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Online Ensemble Learning of Data Streams
with Gradually Evolved Classes
Yu Sun, Student Member, IEEE, Ke Tang, Senior Member, IEEE,

Leandro L. Minku,Member, IEEE, Shuo Wang,Member, IEEE, and Xin Yao, Fellow, IEEE

Abstract—Class evolution, the phenomenon of class emergence and disappearance, is an important research topic for data stream

mining. All previous studies implicitly regard class evolution as a transient change, which is not true for many real-world problems. This

paper concerns the scenario where classes emerge or disappear gradually. A class-based ensemble approach, namely Class-Based

ensemble for Class Evolution (CBCE), is proposed. By maintaining a base learner for each class and dynamically updating the base

learners with new data, CBCE can rapidly adjust to class evolution. A novel under-sampling method for the base learners is also

proposed to handle the dynamic class-imbalance problem caused by the gradual evolution of classes. Empirical studies demonstrate

the effectiveness of CBCE in various class evolution scenarios in comparison to existing class evolution adaptation methods.

Index Terms—Data stream mining, class evolution, ensemble model, on-line learning, imbalanced classification

Ç

1 INTRODUCTION

WITH the rapid development of incremental learning
and online learning, mining tasks in the context of

data stream have been widely studied [1], [2]. Generally,
data stream mining refers to the mining tasks that are con-
ducted on a (possibly infinite) sequence of rapidly arriving
data records. As the environment where the data are col-
lected may change dynamically, the data distribution may
also change accordingly. This phenomenon, referred to as
concept drift [3], [4], is one of the most important challenges
in data stream mining. A data stream mining technique
should be capable of constructing and dynamically updat-
ing a model in order to learn dynamic changes of data
distributions, i.e., to track the concept drift.

For classification problems, concept drift is formally
defined as the change of joint distribution of data, i.e., pðx; yÞ,
where x is the feature vector and y is the class label. Over the
past few decades, concept drift has been widely studied [5],
[6], [7]. The majority of the previous works focus on the con-
cept drift caused by the change in class-conditional probabil-
ity distribution, i.e., pðxjyÞ. In comparison, class evolution,
which is another factor that induces concept drift, has
attracted relatively less attention. Briefly speaking, class evo-
lution is concerned with certain types of change in the prior

probability distribution of classes, i.e., pðyÞ, and usually cor-
responds to the emergence of a novel class and the disap-
pearance of an outdated class. Class evolution occurs
frequently in practice. For example, new topics frequently
appear on Twitter and outdated topics are forgotten with
time. Besides, old topics, e.g., topics on festivals, may also
become popular again. Such phenomena can also be
observed from other types of data streams, such as the click-
through data of news or advertisements since the interests of
clients may change over time. In some literature, class evolu-
tion is also called class-incremental learning [8] or concept
evolution [9], [10], [11]. More formally, let Ct denote the set
of classes whose prior probability is positive at time stamp t.
Class evolution involves the following forms:

� Class emergence represents an example of an
unknown class is received at the current time. That
is, class c emerges at time t if c =2 C1 [ C2 [ � � � [ Ct�1
and c 2 Ct. Such a class is called a novel class.

� Class disappearance describes the situation in which
the example of an existing class would not be
received in the next time stamp. That is, if class c dis-
appeared at time t, then c 2 Ct�1 and c =2 Ct.

� Class reoccurrence defines the point where a disap-
peared class recurs later in the data stream. Class c is
a recurring class at time t, if c 2 C1 [ � � � [ Cd�1,
c =2 Cd [ � � � [ Ct�1, and c 2 Ct.

Since the number of classes may change when class
evolution happens, the model needs to be adapted not only
to capture the distribution of existing classes, but also to
identify that of the novel classes. At the same time, the
effects of disappeared classes need to be removed from
the model. Hence, in comparison to the change of class-
conditional probability, class evolution brings additional
challenges to data stream mining.

In literature, a few approaches have been proposed
to address class evolution problems, e.g., Learn++. NC [12],
ECSMiner [13] and CLAM [14]. Although they have shown
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promising performance, they implicitly assume that classes
emerge or disappear in a transient manner. In other words,
the example generation rate (EGR, i.e., the number of exam-
ples generated per-unit time) of a class switches between two
states, i.e., a constant positive value and zero. However, in a
real-world scenario, it is more likely that classes evolve in a
gradual manner. For example, in an early stage, an event may
be discussed by a few participants on Twitter; the topic grows
in popularity over a period of time and then eventually fade
away from attention. Motivated by this consideration, this
work investigates the class evolution problem with gradually
evolved classes. Gradual evolution of classes refers to the
case that classes appear or disappear in a gradual rather than
transient manner, i.e., the EGR changes more smoothly.
A novel class-based (CB) ensemble approach, namely Class-
Based ensemble for Class Evolution (CBCE), is proposed. In
contrast to the above-mentioned existing approaches, which
process a data stream in a chunk-by-chunkmanner and build
a base learner for each chunk, CBCE maintains a base learner
for every class that has ever appeared and updates the base
learners whenever a new example arrives (i.e., in a one-pass
manner). Furthermore, a novel under-sampling method is
also designed to copewith the dynamic class-imbalance prob-
lem induced by gradual class evolution.

The remainder of this paper is organized as follows:
Section 2 presents the problem description and discusses
related work. Section 3 presents our adaptation approach.
Empirical studies on the proposed as well as the existing
approaches are reported in Section 4. Section 5 concludes
the paper with directions for future work.

2 PROBLEM DESCRIPTION AND RELATED WORK

2.1 Problem Description

Let fðx1; y1Þ; ðx2; y2Þ; . . . ; ðxt; ytÞ; . . .g denote a data stream,
where xt and yt are the example received at time stamp t
and its corresponding class label, respectively. Each xt is
regarded as being generated from the data source of class
yt. By these definitions, class evolution is just the evolution
of the data sources, i.e., a data source starts or suspends
generating example. In gradual class evolution, the example
generation rate of a data source changes gradually. That is,
the EGR of an evolved class gradually increases from 0
in class emergence (reoccurrence), and decreases from a
positive value to 0 in class disappearance. We denote
Ct ¼ [ifcig as the set of classes with positive EGR at time t.

Furthermore, let Cnovel
t , Crecurring

t be the set of novel and
recurring classes at time t (i.e., their EGRs are 0 at time t� 1

and positive at time t), respectively. Let Cdisappeared
t denote

the set of the disappeared classes at time t (i.e., their EGRs
are positive at time t� 1 and 0 at time t). We have

Ct ¼ Ct�1 [ Cnovel
t [ Crecurring

t � Cdisappeared
t . The novel (recur-

ring) classes grow and the outdated classes fade away grad-
ually. Therefore, this leads the underlying class set to be
unfixed in the mining process.

2.2 Related Work

Since class evolution concerns a special case of concept drift,
we will first briefly review the typical strategies for dealing
with concept drift [3]. Then, we will proceed with the previ-
ous works dedicated to class evolution.

A sliding window method stores in memory a number of
the most recent examples; the window size can be fixed [15]
or variable [16]. The model is updated based on new data,
which are stored in the window. Old data, which tend to be
affected by concept drift, are forgotten. In the presence of
class evolution, although this method is able to adapt a
model to class evolution by dropping previous data, it also
forgets potentially useful information of the non-evolved
classes, inevitably resulting in a negative impact on the
mining performance.

Ensemble methods mainly include chunk-based ensem-
bles, on-line ensembles, and hybrid ones [17]. A chunk-
based ensemble constructs each base learner by training it
with a different chunk of data [18], [19]. A weighted combi-
nation of the base learners is applied to handle the concept
drift. In the chunk-based ensemble strategy, class evolution
would cause the base learners to have different sets of clas-
ses. Taking class emergence as an example, this would
cause the collective votes of the earlier base learners to out-
weigh the correct votes for the novel class [12]. On-line
ensembles, e.g., on-line bagging and boosting [20], update
each base learner in an on-line manner. This scheme would
take a long time for class evolution adaptation. Hybrid
ensemble methods aim to combine chunk-based ensembles
and on-line ensembles, so as to have the advantages of both
in a single framework. For example, the recently proposed
AUE2 [21] algorithm employs each chunk of data to initial-
ize a new base learner and to update all existing ones. Then,
base learners are weighted according to their accuracies to
adapt to the concept drift. Considering class emergence,
since the base learner is mainly trained by the non-evolved
class, the novel class is highly imbalanced in the existing
base learners. Moreover, the examples from the novel
classes are not enough in the early stage of gradual class
evolution. Hence, it is still difficult to recognize novel class
efficiently when class evolution occurs.

