in the retrieval of urban LST including satellite
viewing geometry, atmospheric attenuation of IR radiation, urban surface emissivity and sub-pixel
variations of land cover and heat balance. As a result, thermal remote sensing studies in urban
areas had been slow on developing results beyond qualitative descriptions of thermal patterns and
simple correlations between LST and Tair [12]. However, over the last decade, satellite derived LST
were progressively integrated into climate models [30,31] and used to retrieve Tair [32]. To this end,
the increasing availability of UMNs, of unprecedented resolution, have an important role to play. High
resolution Tair datasets are not only providing new information on UHIcanopy but also provide an
opportunity to further evaluate the relationship between Tair and LST using datasets of comparable
spatial resolution. Furthermore, given the paucity of UMNs, this relationship is potentially useful
allowing LST to be used in a wider range of applications that presently depend on Tair measurements
(e.g., seasonal estimation of energy use [33] and electricity transformer ageing [34]). To begin to meet
this need, this study uses a high resolution UMN (the Birmingham Urban Climate Laboratory: BUCL),
to quantify and compare the spatial pattern of the daytime and night-time UHI in Birmingham-UK,
under a range of stability classes, for both UHIsurface and UHIcanopy.

2. Study Area

Birmingham is the second largest city in the UK with an estimated population of over 1 million
people [35]. It is a post-industrial city with a distinct range of landuse (e.g., the central business
district, eastern industrial areas with the majority of residential areas straddling this belt of commerce
and industry to the north and south). Some large parks can be found closer to the higher income
neighbourhoods (Figure 1a). Altitude varies less than 100 m across the urban area (Figure 1b).
The Lickey Hills, in the southwest corner of the city, provides the local highpoint and is the only
notable topographical feature (297 m), which could exert a noticeable climate influence with respect to
surface temperature lapse rates [36].
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°C cooler than the urban core under heatwave conditions [34]. A further study investigated both the 
UHIcanopy (via station pairs) and MODIS UHIsurface of Birmingham in relation to Lamb Weather Types 
and identified that the strongest mean and maximum UHIcanopy and UHIsurface were during “ideal” 
anticyclonic conditions, reaching 7 °C and 4 °C, respectively [38]. Modelling approaches have also 
been used in the city with JULES showing a UHIcanopy of 4 °C under stable conditions [18] whereas 
the higher resolution WRF model, complete with an urban canopy scheme, highlighted a maximum 
intensity of 5.6 °C [17]. 

Figure 1b also shows BUCL: a near real time, high-resolution urban meteorological network of 
automatic weather stations and low-cost non-standard Wi-Fi air temperature sensors with bespoke 
radiation shields (Aginova Sentinel Micro) [20]. Data availability peaked in summer 2013, when the 
network consisted of: 82 air temperature sensors located in schools and on lampposts, 3 meters from 
the ground (see [20,39] for more details); and 25 automatic weather stations (Vaisala WXT520) 
measuring temperature, precipitation, relative humidity, wind speed and direction, pressure, solar 
radiation. Both temperature sensors and weather stations provide minute data. The weather stations 
provide accuracies of: air temperature ±0.3 °C (20 °C) [40] whereas the low-cost sensors provide good 
accuracy in laboratory testing with mean errors of <±0.22 °C (between −25 and 30 °C), subsequent 
field tests presented an accuracy (in the bespoke shield) of root-mean square error of 0.13 °C over a 
range of meteorological conditions relative to a traceable operational UK Met Office platinum 
resistance thermometer [39]. To ensure and improve data quality, a metadata protocol for UMNs was 
proposed and followed during implementation, maintenance and data acquisition. Furthermore, 

Figure 1. Birmingham—UK (a) Land use classes in Birmingham [37]; (b) Variation of altitude and
location of laces mentioned in the text.