Apart from the previous strategies, drift detection meth-
ods explicitly determine the drift of concept and update the
model accordingly [5], [22], [23]. In order to adapt to the
new concept, most of these approaches [22], [23] forget any
information learnt before the detected drift. Similarly to the
sliding window strategy, for class evolution, this means that
useful information will be forgotten. DDD [5] is a special
type of drift detection method that keeps old ensembles
while they are useful. However, DDD can only keep old
ensembles corresponding to one of the previous concepts.
Therefore, in the case of class evolution, DDD will also
forget information when more than one class evolution
behavior happens over time.

Class reoccurrence in class evolution is relevant to recur-
rent concept drift, which represents the case where a past
concept reoccurs again in the data stream [24], [25], [26].
However, the two cases are substantially different. Recur-
rent concept means a reoccurred joint distribution for all
data, and thus the whole class set involved in the concept
also reoccurs. On the other hand, when class reoccurrence
happens, the current concept may not be identical to any
previous concept since some other classes might have dis-
appeared. Hence, class reoccurrence may not lead to a
recurrent concept, and thus might not be handled effec-
tively with existing algorithms for recurrent concept drift.
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To summarize, although the research progress on general
concept drift provides inspirations for tackling class evolu-
tion, few approaches proposed therein are directly applica-
ble in this particular case. Hence, it is unsurprising that the
dedicated research on class evolution can be dated back to
more than one decade ago, when Zhou and Chen [8] put
forward the concept of class-incremental learning (C-IL).
Since then, two major families of methods have been devel-
oped for class evolution.

The first family of algorithms includes MineClass [9],
ECSMiner (ECSM, [13]), CLAM [14], MCM [10], [27] and
SCANR [11]. All of them process data streams chunk by
chunk. They consider class evolution from two perspectives,
i.e., novel class detection and class evolution adaptation.
The former task is to detect a potentially unknown class and
assist human experts in data labeling. The second one, which
is the focus of this work, aims to effectively maintain the
model to adapt to class evolution. For class evolution adapta-
tion, MCM and SCANR simply employ the chunk-based
ensemble approach for concept drift. MineClass and ECSM
extend this to a new model selection method to select related
learners for voting and drop outdated ones. CLAM develops
a class-based structure, where the examples for each class are
trained separately. The model selection method and class-
based structure are specifically designed for the main charac-
teristic of class evolution, i.e., an unfixed class set in the learn-
ing process. However, the above strategies still have their
drawbacks: (1) For class emergence, ECSM ignores the uncon-
fident votes of aged models trained without the novel class.
However, the judgment on the confidence of a vote, which
relies on the outlier detection, is nontrivial. Since the example
size of the novel class in each chunk increases in the class
emergence stage, the base learners tend tomark the examples
of novel classes in the later chunks as outliers. This will cause
ECSM to misjudge the votes from the early base learners as
being unconfident. For class disappearance, it removes the
outdated models from the ensemble. However, if the class
reoccurs later, the model needs a re-training of this class, and
this makes the model inefficient. (2) In CLAM, when learning
each chunk, the examples of each class are grouped into k
clusters to make decision. CLAM uses k-means [28] to gener-
ate the decision boundary, but it is difficult to set a generally
suitable k value for each chunk, especially for the gradual
class evolution. In particular, in the early stage of emergence
(reoccurrence) and the late stage of disappearance, the exam-
ples of the evolved class may be too few to be clustered.
A large k value is unsuitable when a class emerges or disap-
pears, and a small one may lead to an unsatisfactory perfor-
mancewhen its example size becomes large enough.

The other family of algorithms related to class evolution
are the variants of the Learn++ [29], i.e., Learn++.NC (LNC,
[12]), Learn++.UDNC (LUDNC, [30]) and Learn++.NCS
(LNCS, [31]). They are inspired by AdaBoost[32], and con-
struct a set of base learners for each chunk. In traditional
chunk-based ensembles, when a novel class emerges, the for-
mer base learners that have been trained without this class
will outvote the most recent ones. In order to overcome this
problem, a novel weight assignment mechanism, called a
dynamically weighted consult-and-vote (DW-CAV), is pre-
sented in LNC. In order to learn imbalanced data, LUDNC
and its more general version, LNCS, are proposed. The

SMOTE [33] oversampling strategy acts as a wrapper to pre-
process the training data in LNCS. Shortcomings for these
algorithms are discussed: (1) The weights for base learners
are difficult to tune, especially in complicated evolution sce-
narios. For example, a novel class emerges with another class
disappearing. In classifying the example of the novel class,
the weight for the later base learner may still be pulled
down, if the earlier learners classify it as the disappeared
class. (2) In the learning process of these algorithms, each
base learner should guarantee that the cumulative weight for
the misclassified examples in its chunk is below 0.5; if this is
the case, a new one should be trained instead. However, this
requirement is hard to meet for the dynamically imbalanced
data, especially when the data is complicated and multiple
classes exist in the data stream. In this situation, the algo-
rithmmay never end. (3) Due to the dynamic class-imbalance
problem in gradual class evolution, the example size may be
large enough in some chunks while very limited in others.
Although the minority class is considered in LNCS, the
chunk-based learning method cannot effectively make use of
the data. Furthermore, since all base classifiers are main-
tained, it is considerably time-consuming to dynamically cal-
culate the weights of these classifiers for each test example.

3 THE PROPOSED APPROACH

In this section, the problem of class evolution adaptation is
analyzed first. Then, the new approach as well as the details
of each component will be described. Finally, the approach
is analyzed and summarized.

3.1 Problem Analysis

To further clarify the problem of class evolution adaptation,
the risk of misclassification is evaluated for the case of 0-1
loss. Gradual class evolution leads the data stream to be
dynamically imbalanced; in addition, the prior probability
of each class may even fluctuate dramatically. In this situa-
tion, examples tend to be classified as majority classes, and
the examples of minority classes are hard to identify.
To eliminate this influence, a weight eit at time t for misclas-

sifying the example of class ci is set, as e
i
t ¼ 1=PtðciÞ, where

PtðciÞ is the prior probability of class ci at time t. For class ci
at time t, the risk for classifying xt as class ci is

RtðcijxtÞ ¼
X
j 6¼i

�
ejt � PtðcjjxtÞ

�
; (1)

where PtðcjjxtÞ is the posterior probability of class cj given
example xt.

To maximize the learning performance, the classifica-
tion risk (i.e., Eq. (1)) at each time step t needs to be mini-

mized. Since eit is set as 1=PtðciÞ, the minimization problem
turns to be

min
i

X
j 6¼i

1

PtðcjÞ � PtðcjjxtÞ
� �

: (2)

Since PtðxtÞ is the same for all classes, Eq. (2) is equivalent to

min
i

X
j6¼i

1

PtðcjÞ � PtðcjjxtÞ � PtðxtÞ
� �

; (3)
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which is equivalent to

min
i

X
j6¼i

PtðxtjcjÞ: (4)

By dividing each item in Eq. (4) by
P

j PtðxtjcjÞ, the problem
is transformed into

min
i

1� PtðxtjciÞP
j PtðxtjcjÞ

 !
: (5)

In other words, the original problem of minimizing misclas-
sification risk transforms into the problem of finding the
maximal likelihood, which is

max
i

PtðxtjciÞ: (6)

3.2 Class-Based Ensemble for Class Evolution

Eq. (6) suggests that the optimal classification strategy is to
assign an example according to the likelihood that it belongs
to a class. Therefore, a natural approach to this problem is to
maintain a model for each class so that the likelihood can be
explicitly estimated. For this reason, the CBCE approach is
proposed. Each class-based model (CB model) is main-
tained for a certain class ci and an example x is classified
according to

argmax
i

CBMClassifyðx; CBMiÞ; (7)

where the function CBMClassify returns the likelihood
P ðxjciÞ or scores that can be used to estimate P ðxjciÞ.
Depending on the current class evolution state, the CBCE
algorithm manages the CB models in mining tasks.

Specifically, itmay create a newCBmodel for a novel class,
inactivate an outdated CB model for a disappeared class and
re-activate the CBmodel when the class reoccurs again. Since
the class conditional probability is also likely to change in a
real-world data stream, the previously built model for a class
could become invalid later. Hence, CBCE also involves a
scheme to detect and handle the invalid CBmodel.

3.2.1 Class-Based Model

A class-basedmodel is one that is specifically constructed for
a certain class to get the likelihood (or related score) of a test
example. A variety of models are possible candidates for a
CBmodel, e.g., one-class classifier and clusteringmodel.

In this work, the CB model is implemented as a binary
classifier that is able to output its classification posterior
probability. In each CB model, with the one-versus-all strat-
egy, the represented class is the positive class (+1) and the
others are the negative one (�1) as a whole. According to
Bayesian theory, the posterior probability Ptðþ1jxtÞ for the
positive class at time t is

Ptðþ1jxtÞ ¼ Ptðþ1Þ
PtðxtÞ � Ptðxtj þ 1Þ; (8)

where PtðxtÞ is the same for all classes. If the training data
are balanced in CB models, Ptðþ1Þ is a constant 1=2. In this
condition, the posterior probability for positive class is pro-
portional to the likelihood of the positive class, i.e., the

specific class the CB model is maintained for. In other
words, the probability can be used as the score to represent
the likelihood for making decisions.

The positive and negative classes are likely to be imbal-
anced in a CB model. Although class-imbalanced problem
has been intensively investigated, most previous studies
[31], [34] focus on static class-imbalanced problems. In our
case, the prior distribution may change over time, leading
to a dynamic class-imbalanced problem. To address this
issue, an under-sampling strategy is embedded in each CB
model. The sampling probabilities for the positive and
negative classes are different. As each CB model acts as an
“expert” for its corresponding class, all of the examples
received from this positive class are selected. The data size
of the negative classes is usually larger than the positive
one. Furthermore, the size of each class dynamically
changes due to the gradual class evolution. These negative
examples are sampled by under-sampling with a dynamic
probability, which aims to select the negative data with the
same size as the positive ones. Denoting wi

t as the prior
probability of class ci at time t, the probability of sampling
the negative examples for ci is calculated as

pi ¼ minðwi
t=ð1� wi

tÞ; 1Þ: (9)

In on-line learning, the underlying prior probability wi
t is

hard to be observed. To quickly and accurately estimate wi
t,

it is tracked by the time decay method [35], [36] as:

wi
t ¼ bwi

t�1 þ ð1� bÞ1½yt ¼ ci�; (10)

where b ð0 < b < 1Þ denotes the decay factor, and
1½yt ¼ ci� ¼ 1 if yt, the true class label of xt, is ci, otherwise 0.
To conveniently apply CBCE in practice, a constant decay
factor is used for the prior probabilities of all classes. Since
the estimated prior probability will be updated exponen-
tially, it will quickly achieve its underlying value. The
appropriate value for b is 0.9, which has been determined
after comprehensive experiments.

The learning procedure is summarized in Algorithm 1.
When a new example is received, every CB model will
update the estimation of prior probability of its class (lines 2
and 5). For the class that the currently received example
belongs to, its CB model uses it for updating directly (line 3).
For the other CB models, the example is first sampled with
the dynamic sampling probability, and then used to update
the models as a negative training example (lines 6 and 7).

Algorithm 1. UpdateCBModel

Input: ðxt; ytÞ, the example at time t; CBMi, the CB model of

class ci; and wi
t�1, the prior probability of ci at time t� 1

Output: CBMi, the updated CB model
1: if CBMi is the corresponding CB Model for yt then
2: wi

t ¼ bwi
t�1 þ ð1� bÞ

3: update CBMi with ðxt;þ1Þ
4: else
5: wi

t ¼ bwi
t�1

6: pi ¼ wi
t=ð1� wi

tÞ
7: update CBMi with ðxt;�1Þ under probability pi
8: end if
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In the CBCE framework, a CB model is required to pro-
vide its output in the form of score and can be updated on-
the-fly. Quite a few classical base leaners satisfy the first
requirement, and logistic regression might be the model
that has been mostly investigated with regard to the second
issue. Hence, the online Kernelized Logistic Regression
(KLR, [37]) is employed in this work as the base learner. It
should be noted that CBCE does not necessarily require to
establish only one CB model for each class, and in some
cases an ensemble model might be more suitable than a sin-
gle model for a class. For example, if the minority class may
comprise small disjuncts of data, a possibly better option for
the CB model is to employ cluster over-sampling techniques
[38], [39] and build a model for each disjunct of data.

The KLR adopted in this work takes the form as:

fi
t ðxÞ ¼

Xni
j¼1

ai
jkðxj; xÞ; (11)

where t is the time stamp, ni is the number of examples

trained in CBMi, a
i
j is the coefficient for the jth term in

CBMi, and kð�; �Þ is the kernel function. The posterior proba-
bility for the ith CB model is

Pi
t ðþ1jxtÞ ¼ 1=ð1þ expð�fit ðxtÞÞÞ: (12)

After being fed with each training example, the online KLR
algorithm updates the current classifier by stochastic gradi-
ent descent with model truncation [37]. With this imple-
mentation, the CB model can predict the probability of the
classification and learn the data stream with linear time
complexity.

3.2.2 Class Evolution Adaptation

Class evolution has three basic elements, i.e., the emergence
of novel classes, the disappearance of outdated classes, and
the reoccurrence of disappeared classes.

When a novel class ci emerges at time stamp t, CBCE first

estimates its prior probability wi
t, and then initializes a new

CB model CBMi for it. The prior probability is initially esti-
mated after receiving the first two examples of this class.
Denoting ExampleSize as the example size of the negative
classes between these two examples, the prior probability is
estimated as follows:

wi
t ¼ 1=ðExampleSizeþ 1Þ: (13)

Based on the two examples of novel class and the negative
examples between them, the CB model is initialized. Next,
the CB model participates in classifying the subsequent
data stream.

For class disappearance, the approach has to determine the
disappearance when a class is shrinking; following this, its
CB model should be managed to ensure not to affect the rec-
ognition of other classes. Since the evolution state is tracked
in CBmodels, a sufficiently small prior probability threshold,
e.g., b1;000 (b is the decay factor in Section 3.3), can be used for
disappearance confirmation. That is, if the class has been
absent for 1,000 consecutive time stamps, it is thus considered
to have disappeared. The decision boundary of the CBmodel,
as implemented by binary classifier, merely separates one

class from another. In this case, if the class-conditional proba-
bility distribution changes or a novel class emerges on the
boundary, the original CB model for the disappeared class
would be inaccurate and also influence the novel class. There-
fore, the CB model of the disappeared class is inactivated in
classification. Besides, when a class is considered to have dis-
appeared, its estimated prior probability is set to be 0, which
alsomeans its CBmodel is suspended for updating.

Class reoccurrence means that an example with the label
of a disappeared class is received again. Effective handling
of class reoccurrence could make use of past training efforts.
For the inactivated CB model of a disappeared class, it can
be used again for classification when an example with an
old label arrives, which makes CBCE efficient. Once class
reoccurrence happens, the model re-estimates the prior
probability in the same way as class emergence, and acti-
vates the CB model in classification.

This mechanism to deal with the three key components
of class evolution is wrapped around each CB model,
which equips CBCE to track gradually evolved classes
effectively. The procedure of class evolution adaptation is
summarized in Algorithm 2. Depending on the change of
prior probability, class evolution behavior can be deter-
mined. The active CB models are updated by the sampled
data, and the inactive ones are stored additionally in case
of class reoccurrence.

Algorithm 2. ClassEvolutionAdaptation

Input: ðxt; ytÞ, the example at time t; CBMi, the obtained CB

models at t� 1, i ¼ 1; 2; � � � ; jCBMj; Ct, the class set at t; and wi
t,

the prior probability of ci at time t
Output: CBM, the class-based ensemble
1: Ct  Ct�1
2: if no CBMi is available for yt then
3: == class emergence
4: Ct  Ct [ fytg
5: if xt is the first example of class yt then
6: buffer the incoming examples for class yt
7: else if xt is the second example of class yt then
8: initialize the wy

t of yt
9: initialize a CB model for class yt
10: end if
11: else if CBMy is a CB model for yt and wy

t ¼ 0 then
12: == class reoccurrence
13: Ct  Ct [ fytg
14: if xt is the first (recurring) example of class yt then
15: activate CBMy for classification
16: buffer the incoming examples for class yt
17: else if xt is the second (recurring) example of yt then
18: initialize the wy

t of yt
19: end if
20: end if
21: for each ci in Ct do
22: == class disappearance
23: if wi

t < disappearance threshold then
24: Ct  Ct � fytg
25: wi

t  0
26: inactivate CBMi for classification
27: end if
28: end for
29: UpdateCBModelðxt; yt; CBMÞ for each active CB model

1536 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 6, JUNE 2016



3.2.3 Class-Conditional Probability Change Adaptation

Although CBCE focuses on class evolution adaptation in
data stream mining, it is also very likely that class condi-
tional probability distribution changes over time.

In CBCE, the change of class-conditional probability dis-
tribution means that the CB model is no longer able to cor-
rectly identify its corresponding positive examples. To
handle this problem, a simple and yet effective drift detec-
tion method, DDM [22], is applied to check a CB model’s
validity. If a CB model was significantly affected by this
type of change, it would be re-initialized. Each example
used for training the CB model is incorporated for the detec-
tion of the change. If the warning level is reached, the CB
model is likely to be outdated and the following sampled
examples are stored. If DDM detects a drift in a CB model,
the model is re-initialized by these examples. Through this
method, the likelihood value obtained with each CB model
is avoided to be affected by the change of class-conditional
probability distribution.