A number of studies have previously investigated the Birmingham UHI. Using night-time MODIS
imagery for the summer of 2003–2009, it was identified that in periods of high atmospheric stability,
the intensity of UHIsurface in Birmingham can reach up to 5 ˝C [23]. The cooling effect of green areas in
Birmingham was also evident in this study, with notable cold spots in Sutton Park, Woodgate Valley
and the Lickey Hills (Figure 1b). A significant LST gradient was observed extending northwards from
the city centre to Sutton Park (~distance of 10 km) where temperatures can be 7–8 ˝C cooler than the
urban core under heatwave conditions [34]. A further study investigated both the UHIcanopy (via station
pairs) and MODIS UHIsurface of Birmingham in relation to Lamb Weather Types and identified that the
strongest mean and maximum UHIcanopy and UHIsurface were during “ideal” anticyclonic conditions,
reaching 7 ˝C and 4 ˝C, respectively [38]. Modelling approaches have also been used in the city with
JULES showing a UHIcanopy of 4 ˝C under stable conditions [18] whereas the higher resolution WRF
model, complete with an urban canopy scheme, highlighted a maximum intensity of 5.6 ˝C [17].

Figure 1b also shows BUCL: a near real time, high-resolution urban meteorological network of
automatic weather stations and low-cost non-standard Wi-Fi air temperature sensors with bespoke
radiation shields (Aginova Sentinel Micro) [20]. Data availability peaked in summer 2013, when the
network consisted of: 82 air temperature sensors located in schools and on lampposts, 3 meters
from the ground (see [20,39] for more details); and 25 automatic weather stations (Vaisala WXT520)
measuring temperature, precipitation, relative humidity, wind speed and direction, pressure, solar
radiation. Both temperature sensors and weather stations provide minute data. The weather stations
provide accuracies of: air temperature ˘0.3 ˝C (20 ˝C) [40] whereas the low-cost sensors provide good
accuracy in laboratory testing with mean errors of <˘0.22 ˝C (between ´25 and 30 ˝C), subsequent
field tests presented an accuracy (in the bespoke shield) of root-mean square error of 0.13 ˝C over
a range of meteorological conditions relative to a traceable operational UK Met Office platinum
resistance thermometer [39]. To ensure and improve data quality, a metadata protocol for UMNs was
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proposed and followed during implementation, maintenance and data acquisition. Furthermore, strict
calibration procedures were rigorously followed (for detailed information see [19,39]). The network
ensures Birmingham is one of the most densely-instrumented urban areas for meteorological studies
and offers high quality data at an unprecedented resolution for a city of its size.

Finally, Coleshill (~4.5 km east of the outer edge of Birmingham), is the station in the national
network frequently used as the rural reference site for UHI studies in Birmingham [23,38] and is
considered an “agricultural, semi-natural and wetland” area in landuse classifications [37] (Figure 1a).

3. Methodology and Datasets

3.1. Tair Data Acquisition and Processing

Tair data for the study period was obtained from both BUCL [41] and Coleshill weather station.
Twice daily meteorological averages were calculated for each sensor and weather station for daytime
(06:00–17:59) and night-time (18:00–05:59 following day). Then, using ArcGIS, the data was interpolated
by the Kriging Gaussian method before being averaged and trimmed to the study area, resulting in a
daytime (representative of data averaged from 06:00 to 17:59) and night-time (18:00–05:59 the following
day) interpolation for each day of the study period. Average values were used due to the rapidly
changing nature of the UK climate. Although skies were clear during the time of the satellite passes
used in this study, the proceeding weather conditions will potentially have a large impact. The use of
averaging helps to overcome this limitation.

Kriging is commonly applied technique to interpolate Tair [42], and as with any interpolation
method, there is the possibility of error. However, the larger the sample, the smaller the possible
error; therefore, BUCL provides an improvement on estimations carried by Kriging by having a
wider sample of data. Although it is possible that some stations might give anomalous readings,
data from the network is carefully quality controlled by the technician enabling a reliable dataset
for subsequent analysis [20]. A total of 82 sensors and 25 weather stations were used, which were
functioning and reliable during the study period (including the sites outside the Birmingham urban
area). The UHIcanopy intensity (Turban—Trural: in this case the difference between the interpolated
Tair for the urban area and Tair in Coleshill) was then calculated. Finally, the daytime and night-time
datasets were averaged according to Pasquill-Gifford stability classes (Table 1).