3.3 Summary and Analysis

In CBCE, when a new example is received, the ensemble
model first predicts its label for practical use. After obtain-
ing the true label of this example, each CB model is updated
to track the up-to-date concept. If a novel class emerges, a
new CB model corresponding to this class is initialized. A
sufficiently small prior probability of a class implies its dis-
appearance. In this case, the corresponding CB model is
inactivated but still conserved. If a disappeared class reoc-
curs, the corresponding CB model will be re-activated with
the prior probability of the class being re-estimated from
the current data. In order to handle the dynamic class-
imbalance problem caused by the gradual process of
class evolution, CB models use under-sampling with a
dynamic probability to sample the examples to balance the
training data. It is noted that all active CB models are used
for classification, with decision determined by choosing a
class whose CB model outputs the highest score. A change
detection method is used to monitor changes in the class-
conditional probability distributions corresponding to each
CB model. If a change is detected, the corresponding CB
model is reset.

As mentioned before, most existing approaches for class
evolution, such as LNCS and ECSM, process a data stream
chunk by chunk. The class-based framework adopted by
CBCE has a number of advantages in comparison to the
existing methods. First, since a CB model is specifically
maintained for a certain class, it is flexible to be created or
removed to adapt to class evolution. This also decouples the
whole model, and makes each CB model simple and con-
centrate on a single class. Second, by using the CB model,
only a few of base learners need to be maintained, equal to
the number of classes. Third, for massive-volume data
streams, the master-slave structure (CB model – ensemble
strategy) of the learning system is also very convenient for
parallelization and distributed implementation.

The loss of the classification result for each example is
bound by the online learning approach. Scaled in ½0; 1�, the
output score of a CB model is ideally 1 for the correct class
and 0 for others. In the case of binary classifiers, the
expected score can be viewed as the posterior probability

that an example belongs to the positive class, i.e.,
P ðþ1jxt; CBMiÞ. For testing example xt from class ci, the

weighted 0-1 loss is eit for incorrect classification and 0 for
the correct one. It can be found that the loss LðxtÞ is
bounded as follow:

LðxtÞ � eit � ðð1� P ðþ1jxt; CBMiÞÞ þ
X
j6¼i

P ðþ1jxt; CBMjÞÞ;

(14)

where ð1� P ðþ1jxt; CBMiÞÞ represents the gap of CBMi to
the optimum, and

P
j 6¼i P ðþ1jxt; CBMjÞ is the sum of values

from all other CBMs. Then,

LðxtÞ � eit � ðð1� P ðþ1jxt; CBMiÞÞ þ
X
j6¼i
ð1� P ð�jxt; CBMjÞÞÞ:

(15)

For class ci, P ðþ1jxt; CBMiÞ is the posterior probability for
correct classification by CBMi, and P ð�jxt; CBMiÞ is the
posterior probability for correct classification in other CB

models. If Pcorrect
i ðxtÞ is used instead as the probability

of correct classification for any CB model, then the loss is
bounded as follow:

LðxtÞ � eit � ðjCtj �
X
i

P correct
i ðxtÞÞ; (16)

where jCtj is the number of classes at t. The values of eit and
jCtj are the same for each class. For each CB model, with
more training data, the confidence of correct classification
(Pcorrect

i ðxtÞ), is expected to be increased.
From the above analysis, it can be found that the loss is

bounded based on the performance of each CB model. With
more training data for each CB model, the models would be
more accurate, with each CB model having a higher confi-
dence in its prediction. The bound would gradually get
tighter and the performance better.

4 EXPERIMENTAL STUDIES

The properties and performance of CBCE were observed
through two types of experiments, i.e., the visualization
experiment and the comparative experiment.

4.1 Visualization Experiment of CBCE

This experiment aims to visualize the learning process of
CBCE to gain a deeper understanding of its behavior. For
this purpose, a two-dimensional synthetic data stream is
generated, which involves 10,000 examples from four clas-
ses. The data distribution and the class evolution behav-
iors of the four classes are shown in Fig. 1. Different types
of class evolution behaviors are designed for the four clas-
ses. Class 1 is a stable class without evolution. Class 2
firstly disappears and then reoccurs. Class 3 is a novel
class that gradually emerges. Class 4 represents a sudden
event in which a class emergence is closely followed by a
disappearance. Assume the EGR is 1 when in a stable con-
dition for each class. Part of the Gaussian bell curve is
employed to simulate the gradual increase or decrease of
the EGR in Fig. 1b. The peak position of a Gaussian curve
represents EGR = 1. The 3-sigma position approximately
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represents EGR = 0, which corresponds to the beginning of
class emergence (reoccurrence) or the end of the disap-
pearance process.

Gaussian Kernel is chosen as the kernel function in the
online KLR of a CB model, and the kernel width s is set as
the 5th percentile of the pairwise distances between all
pairs of examples [40]. As the class-conditional probability
distribution is stable in the synthetic data stream, CBCE,
without the detector for the change of class-conditional
probability, is applied in this experiment. To tune the
parameters in KLR, an initial fraction of the synthetic data
stream is utilized with a variant of five-fold cross valida-
tion, i.e., leaving out an example from every five examples
to construct the training stream. By this method, the
parameters are set as h ¼ 0:01, � ¼ 0:1, and s ¼ 0:1.

The decision boundaries corresponding to the four CB
models are plotted in Fig. 2.

Specifically, after the first 1,000 examples have been
processed, the CB models for class 1 (red) and 2 (blue)
are constructed. When 2,000 and 3,000 examples have
been processed, it can be found that the CB models for
class 3 (green) and class 4 (orange) have been initialized.
Meanwhile, the CB models for classes 1 and 2 are
updated. After the 4,000th example is processed, class 2
disappears (no new example belongs to class 2 in dia-
gram) and the corresponding CB model remains
unchanged until class 2 reoccurs again after the 6,000th
example. The final CB models obtained after processing
the entire data stream are shown in the last diagram of
Fig. 2. It can be observed that the four CB models effec-
tively separate the examples of different classes. Besides,
it can also be found that CBCE incrementally adjusts each
CB model to be a good local “expert” and is capable of
adapting itself to the evolution of classes.

4.2 Comparative Experiment

To verify the performance of CBCE, a comprehensive com-
parison between CBCE and other approaches is carried out
in the comparative experiment.

4.2.1 Data Set

Two sets of synthetic data streams and one set of real-world
data streams are used in the experiment.

Synthetic data. Letter recognition data set (16 numeric
attributes) and Statlog (landsat satellite) data set (36 numeric
attributes) from the UCI Machine Learning Repository [41]
are modified to compose the synthetic data streams. They
are generated by re-arranging the examples to fit the class
evolution setting. For both data sets, examples of four clas-
ses are extracted as the source of the data streams. In the
Letter recognition set, letters “a”, “b”, “c” and “d” represent
these four classes, respectively. In the Statlog set, “red soil”
is used as class 1, “grey soil” as class 2, “cotton crop” as
class 3, and class 4 is represented by “damp grey soil”.

Three fundamental class evolution scenarios (Fig. 3) are
considered, i.e., class emergence, class disappearance and
reoccurrence, and multiple class evolution. Almost all com-
plicated class evolution scenarios can be decomposed into
the three basic ones. Furthermore, the use of the three basic
scenarios also allows a close observation of the performance
of each approach.

Class 1 to 3 from the synthetic data sets are used in sce-
narios a and b, and all the four classes are used in scenario c.
As shown in Fig. 3, class 3 (green) is designed as an evolved
class with class emergence in scenario a, and class disap-
pearance and reoccurrence in scenario b. In scenario c, class
3 and class 4 (orange) successively emerge and then disap-
pear, as a more complex situation. As the description in the
previous experiment, 1,650 examples are extracted from
each Letter recognition data stream, and 2,750 examples
from each Statlog data stream.

Real-world data. UDI TwitterCrawl Dataset [42], including
50 million tweets posted mainly from 2008 to 2011, is
involved. Each record in this data set has its own time
stamp and the order of examples in the data stream is
completely genuine, without any modification. Since the
hashtag roughly describes the tweet’s topic, it was used as
the class for each tweet record. If more than one hashtags
exist in a tweet, one of them is selected randomly as its label.

Four tweet stream fragments from the whole tweet set
are captured by selecting different topics as the classes of
interest, i.e., tweet stream a, b, c, and tweet stream-20 clas-
ses. The first three tweet streams correspond to the three
basic class evolution scenarios a, b and c described in the
synthetic data, for further observation. Specifically, tweet
stream a, involving 39,600 tweets, represents the class emer-
gence scenario. It has the topic of “royal wedding” (class 3,
between Prince William and Kate Middleton) acting as the
novel class. Corresponding to the class disappearance and

Fig. 1. (a) Data distribution and (b) class evolution behavior of the
2D data stream used in Section 4.1.

Fig. 2. Visualization of the classification behavior of CBCE on 2D synthetic data stream. The diagrams show the decision boundaries and the proc-
essed data points at different time steps.
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reoccurrence scenario, tweet stream b takes a fragment of
15,004 tweets, with the topic of “Christmas” (class 3) as the
evolved class. Tweet stream c (the multiple novel classes
scenario) covers 68,750 tweets, where the topics of “royal
wedding” and “bin Laden” (class 4, the news about the
hunt for Osama Bin Laden) are the novel classes. In the
three streams, the topics of “job” (class 1) and “music” (class
2) act as the “stable” classes. To obtain a high fidelity simu-
lation of real class evolution scenarios, tweet stream—20
classes is generated. It involves 143,381 tweets with 20 clas-
ses, including 9 “stable” classes and 11 evolved classes.
Since the class evolution state along the tweet streams is
implicit, the prior probabilities of classes through the tweet
streams is estimated by Eq. (10) (b ¼ 0:99 to make the line
smooth) and visualized in Figs. 4 and 5.

After getting the tweet streams, the text of each tweet is
transferred into the TF-IDF vectors. 242, 247, 242 and 524
numerical features are generated, respectively, for the tweet
streams a, b, c and the tweet stream - 20 classes. From Fig. 5, it
can be seen that class evolutionmay occur frequently in tweet
stream. Besides, according to the visualization of tweet stream
in Fig. 6, it can be observed that the class-conditional probabil-
ity distribution also changes over time in tweet stream.

4.2.2 Compared Approaches

The synthetic data streams are constructed from data sets
with fixed distribution. For these streams, CBCE without
class-conditional probability change adaptation is tested.

Since the class-conditional probability changes in tweet
data, CBCE with the distribution change adaptation (named
as CBCEd) is tested as well on tweet streams.

To the best of our knowledge, none of the existing
approach for class evolution is designed to process data
streams in an online manner. Hence, four state-of-the-art
approaches for class evolution, including ECSM [13], CLAM
[14], LNCS [31] and AUE2 [21], are employed in our com-
parative studies. These approaches all mine data streams in
a chunk-by-chunk manner. In the experiment, they were
given the advantage of collecting the examples first, i.e., they
update the correspondingmodels when a chunk of examples
have been collected. It is noteworthy that CLAM trains a
model using the k-means clustering method, and implicitly
presumes that each class comprises at least k examples.
Thus, if a class comprises less than k examples in a chunk,
the class will be regarded as a single cluster directly.

To verify how much better the sophisticated methods
perform, kNN over a sliding window of a fixed size
(SKNN), is also tested as a baseline. Considering the feature
of the sliding window strategy, SKNN would work nicely
for the concept drift with abrupt changes, because the
change of data distribution is fast and will not cause lasting
impacts on model construction.

4.2.3 Parameter Settings

The parameters for CBCE and CBCEd are set according to the
parameter setting description in the previous experiment.

Fig. 3. Three class evolution scenarios in synthetic data of comparative experiment.

Fig. 4. Three class evolution scenarios of the comparative study on tweet data.

Fig. 5. Class evolution behaviors of the 20 classes in tweet stream-20 classes. The grey lines represent non-evolved classes, and the others repre-
sent evolved classes.
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For the synthetic data streams, the parameters are set
h ¼ 0:01, � ¼ 1 and s ¼ 1 and 14, respectively, for the Letter
recognition streams and the Statlog streams. For the tweet
data streams, h ¼ 0:3, � ¼ 0:0005 and s ¼ 0:13. To speed up
KLR, in formula (5), the term whose coefficient is small

enough (i.e., 10�5) will be dropped by the truncation opera-
tion[37]. For the tweet streams, 5,000 examples would be
stored at most, and the exceeding examples would also be
truncated.

All parameters of other compared approaches are set
either according to the default setting or by trial-and-error
to get an overall satisfactory performance. Specifically, for
each algorithm, the default values for its parameters (as sug-
gested in the original publication) were adopted as the ini-
tial choices. Then, a grid search was applied to the values
around the default settings. SKNN is online trained with a
sliding window, and all other compared approaches pro-
cess data streams chunk-by-chunk. The same chunk and
window sizes are tested for all algorithms for the sake
of fairness. The setting details of these approaches are
described as follows.

In LNCS, the number of base learners for each chunk of
data is set as 10 according to [12], [31]. For the synthetic
data streams, 10 Multi-layer Perceptrons (MLP, 1 hidden
layer with 20 neurons, 0.05 error goal) are trained for each
chunk as the suggested default setting [12], [31]. Due to the
complexity of tweet data streams, the base learner may not
meet the requirements of LNCS, thus causing the algorithm
never to end. After testing MLP, KLR and decision tree, we
chose decision tree as the based learner in tweet streams, as
it is most likely to finish the mining of the tweet streams.
The k value (number of the nearest neighbors) for SMOTE
wrapper in LNCS is set as 3.

Other chunk-based ensemble methods, i.e., CLAM and
ECSM, and the hybrid one, i.e., AUE2, all involve the
ensemble size, k, as a parameter. The above-mentioned
grid search procedure confirmed that a relatively small
value of k (e.g., around 3-5) as suggested in the original
publications generally performs well. Hence, k was set to 3
(default setting in [14]), 3, and 5 for CLAM, ECSM, and
AUE2, respectively. The other parameters of CLAM and
ECSM were also fine-tuned by grid search. Specifically, the
cluster number of CLAM was set to 5, the number of
pseudo-points in ECSM was set to 10 and 100 for the syn-
thetic and twitter data streams, respectively. Besides, the
number of nearest neighbors was set to 3 according to a
line search from 1 to 10.

4.2.4 Evaluation

The comparative studies are conducted mainly from two per-
spectives. First, to provide a detailed analysis on the perfor-
mance in different types of class evolution, a fixed chunk/
window size (i.e., one eleventh of the stream size) is applied.
The a, b and c scenarios of synthetic streams and tweet streams
were used for this purpose. We apply F1 score on the evolved
class to check the approaches’ ability in adapting to class
evolution, and use the G-mean for multiple classes [43] to
measure the overall mining performance, i.e., G-mean ¼
ðQk

i¼1 RiÞ1=k, where Ri is the recall for class ci. The G-mean is
a better overall performancemeasure than accuracy for imbal-
anced data and is insensitive to the degree of imbalance.

Second, to investigate the impact of chunk size (or win-
dow size) on the compared algorithms, experiments have
also been conducted with different sizes for all algorithms.
The average G-mean for multiple classes is used to measure
the performance of each approach. To be fair, the first chunk
(chunk 0) is just used for model initialization. Except for the
evaluation of classification ability, the time efficiency is also
compared as a metric.

The detailed performance of the approaches under basic
scenarios in synthetic data streams is shown in Figs. 7 and 8.
Fig. 7 shows the F1 score of the evolved classes. In the class
emergence scenario (Figs. 7a and 7b), it can be observed that
CBCE is able to adapt to the novel class rapidly, even in the
early stage of emergence. CBCE also shows a high F1 score in
the disappearance and reoccurrence scenario (Figs. 7c and
7d). Since ECSM drops the outdated base learners when a
class disappears, it cannot identify the examples of that class
effectively when it reoccurs again. Themultiple novel classes
scenario (Figs. 7e and 7f) demonstrates the F1 scores of two
evolved classes. The left part of the two figures represents

Fig. 6. An illustration of the change of class-conditional probability in
tweet stream-c. The left and right figures illustrate the examples (after
dimensionality reduction) of the same classes at different time points in
the stream.

Fig. 7. F1 scores on the synthetic streams.
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the first novel class (class 3), and the right part shows the F1
scores of the second one (class 4). In classifying the examples
of class 3, CBCE stays ahead in the same way as scenario a.
For the second novel class, CBCE still works well, while
the performance of the compared approaches obviously
decreases. Fig. 8 shows the results of G-mean for each
approach. It can be observed that CBCE performs the best
among all the approaches, and the class evolution makes
minimal impact on the CBCE. For the other approaches, the
second evolved class in scenario c is not only hard to be iden-
tified but also deteriorates their overall performance.