Table 1. Pasquill-Gifford Class Names.

Class Definition

A Extremely Unstable
B Moderately Unstable
C Slightly Unstable
D Neutral
E Slightly Stable
F Moderately Stable
G Extremely stable

3.2. Pasquill-Gifford Stability Classes

Coleshill is the closest station in the national network (Met Office MIDAS WH hourly [43])
to Birmingham City Centre in which cloud observations are frequently made, crucial to enabling
subsequent datasets to be classified into Pasquill-Gifford stability classes [44]. Daytime classes
are calculated based on wind speed and levels of insolation (determined by cloud cover and solar
elevation—Table 2 whereas night-time classes are calculated based on wind speed and cloud cover
(Table 3). Meteorological data used to assign stability classes is from the rural reference site at Coleshill
and, whilst it is assumed to be representative of regional conditions, there is a need to acknowledge
atmospheric stability in the urban area could be different to that calculated.
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Table 2. Insolation Categories for Pasquill-Gifford Day Stability Classes.

Sky Cover Solar Elevation

Angle > 60˝ 35˝ > Angle < 60˝ 15˝ > Angle < 35˝

ď4/8 or any amount of high thin clouds Strong Moderate Slight
>4/8 middle clouds (700 foot—16,000 foot base) Moderate Slight Slight

>4/8 low clouds (less than 7000 foot base) Slight Slight Slight

Table 3. Pasquill-Gifford Stability Classes.

Surface Wind Speed (m¨ s´1)
Night Day with Insolation

Cloud Cover Insolation

ě4/8 Oktas <4/8 Oktas Strong Moderate Slight

<2 G G A A–B B
2–3 E F A-B B C
3–5 D E B B–C C
5–6 D D C C–D D
>6 D D C D D

3.3. LST Data Acquisition and Processing

Brightness data was acquired from the moderate-resolution imaging spectroradiometer (MODIS)
which is deployed on board both the Terra and Aqua satellites. Birmingham overpass times for Terra
are ~10:30 and ~22:30 whereas Aqua is between ~13:30 and ~01:30. During the British summer, sunset
is between 20:00 and 22:00, with the maximum UHI being present ~3–5 h after sunset [1], making
Aqua the ideal choice for analysis. Likewise, with respect to daytime observations, the Aqua satellite
overpass at 13:30 should also provide a good reference since solar irradiance at the time is high
(although it is accepted that this is not the time of maximum LST [30]). MODIS was selected over other
platforms for its temporal resolution. Landsat TM offers a higher spatial resolution (60 m re-sampled
to 30 m) [45], but the 16 days temporal resolution is prohibitive.

The freely available data product MYD11A1 (V5)—MODIS/Aqua Land Surface Temperature
and Emissivity Daily L3 1km Grid SIN [46] was used. This product uses split window algorithms to
correct for atmospheric effects [47] and surface emissivity [23]. Such data have been used in previous
studies in Birmingham [23,48]. However, care needs to be taken during interpretation due to the
split window technique that works well over homogeneous surfaces, but is not applicable to spatially
variable urban surfaces.

Data was obtained for June, July and August (JJA) 2013 and was reprojected using the MODIS
Reprojection Tool (MRT) [49] to convert images to GeoTIFF format at UTM, and subsequently converted
to British National Grid (BNG) in ArcGIS (MODIS products are released in Sinusoidal Projection).
Quality control of the images was also achieved in ArcGIS selecting only images that were 100% cloud
free (i.e., whenever the image had a pixel with no value, the image was rejected), before converting LST
from Kelvin to degree Celsius and trimming the images to the study area. Cloudiness is a recurrent
problem in the UK, which significantly reduces data availability, which can sometimes be overcome
by masking cloud on partially clear images. However, due to the spatial resolution of MODIS (1 km)
and following an inspection of the nature of rejected images, the scientific gain of this additional
processing was considered to be of limited value in this study, given the small increase in data such a
step would provide.