The F1 score and G-mean results achieved on tweet
streams is shown in Figs. 9 and 10. In addition to CBCE,
CBCEd is also tested in the tweet streams. The results of
CBCE and CBCEd are similar, and CBCEd improves slightly
in general. The result of CBCE is roughly consistent with that
in the synthetic streams. For the F1 result in the multiple
novel class scenario, the first novel class (Fig. 10c) still per-
forms the best among all compared approaches. However,
the F1 scores on the second novel class (Fig. 10d) of CBCE are
not as good as the previous results. It might be the reason
that class 4 emerges suddenly and almost all the tweets at
that time belong to this topic and then the prior probability
of class 4 drops down quickly. Interestingly, the suddenly
emerged topic exposes the shortcoming of chunk-based
approaches, which detect the new class only when it is fading
away. Comparing the G-mean result with that of synthetic
data streams, the performance of CBCE drops slightly. The
reason might be the specificity of tweet data. For example,
the tweet and re-tweet share the same topic and are always
posted at very close times. Besides, using “job” topic as an
example, many job recruitment tweets are posted all at once.
The characteristic of tweet data leads to a wild fluctuation of
prior probability, and the imbalance problem turns out to be

extremely dynamic, instead of evolving smoothly. However,
this problem is relieved in the compared approaches, which
process the examples in a chunk as a whole. Even so, CBCE
and CBCEd still generally perform better.

To compare the algorithms with different settings of
chunk size, the average G-mean [44] over each chunk is
adopted to evaluate the approaches for the whole data
stream. Tables 1 and 2 summarize the average G-mean result
of all approaches under different chunk (or window) sizes.
For the synthetic data streams (Table 1), the result clearly
shows that CBCE is significantly better than the other com-
pared methods. Although the data sets for synthetic streams
are not complicated, some compared approaches still per-
form similar to and even worse than the simple baseline
approach SKNN. A similar result can be obtained from
the tweet streams. For tweet stream a-c, CBCE and CBCEd

are significantly better than other approaches. For tweet
stream—20 classes, the evolution behaviors aremore compli-
cated. Thus the performance of all the compared algorithms
deteriorate significantly on this data stream. However, it can
be still observed that CBCE and CBCEd outperform the other
algorithms when the chunk size is relatively small. Since a
chunk size of 30,000 might be sufficiently large for building

Fig. 8. G-means on the synthetic streams.

Fig. 9. F1 scores on the tweet streams.

Fig. 10. G-means on the tweet streams.
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an accurate model based on a single chunk, such a setting
favors chunk-based ensembles. As a result, LNCS and
CLAM perform better in this case. Furthermore, since tweet
stream b was collected from two separate time spans, it
is more likely to involve significant concept drift in terms
class-conditional distribution. Thus, the clear advantages
of CBCEd over CBCE on this stream demonstrates the effec-
tiveness of the DDM component. On the other hand, tweet
streams a and cwere collected within a much shorter period

(about 2 or 3 months) and the concept might only drift
slightly between two consecutive data chunks. Hence, the
difference between CBCEd and CBCE is not significant in
these cases. The effectiveness of DDM also deteriorate on
tweet stream—20 classes due to the complexity of this
stream. Furthermore, Friedman tests have been conducted to
analyze the empirical results, as shown in Table 3. It can be
observed that CBCE and CBCEd are significantly better than
all the compared algorithms.

TABLE 1
G-mean Results of Class Evolution Scenarios with Different Chunk Sizes on the Synthetic Data Streams

Letter Stream - A Letter Stream - B Letter Stream - C

Learner 100 150 200 300 500 100 150 200 300 500 100 150 200 300 500

CBCE .9089y .9622y .9595y .9445y .9795y .9899y .9911y .9911y .9929y .9946y .9293y .9189y .9255y .9543y .9432y

SKNN .8577 .9096 .9183 .8928 .9643 .9485 .9497 .9584 .9537 .9812 .6509 .7562 .6589 .9061 .6013
LNCS .8640 .8663 .8377 .7654 .9176 .9698 .9720 .9723 .9623 .9682 .7035 .7081 .6769 .7661 .5983
CLAM .8081 .8484 .8207 .7071 .6580 .9634 .9588 .9757 .9820 .9829 .7056 .6924 .5854 .6337 .3193
ECSM .8251 .8347 .8101 .7471 .7702 .8626 .8397 .8102 .7427 .6435 .7757 .7220 .6860 .6504 .5847
AUE2 .8149 .8331 .8177 .7374 .6331 .8774 .8418 .9341 .9380 .7878 .7270 .7067 .5495 .5615 .5431

Statlog Stream - A Statlog Stream - B Statlog Stream - C
Learner 100 250 300 500 1000 100 250 300 500 1000 100 250 300 500 1000

CBCE .9535y .9763y .9829y .9833y .9943y .9911y .9907y .9913y .9889y .9857y .8858y .9495 .9446y .9695y .9392y

SKNN .9178 .9458 .9689 .9664 .9882 .9334 .9860 .8759 .9790 .9791 .8032 .9514y .9351 .9593 .9038
LNCS .8512 .8332 .7893 .7177 .9386 .9648 .9520 .9689 .9383 .8672 .7394 .6153 .7417 .7323 .3522
CLAM .7589 .7782 .8626 .7728 .9597 .9758 .9738 .9724 .9709 .9773 .7685 .7363 .7129 .7553 .4253
ECSM .7589 .8438 .8626 .7728 .9597 .9758 .8598 .9724 .9709 .9773 .7685 .6912 .7129 .7553 .4253
AUE2 .8455 .7742 .8327 .7404 .8681 .8821 .8437 .7304 .9231 .8770 .7505 .7250 .6827 .7241 .3787

The best result is in boldface. If it is significantly better than others (Wilcoxon rank sum test at 95 percent confidence level), it is marked with y.

TABLE 2
G-mean Results of Class Evolution Scenarios with Different Chunk Sizes on the Tweet Data Streams

Tweet Stream - A Tweet Stream - B

Learner 300 1,000 3,000 3,600 10,000 300 1,000 1,364 3,000 5,000

CBCEd .5449 .5190 .6053 .5950 .6073z .6818z .6574y .6277z .7265z .7858z

CBCE .5470z .5248z .6066z .5972z .6067 .6811 .6566 .6272 .7262 .7856
SKNN .3391 .3504 .5459 .4975 .5729 .5262 .5337 .5185 .6910 .7513
LNCS .2791 .2709 .4664 .4376 .5540 .5480 .4255 .4330 .6532 .7516
CLAM .3802 .3721 .3962 .3429 .3780 .6085 .5720 .5583 .6255 .7620
ECSM .3696 .3907 .4698 .4457 .5277 .5749 .4791 .4589 .4685 .7660
AUE2 .0908 .0932 .0646 .0000 .0000 .2139 .2236 .2283 .2829 .4082

Tweet Stream - C Tweet Stream - 20 Classes
Learner 300 1,000 3,000 6,250 10,000 300 1,000 3,000 10,000 30,000

CBCEd .4916 .4904 .5557 .5696z .5962z .0536y .0260 .0183 .0000 .0000
CBCE .5089y .5154y .5647y .5691 .5944 .0524 .0266z .0253y .0000 .0000
SKNN .2629 .2786 .3663 .5024 .5599 .0000 .0000 .0000 .0000 .0000
LNCS .1334 .2985 .4425 .4128 .4203 – .0000 .0000 .0000 .0565y

CLAM .4145 .4373 .4371 .3820 .3250 .0001 .0020 .0074 .0000 .0529
ECSM .3214 .3499 .4465 .4223 .4310 .0000 .0000 .0000 .0000 .0000
AUE2 .1466 .1460 .2550 .0271 .0188 .0000 .0000 .0000 .0000 .0000

1. The best result is in boldface. If it is significantly better than others (Wilcoxon rank sum test at 95 percent confidence level), it is marked with y. For the situa-
tion that the best result is from CBCE and CBCEd,if they are not significantly different from each other but significantly better than other results, it is marked
with z. 2. “–” means LNCS processes a chunk of data over 105 seconds and may never end in experiment.

TABLE 3
Friedman Test (Nemenyi Test at a ¼ 0:05) Result Considering the G-Mean Values in Synthetic & Tweet Streams

CBCEd CBCE SKNN LNCS CLAM ECSM AUE2 critical difference

Synthetic Streams – 1.0333 2.7000 3.9667 3.9000 4.1333 5.2667 1.3765
Tweet Streams 1.8000 1.8000 4.5250 4.9750 4.0500 4.3750 6.4750 2.0141
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The runtime of the approaches are compared under the
same computing environment (2 CPUs of 2.4 GHz Intel
Core i5, 8 GB main memory), as shown in Fig. 11.

The chunk size is selected as one eleventh of the
stream size for scenarios a to c and 10,000 for the tweet
stream—20 classes. The letter streams and stalog streams
share the same data size for different scenarios, and the
time is averaged and presented as a whole. CBCE is com-
petitive in terms of runtime in the experiment with syn-
thetic data streams but a little worse in the tweet streams.
Due to the chunk-based mining manner and the simple
example process method, AUE2, CLAM and ECSM gener-
ally perform best in both the synthetic data steams and
the tweet data streams.