The UHIsurface intensity (Turban—Trural: i.e., the pixel containing the Coleshill rural reference site)
was then calculated. From each daytime and night-time image, the pixel LST converted to degree
Celsius was extracted at the location of the sensor sites and weather stations (Figure 1b) for later
comparison analyses between pixel extracted LST and sensor/weather station Tair. Finally, the images
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were averaged resulting in one daytime (at ~13:30) and one night-time (at ~01:30) image for each
Pasquill-Gifford stability class.

4. Results

4.1. Stability Classification

Table 4 summarises the total number of images for daytime and night-time with respect to
atmospheric stability. The difficulties in obtaining cloud free imagery in the study area becomes
apparent with only 11 images for daytime and 13 images for night-time available for analysis during
the study period. The image availability tends to increase with atmospheric stability for the night
pass, whereas for daytime conditions the majority of imagery was available for the moderately
unstable classes.

Table 4. Pasquill-Gifford classification.

LST = 11 Daytime Images Tair = 87 Days Analysed Pasquill-Gifford Class Description

0 12 A and A-B Extremely Unstable
8 22 B and B-C Moderately Unstable
2 50 C and C-D Slightly Unstable
1 3 D Neutral

LST = 13 Night-Time Images Tair = 86 Days Analysed Pasquill-Gifford Class Description

0 23 D Neutral
0 19 E Slightly Stable
3 13 F Moderately Stable

10 31 G Extremely stable

The Tair data was also classified using the same approach. By using this more extensive dataset,
it can be seen that despite the settled climate experienced by the UK during the summer of 2013
(characterized by a mild heatwave and warmest temperatures since 2006), the most frequent stability
classes encountered during the study period for the daytime were slightly unstable and moderately
unstable. However, as per the LST data, more stable conditions were present at night.

4.2. Daytime UHIsurface

The averaged LST images for each stability class with sufficient LST imagery available are shown
in Figure 2, accompanied with an average image representing the overall averaged dataset for the
period, independently of stability class. A clear UHIsurface is evident across all stability classes, with LST
in the city centre being several degrees warmer than Coleshill. The maximum difference recorded
during this study was 9 ˝C (class B) and is comparable in magnitude to the 10 ˝C recorded in a study
in Manchester, a similar sized conurbation in the north of the UK [10]. The clear spatial pattern found
in all stability classes has peak LST in the land use classes for industrial, commercial and continuous
urban fabric.

Significant cold spots are evident in city parks. LSTs recorded in the large Sutton Park to the north
of the city are 9 ˝C lower than the city centre (~distance of 10 km) in class B, and 7–8 ˝C lower than
the city centre in classes C and D respectively. In class B, Sutton Park was 1 ˝C lower than Coleshill
(~distance of 15 km), and similar in classes C and D. In the southwest and northeast corners of the city,
lower temperatures were also found and correspond to semi-rural areas with agricultural, semi-natural
and wetland landuse. These differences are particularly noticeable in the southwest border where
the slightly increased altitude has a discernable effect especially in Class B. Indeed, it is under these
moderately unstable conditions that the maximum daytime UHIsurface is present. This finding is not
unique to this study, with a maximum daytime temperature difference of 8.9 ˝C also occurring during
partially cloudy periods in London, UK [50].



Remote Sens. 2016, 8, 153 8 of 17Remote Sens. 2016, 8, 153 8 of 17 

 

 

 

Figure 2. Daytime UHIsurface intensity, for Pasquill-Gifford Stability Classes (B); (C) and (D); and 
Average for June, July, August 2013 and prevailing wind direction for the period. Based on MODIS Aqua 
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(Figure 3). However, it is identified that with the exception of the city centre core in classes A (~0.3 °C) and 
D (~1.8 °C), Tair during the day is lower than the rural reference site (and up to ~−1.8 °C lower in green 
areas and southwest, north and northeast semi-rural areas). Furthermore, in contrast to the UHIsurface, 
the intensity of the UHIcanopy spatial pattern is much smaller (between 1.7 °C and −1.8 °C), a result in 
line with other studies (e.g., [22]). 

Figure 2. Daytime UHIsurface intensity, for Pasquill-Gifford Stability Classes (B); (C) and (D);
and Average for June, July, August 2013 and prevailing wind direction for the period. Based on
MODIS Aqua LST product.

Overall, the results show a strong daytime UHIsurface, with peak temperatures corresponding to
high urban density and lower temperatures in green areas across all stability classes. This outcome
is to be expected due to the fact that LST maximum occurs in hours of maximum solar irradiance.
Differences in the spatial pattern across the stability classes are attributed to wind speed and cloud
cover (as used for the stability class classification).

4.3. Daytime UHIcanopy

As with the UHIsurface during the day, the UHIcanopy is also more evident under unstable
conditions (Figure 3). However, it is identified that with the exception of the city centre core in
classes A (~0.3 ˝C) and D (~1.8 ˝C), Tair during the day is lower than the rural reference site (and up
to ~´1.8 ˝C lower in green areas and southwest, north and northeast semi-rural areas). Furthermore,
in contrast to the UHIsurface, the intensity of the UHIcanopy spatial pattern is much smaller (between
1.7 ˝C and ´1.8 ˝C), a result in line with other studies (e.g., [22]).
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The spatial distribution of Tair during the period shows some similarities with LST with the
highest temperatures in the city centre and cooler temperatures in urban parks (Sutton Park and
southwest corner). However, there is a marked difference with respect to the spatial distribution
of urban heat on the Tair dataset with the thermal core extending to the east of the city. In contrast,
the thermal core extends to the west for the LST dataset. Whilst this pattern could be explained
by land use for LST (Figure 1a), as the Tair pattern extending to east becomes more evident as the
atmosphere becomes more stable (A to D), it is hypothesised that advection may play a more significant
role in the spatial pattern of UHIcanopy. In WRF model simulations for August 2003, temperature
variations in Birmingham were attributed to the influence of a particular wind direction in which areas
downwind became warmer (up to 2.5 ˝C) than those upwind [17]. Hence, this temperature pattern
can be explained by the prevailing wind for the region which is south-westerly [51]. Similar results
regarding advection have also been found for other cities. In London, the peak UHI intensity was
found to be located northeast of the city centre, possibly explained by the prevailing south-westerly
winds [52] and in Hungary, the spatial UHI pattern in both Szeged and Debrecen, was determined
by the prevailing wind direction [53]. Rural weather stations in the Netherlands were also found to
be approximately 1 ˝C warmer when the wind passed across nearby towns [54]. Overall, it appears
advection plays an important role in investigating the pattern of UHIcanopy in the city, but this is
beyond the scope of the present study.

4.4. Night-time UHIsurface

Previous work in Birmingham identifies an increase in the UHIsurface intensity with respect to
atmospheric stability [23]. That study used a larger dataset (2003–2009) than that used in this paper
(i.e., summer 2013), yet the spatial pattern remains broadly comparable. The range for class F is from
´1 to 2.5 ˝C, and class G from ´1.6 to 3.0 ˝C; whereas for this study the ranges for class F are ´0.25 to
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2.75 ˝C, and class G from ´1 to 3 ˝C (Figure 4). During a heatwave event (class G) which occurred on
18 July 2006, the UHIsurface peaked >4.5 ˝C. Unfortunately, given the smaller time period of this study,
insufficient data is available in this analysis to assess the decline in UHIsurface intensity for classes
E and D.
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Overall, the spatial pattern of the UHIsurface at night-time is very similar to daytime. LST in the
city centre is higher (~3 ˝C) than Coleshill and in parks and southwest and northeast borders it is lower
(up to ´1 ˝C). As expected, UHI intensity during night-time is lower (´1 ˝C to 3 ˝C) than daytime
during the times of maximum solar irradiance (´1 ˝C to 8.7 ˝C).