From the comparison of the mining results, CBCE is
shown to outperform other algorithms in adapting different
types of class evolutions for both the evolved classes and
the whole data streams. The empirical study also confirms
that CBCE has a satisfactory time efficiency in mining data
streams. Generally speaking, CBCE is able to construct a
satisfactory model for handling gradual class evolution.
However, the results on tweet stream—20 classes also show
that data stream mining with multiple and complex evolved
classes is still a tough problem. To further investigate CBCE,
the influence of decay factor and disappearance threshold is
studied, as shown in Fig. 12. It can be found that a decay fac-
tor of 0.9 allows CBCE to achieve a good result in all the
data streams. Considering the tracking of prior probability
of classes as well, 0.9 is recommended as the default setting
of decay factor. Disappearance threshold is a parameter spe-
cific to each application. From the result, a small value (e.g.,
less than 2�16) is a good initial setting.

5 CONCLUSION

Previous investigations on data stream mining assume class
evolution to be the transient changes of classes, which does
not hold for many real-world scenarios. In this work, class
evolution is modeled as a gradual process, i.e., the sizes of
classes increase or shrink gradually. A new data stream
mining approach, CBCE, is proposed to tackle the class evo-
lution problem in this scenario. CBCE is developed based
on the idea of a class-based ensemble. Specifically, CBCE
maintains a base learner for each class and updates the base
learners whenever a new example arrives. Furthermore, a
novel under-sampling method is designed for handling the
dynamic class-imbalance problem caused by gradually
evolved classes.

In comparison to existing methods, CBCE can adapt well
to all three cases of class evolution (i.e., emergence, disap-
pearance and reoccurrence of classes). Since CBCE mines a
data stream in an on-line manner, it is capable of rapidly

keeping up with the gradual evolution of the data stream.
Moreover, CBCE avoids maintaining a large size of base
learners and makes it flexible to class evolution. Empirical
studies verify the reliability of CBCE and show that it out-
performs other state-of-the-art class evolution adaptation
algorithms, not only in terms of the adaptation ability of
various evolution scenarios but also the overall classifica-
tion performance. However, CBCE still suffers from some
drawbacks. For example, a disappearing class might be of
less importance than non-evolved or emerging classes in
some real-world applications. In such cases, since CBCE put
more emphasis on evolved classes, its performance may
decay on non-evolved classes. Besides, mining task for mas-
sive and complex evolved classes (e.g., minority classes
with sub-concepts) is still difficult in data stream mining.
A potential future work would be to expand CBCE to over-
come these difficulties.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural
Science Foundation of China under Grant 61329302 and
Grant 61175065, in part by the Program for New Century
Excellent Talents in University under Grant NCET-12-0512,
and in part by EPSRC grant (Grant No. EP/J017515/1). Xin
Yao was also supported by a Royal Society Wolfson
Research Merit Award. Ke Tang is the corresponding
author of this paper.

REFERENCES

[1] M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy, “Mining data
streams: A review,” SIGMOD Rec., vol. 34, no. 2, pp. 18–26, 2005.

[2] P. Domingos and G. Hulten, “Mining high-speed data streams,”
in Proc. 6th ACM SIGKDD Int. Conf. Know. Discovery Data Mining,
2000, pp. 71–80.

[3] J. Gama, I. �Zliobait _e, A. Bifet, M. Pechenizkiy, and A. Bouchachia,
“A survey on concept drift adaptation,” ACM Comput. Surv.,
vol. 46, no. 4, pp. 44:1–44:37, Mar. 2014.

[4] L. Minku, A. White, and X. Yao, “The impact of diversity on
online ensemble learning in the presence of concept drift,” IEEE
Trans. Know. Data Eng.,vol. 22, no. 5, pp. 730–742, May 2010.

[5] L. Minku and X. Yao, “DDD: A new ensemble approach for deal-
ing with concept drift,” IEEE Trans. Know. Data Eng., vol. 24, no. 4,
pp. 619–633, Apr. 2012.

[6] A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and R. Gavald�a,
“New ensemble methods for evolving data streams,” in Proc. 15th
ACM SIGKDD Int. Conf. Know. Discovery Data Mining, 2009,
pp. 139–148.

[7] J. Liu, X. Li, and W. Zhong, “Ambiguous decision trees for mining
concept-drifting data streams,” Pattern Recog. Lett., vol. 30, no. 15,
pp. 1347–1355, 2009.

[8] Z.-H. Zhou and Z.-Q. Chen, “Hybrid decision tree,” Know.-Based
Syst., vol. 15, no. 8, pp. 515–528, 2002.

[9] M. Masud, J. Gao, L. Khan, J. Han, and B. Thuraisingham,
“Integrating novel class detection with classification for concept-
drifting data streams,” in Proc. Eur. Conf. Mach. Learn. Know.
Discovery Databases, 2009, vol. 5782, pp. 79–94.

Fig. 11. Runtime of the compared approaches. Fig. 12. Influence of (a) decay factor b and (b) disappearance threshold.

SUN ET AL.: ONLINE ENSEMBLE LEARNING OF DATA STREAMSWITH GRADUALLY EVOLVED CLASSES 1543



[10] M. Masud, Q. Chen, L. Khan, C. Aggarwal, J. Gao, J. Han, and
B. Thuraisingham, “Addressing concept-evolution in concept-
drifting data streams,” in Proc. IEEE 10th Int. Conf. Data Mining,
Dec. 2010, pp. 929–934.

[11] M. Masud, T. Al-Khateeb, L. Khan, C. Aggarwal, J. Gao, J. Han,
and B. Thuraisingham, “Detecting recurring and novel classes in
concept-drifting data streams,” in Proc. IEEE 11th Int. Conf. Data
Mining, Dec. 2011, pp. 1176–1181.

[12] M. Muhlbaier, A. Topalis, and R. Polikar, “Learn++.NC: Combin-
ing ensemble of classifiers with dynamically weighted consult-
and-vote for efficient incremental learning of new classes,” IEEE
Trans. Neural Netw., vol. 20, no. 1, pp. 152–168, Jan. 2009.

[13] M. Masud, J. Gao, L. Khan, J. Han, and B. Thuraisingham,
“Classification and novel class detection in concept-drifting data
streams under time constraints,” IEEE Trans. Know. Data Eng.,
vol. 23, no. 6, pp. 859–874, Jun. 2011.

[14] T. Al-Khateeb, M. Masud, L. Khan, C. Aggarwal, J. Han, and
B. Thuraisingham, “Stream classification with recurring and novel
class detection using class-based ensemble,” in Proc. IEEE 12th Int.
Conf. Data Mining, Dec. 2012, pp. 31–40.

[15] G. Widmer and M. Kubat, “ Learning in the presence of concept
drift and hidden contexts,” Mach. Learn., vol. 23, no. 1, pp. 69–
101, 1996.

[16] A. Bifet and R. Gavald�a, “Learning from time-changing data with
adaptive windowing,” in Proc. SIAM Int. Conf. Data Mining, 2007,
pp. 443–448.

[17] J. Gama, Knowledge Discovery from Data Streams, 1st ed. Boca
Raton, FL,USA: CRC Press, 2010.

[18] W. N. Street and Y. Kim, “A streaming ensemble algorithm (SEA)
for large-scale classification,” in Proc. 7th ACM SIGKDD Int. Conf.
Know. Discovery Data Mining, 2001, pp. 377–382.

[19] M. Karnick, M. Ahiskali, M. Muhlbaier, and R. Polikar, “Learning
concept drift in nonstationary environments using an ensemble of
classifiers based approach,” in Proc. IEEE Int. Joint Conf. Neural
Netw., Jun. 2008, pp. 3455–3462.

[20] N. Oza, “Online bagging and boosting,” in Proc. IEEE Int. Conf.
Syst., Man Cybern.,Oct. 2005, vol. 3, pp. 2340–2345.

[21] D. Brzezinski and J. Stefanowski, “Reacting to different types of
concept drift: The accuracy updated ensemble algorithm,” IEEE
Trans. Neural Netw. Learning Syst.,vol. 25, no. 1, pp. 81–94,
Jan 2014.

[22] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with
drift detection,” in Proc. Adv. Artif. Intell. – SBIA 2004, 2004,
vol. 3171, pp. 286–295.

[23] M. Baena-Garca, J. D. Campo-�Avila, R. Fidalgo, A. Bifet,
R. Gavald�a, and R. Morales-Bueno, “Early drift detection
method,” in Proc. 4th ECML PKDD Int. Workshop Know. Discovery
Data Streams, 2006, pp. 77–86.