4.5. Night-Time UHIcanopy

As with night UHIsurface, UHIcanopy is most evident under stable conditions, with the greatest
intensity and a particularly well developed urban core in class G [23]. The spatial distribution of Tair

during night-time (Figure 5) is also very similar to that highlighted during the daytime, with the core
of urban heat becoming less defined and spreading eastwards across the city, again highlighting the
potential role of advection in the structure of the UHIcanopy. For example, an investigation of the
London UHI using MORUSES examined the factors shaping the spatial and temporal structure of
the London’s atmospheric boundary layer. It was found that whilst landuse is the dominant factor,
even weak advection is sufficient to increase nocturnal temperatures downwind of built up areas [3].
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5. Comparisons between Land Surface and Air Temperatures

Using the datasets presented in this paper, direct temperature differences (LST—Tair) and R2

(coefficient of determination) were calculated between LST and Tair for each sensor site and weather
station (neighbourhood scale) and later combined to investigate the relationship at the city scale. Note
that Tair and LST are intrinsically different measurements [9]. Tair represents the ambient temperature
at 2 m above the surface and LST represents the surface radiant temperature averaged over a 1 km
horizontal surface (including different levels within the canopy layer). The time lag between maximum
LST and Tair depends mainly upon the physical characteristics of the surface and convection. Although
a strong correlation between the datasets is not expected, general patterns are helpful to retrieve Tair

from LST [30].

5.1. Daytime

Figure 6a shows large differences between LST and Tair data collected at the time of the satellite
overpass. These differences vary with landuse (Table 5) and range from around 3 ˝C in suburban areas,
to over 13 ˝C directly adjacent to the thermal core, further highlighting the significance of the different
processes contributing to UHIsurface and UHIcanopy in these areas. For comparison, an intensive
study of Los Angeles, using 44 meteorological stations and seven AVHRR images during three days
in August 1984, indicates a 5.4 ˝C difference between radiant surface and air temperatures in the
afternoon (standard deviation of 2.3 ˝C) [28].
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Figure 6. LST and Tair daytime comparison at 13:30. (a) LST—Tair difference (MODIS—BUCL);
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weather stations).

Table 5. Temperature difference (LST—Tair) at 13:30 and Land use [37].

Temperature Difference (˝C) Land Use

10.9–13.3 Industrial and commercial
9.5–10.9 Continuous urban fabric; and discontinuous dense urban fabric
8.7–9.5 Discontinuous low density urban fabric
6.8–8.7 Discontinuous low density urban fabric
3.1–6.8 Discontinuous low density urban fabric and green urban area

The result is that up to 91% of the variation in Tair at sites across Birmingham can be explained
by LST (Figure 6b). With a couple of outliers as exceptions (e.g., one sensor site with a R2 of 0.5),
this relationship is consistent across the city at the neighbourhood scale. However, when the analysis is
extended to cover all sites at the city scale, the results and relationship are not consistent, and highlights
the challenges in producing a simple relationship between Tair and LST (Figure 6c).
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5.2. Night-Time

Direct comparisons between Tair and LST at night, show that Tair is consistently higher than LST
across the city, ranging from 0.7 to 3.2 ˝C (Figure 7a). Temperature differences again vary with landuse
(Table 6) with the lowest temperatures differences between LST and Tair in the city centre, likely
because of the increased thermal capacity of urbanised surfaces. In contrast, the largest differences are
in areas with more vegetation (i.e., Sutton Park and Woodgate Valley Country Park).
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Table 6. Temperature difference (LST—Tair) at 1:30 and Land use [37].

Temperature Difference (˝C) Land Use

´0.7–´1.2 Industrial and commercial; continuous urban fabric; discontinuous dense urban fabric
´1.2–´1.7 Industrial and commercial; continuous urban fabric; discontinuous dense urban fabric

´1.7–´2.2 Discontinuous low density urban fabric; continuous and discontinuous urban fabric;
and small proportion of industrial and commercial

´2.2–´2.7 Discontinuous low density urban fabric and green urban area
´2.7–´3.2 Green urban area

Site specific R2 values are consistently high between the two datasets (R2 = 0.8–1) with less
outliers than during the daytime (Figure 7b); 8 sensors ranged between 0.8 and 0.9, and 90 between
0.9 and 1. Furthermore, the relationship at the city scale is improved at night (Figure 7c) and is
to be expected given the less complex radiation processes operating after sunset. These results are
greatly improved from a previous pilot study in Birmingham that compared 13 MODIS night-time
summer LST images with 28 low-cost, unshielded, iButton loggers. In this study, R2 values were not as
consistently high (R2 = 0.5–0.9) and no clear spatial pattern in the results was found [48]. Similarly,
they show improvement on transect studies in Szeged, Hungary which yielded correlations in the
range of 0.6–0.7 depending on the size of the sample radius [55]. The improved results in this study in
comparison to the previous one in Birmingham [48] and Szeged [55] are attributed to the improved
quality controlled/assured Tair dataset derived from BUCL [20]. Therefore, it highlights the importance
of metadata and specific protocols when deploying sensors. Furthermore, correlations in all of these
studies could have been different if correction of vertical surfaces were included (see Figure 1a from [12]
for further information). However, the aim was to observe direct correlations between the values.

6. Conclusions

This paper has compared the UHIsurface and UHIcanopy in Birmingham, UK using MODIS LST
and a unique, high resolution, Tair dataset. The UHI is clearly present in both datasets, both day and
night, and over a range of atmospheric stability classes. During the day, LSTs in the city can be up
to several degrees warmer than the rural reference, with the greatest variations occurring in class B
(moderately unstable) reinforcing the findings of other similar studies (e.g., [50]). During the night,
UHI intensity increases in line with atmospheric stability and is greatest in class G. During both the
day and night, the UHIsurface was greater than UHIcanopy.

A key finding of this work are the differences in the spatial patterns for UHIsurface and UHIcanopy.
With respect to UHIcanopy, there is a tendency for a larger core of urban heat to spread to the east of the
city, which is hypothesised to be a result of advective processes, in line with other published results [17].
In contrast, UHIsurface extends more to the west of the city, suggesting that the UHIsurface pattern is
more clearly linked with landuse, and that advection does not play a significant role. This difference
is particularly distinct at night, and underlines the need to use high resolution datasets to further
investigate advective process in the urban canopy. To this end, the 25 BUCL weather stations equipped
for measuring wind speed and direction provide data for future investigation of advection, including
its pattern and intensity.

Although strong relationships were found between Tair and LST during both the day and night
at a neighbourhood scale, it is clear that, even with higher resolution datasets such as BUCL, it is
presently unlikely that a simple statistical model could be obtained between LST and Tair at the city
scale. However, quality controlled higher spatial and temporal resolution Tair datasets remain an
important way in evaluating and validating Tair physically derived from LST.

To conclude, it is clear that the use of high resolution data from UMNs greatly facilitates work of
this nature, and given extended periods of study, then general relationships and physical process-based
numerical models could become more realistic. Indeed, the greatest potential in this area perhaps
comes from co-located IR surface temperature monitoring devices at BUCL sites. These will enable
surface temperature to be measured in the same vertical profile as air temperature and will potentially
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enable unprecedented direct ground truthing of LST datasets. If used in sufficient numbers per
pixel (i.e., 1 km), this approach will provide high quality data for comparison studies simplifying the
complexities of the wider environment/variable Tair source areas contained within a pixel. Overall,
as this study has shown, improvements in measuring Tair across the urban environment are beneficial
to not only understanding UHIcanopy, but also UHIsurface.
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