[24] S. Ramamurthy and R. Bhatnagar, “Tracking recurrent concept
drift in streaming data using ensemble classifiers,” in Proc. 6th Int.
Conf. Mach. Learning Appl., Dec. 2007, pp. 404–409.

[25] J. Gama and P. Kosina, “Recurrent concepts in data streams classi-
fication,” Know. Inform. Syst., vol. 40, no. 3, pp. 489–507, 2014.

[26] S. Sripirakas and R. Pears, “Mining recurrent concepts in data
streams using the discrete fourier transform,” in Proc. 16th Int.
Conf. Data Warehousing Knowl. Discovery, 2014, pp. 439–451.

[27] M. Masud, Q. Chen, L. Khan, C. Aggarwal, J. Gao, J. Han,
A. Srivastava, and N. Oza, “Classification and adaptive novel
class detection of feature-evolving data streams,” IEEE Trans.
Know. Data Eng., vol. 25, no. 7, pp. 1484–1497, Jul. 2013.

[28] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. Upper
Saddle River, NJ, USA: Prentice-Hall, 1988.

[29] R. Polikar, L. Upda, S. Upda, and V. Honavar, “Learn++: An
incremental learning algorithm for supervised neural networks,”
IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 31, no. 4,
pp. 497–508, Nov. 2001.

[30] G. Ditzler, M. Muhlbaier, and R. Polikar, “Incremental learning of
new classes in unbalanced datasets: Learn++.UDNC,” in Proc. 9th
Int. Conf. Multiple Classifier Syst., 2010, pp. 33–42.

[31] G. Ditzler, G. Rosen, and R. Polikar, “Incremental learning of new
classes from unbalanced data,” in Proc. Int. Joint Conf. Neural
Netw., Aug. 2013, pp. 1–8.

[32] Y. Freund and R. Schapire, “A desicion-theoretic generalization of
on-line learning and an application to boosting,” in Proc. 2nd
Annu. Eur. Conf. Comput. Learn. Theory, 1995, vol. 904, pp. 23–37.

[33] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: Synthetic minority over-sampling technique,” J. Artif.
Intell. Res., vol. 16, pp. 321–357, Jan. 2002.

[34] J. Gao, B. Ding, W. Fan, J. Han, and P. Yu, “Classifying data
streams with skewed class distributions and concept drifts,” IEEE
Internet Comput., vol. 12, no. 6, pp. 37–49, Nov. 2008.

[35] S. Wang, L. Minku, and X. Yao, “A learning framework for online
class imbalance learning,” in Proc. IEEE Symp. Comput. Intell.
Ensemble Learn., Apr. 2013, pp. 36–45.

[36] S. Wang, L. L. Minku, and X. Yao, “Online class imbalance learn-
ing and its applications in fault detection,” Int. J. Comput. Intell.
Appl., vol. 12, no. 4, pp. 1340001(19 pages), 2013.

[37] J. Kivinen, A. Smola, and R. Williamson, “Online learning with
kernels,” IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2165–2176,
Aug. 2004.

[38] N. Japkowicz, “Concept-learning in the presence of between-class
and within-class imbalances,” in Proc. 14th Biennial Conf. Can. Soc.
Comput. Stud. Intell.: Adv. Artif. Intell., 2001, pp. 67–77.

[39] T. Jo and N. Japkowicz, “Class imbalances versus small dis-
juncts,” SIGKDD Explor. Newsl., vol. 6, no. 1, pp. 40–49, Jun. 2004.

[40] P. Mallapragada, R. Jin, and A. Jain, “Non-parametric mixture
models for clustering,” in Proc. Int. Conf. Struct., Syntactic, and Sta-
tistical Pattern Recog., 2010, vol. 6218, pp. 334–343.

[41] K. Bache and M. Lichman. (2013). UCI machine learning reposi-
tory [Online]. Available: http://archive.ics.uci.edu/ml

[42] R. Li, S. Wang, H. Deng, R. Wang, and K. C.-C. Chang, “Towards
social user profiling: Unified and discriminative influence model
for inferring home locations,” in Proc. 18th ACM SIGKDD Int.
Conf. Know. Discovery Data Mining, 2012, pp. 1023–1031.

[43] H. He and E. Garcia, “Learning from imbalanced data,” IEEE
Trans. Know. Data Eng., vol. 21, no. 9, pp. 1263–1284, Sep. 2009.

[44] S. Wang, L. Minku, and X. Yao, “Resampling-based ensemble
methods for online class imbalance learning,” IEEE Trans. Know.
Data Eng, vol. 27, no. 5, pp. 1356–1368, May 2015.

Yu Sun received the BEng degree in software
engineering from the Dalian University of Tech-
nology (DLUT), Dalian, Liaoning, China, in 2010,
and the MEng degree in software engineering
from the University of Science and Technology of
China (USTC), Hefei, Anhui, China, in 2013. He
is currently working toward the PhD degree in
computer science with the USTC-Birmingham
Joint Research Institute in Intelligent Computa-
tion and its Applications (UBRI), School of
Computer Science and Technology, USTC. His

current research concerns incremental learning and data stream mining.
He is a student member of the IEEE.

Ke Tang received the BEng degree from the
Huazhong University of Science and Technol-
ogy, Wuhan, China, in 2002, and the PhD
degree from the Nanyang Technological Univer-
sity, Singapore, in 2007, respectively. Since
2007, he has been with the School of Computer
Science and Technology, University of Science
and Technology of China, where he is currently
a professor. He has authored/coauthored more
than 100 refereed publications. His major
research interests include evolutionary computa-

tion, machine learning, and their real-world applications. He is an asso-
ciate editor of the IEEE Transactions on Evolutionary Computation,
IEEE Computational Intelligence Magazine, and Computational Optimi-
zation and Applications (Springer), and served as a member of editorial
boards for a few other journals. He received the Royal Society Newton
Advanced Fellowship. He is a member of the IEEE Computational Intel-
ligence Society (CIS), Evolutionary Computation Technical Committee
and the IEEE CIS Emergent Technologies Technical Committee. He is
a senior member of the IEEE.

1544 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 6, JUNE 2016



Leandro L. Minku received the PhD degree
in computer science from the University of
Birmingham, United Kingdom in 2010. He is cur-
rently a lecturer (assistant professor) in the
Department of Computer Science, University of
Leicester, United Kingdom. Prior to that, he was
a research fellow at the University of Birmingham,
United Kingdom. During his PhD, he received the
Overseas Research Students Award (ORSAS)
from the British government. He was also invited
to a six-month internship at Google in 2009/2010.

His main research interests are machine learning in nonstationary envi-
ronments / data stream mining, ensembles of learning machines and
computational intelligence for software engineering. His work has been
published in internationally renowned venues such as the IEEE Transac-
tions on Knowledge and Data Engineering, IEEE Transactions on
Software Engineering, and ACM Transactions on Software Engineering
and Methodology. He is a member of the IEEE.

Shuo Wang received the BSc degree in com-
puter science from the Beijing University of Tech-
nology (BJUT), China, in 2006, and was a
member of Embedded Software and System
Institute in BJUT in 2007. She received the PhD
degree in computer science from the University
of Birmingham, United Kingdom, in 2011, spon-
sored by the Overseas Research Students Award
(ORSAS) from the British Government (2007).
She is a research fellow at the Centre of Excel-
lence for Research in Computational Intelligence

and Applications (CERCIA) in the School of Computer Science, the Uni-
versity of Birmingham United Kingdom. Her research interests include
class imbalance learning, ensemble learning, online learning, and
machine learning in software engineering. Her work has been published
in internationally renowned journals and conferences. She is a member
of the IEEE.

Xin Yao is a professor of computer science and
the director in the Centre of Excellence for Rese-
arch in Computational Intelligence and Applica-
tions (CERCIA) at the University of Birmingham,
United Kingdom. He was the president (2014-
2015) in IEEE Computational Intelligence Society
(CIS). His major research interests include evolu-
tionary computation and ensemble learning,
especially online learning and class imbalance
learning. His work received the 2001 IEEE
Donald G. Fink Prize Paper Award, 2010 and

2015 IEEE Transactions on Evolutionary Computation Outstanding
Paper Awards, 2010 BT Gordon Radley Award for Best Author of Inno-
vation (Finalist), 2011 IEEE Transactions on Neural Networks Outstand-
ing Paper Award, and many other best paper awards. He received the
prestigious Royal Society Wolfson Research Merit Award in 2012 and
the IEEE CIS Evolutionary Computation Pioneer Award in 2013. He was
the Editor-in-Chief (2003-2008) of the IEEE Transactions on Evolution-
ary Computation. He is a fellow of the IEEE and a distinguished lecturer
in the IEEE CIS.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SUN ET AL.: ONLINE ENSEMBLE LEARNING OF DATA STREAMSWITH GRADUALLY EVOLVED CLASSES 1545



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


