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ON THE WIDOM–ROWLINSON OCCUPANCY FRACTION IN

REGULAR GRAPHS

EMMA COHEN, WILL PERKINS, PRASAD TETALI

Abstract. We consider the Widom–Rowlinson model of two types of interacting particles
on d-regular graphs. We prove a tight upper bound on the occupancy fraction, the expected
fraction of vertices occupied by a particle under a random configuration from the model. The
upper bound is achieved uniquely by unions of complete graphs on d + 1 vertices, Kd+1’s.
As a corollary we find that Kd+1 also maximises the normalised partition function of the
Widom–Rowlinson model over the class of d-regular graphs. A special case of this shows
that the normalised number of homomorphisms from any d-regular graph G to the graph
HWR, a path on three vertices with a loop on each vertex, is maximised by Kd+1. This
proves a conjecture of Galvin.

1. The Widom–Rowlinson Model

A Widom–Rowlinson assignment or configuration on a graph G is a map χ : V (G) →
{0, 1, 2} so that 1 and 2 are not assigned to neighbouring vertices, or in other words, a
graph homomorphism from G to the graph HWR consisting of a path on 3 vertices with
a loop on each vertex (the middle vertex represents the label 0). Call the set of all such
assignments Ω(G). The Widom–Rowlinson model on G is a probability distribution over
Ω(G) parameterised by λ ∈ (0,∞), given by:

P[χ] =
λX1(χ)+X2(χ)

PG(λ)
,

where Xi(χ) is the number of vertices coloured i under χ, and

PG(λ) =
∑

χ∈Ω(G)

λX1(χ)+X2(χ)

is the partition function. Evaluating PG(λ) at λ = 1 counts the number of homomorphisms
from G to HWR. We think of vertices assigned 1 and 2 as “coloured” and those assigned 0
as “uncoloured” (see Figure 1).

The Widom–Rowlinson model was introduced by Widom and Rowlinson in 1970 [13], as
a model of two types of interacting particles with a hard-core exclusion between particles of
different types: colour 1 and 2 represent particles of each type and colour 0 represents an
unoccupied site. The model has been studied both on lattices [9] and in the continuum [11, 2]
and is known to exhibit a phase transition in both cases.

The Widom–Rowlinson model is one case of a general random model: that of choosing a
random homomorphism from a large graph G to a fixed graph H. In the Widom–Rowlinson
case, we take H = HWR. Another notable case is Hind, an edge between two vertices,
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Figure 1. A configuration for the Widom–Rowlinson model on a grid. Ver-
tices mapping to 1 and 2 are shown as squares and diamonds, respectively
(corresponding to Figure 2).

HWR =
1 0 2

Hind =
1 0

Figure 2. The target graphs for the Widom–Rowlinson model and the hard-
core model.

one of which has a loop (see Figure 2). Homomorphisms from G to Hind are exactly the

independent sets of G, and the partition function of the hard-core model is the sum of λ|I|

over all independent sets I. An overview of the connections between statistical physics models
with hard constraints, graph homomorphisms, and combinatorics can be found in [1].

For every such model, there is an associated extremal problem. Denote by hom(G,H) the
number of homomorphisms from G to H. Then we can ask which graph G from a class of
graphs G maximises hom(G,H), or if we wish to compare graphs on different numbers of

vertices, ask which graph maximises the scaled quantity hom(G,H)1/|V (G)|.

Kahn [8] proved that for any d-regular, bipartite graph G,

hom(G,Hind) ≤ hom(Kd,d, Hind)|V (G)|/2d ,(1)

where Kd,d is the complete d-regular bipartite graph. Equality holds in (1) if G is Kd,d or a
union of Kd,d’s. In other words, unions of Kd,d’s maximise the total number of independent
sets over all d-regular, bipartite graphs on a fixed number of vertices.

In a broad generalisation of Kahn’s result, Galvin and Tetali [7] showed that in fact, (1)
holds for all d-regular, bipartite G and all target graphs H (including, for example, HWR).
And using a cloning construction and a limiting argument, they showed that in fact the
partition function of such models (a weighted count of homomorphisms) is maximised by
Kd,d; for example, for a d-regular, bipartite G,

(2) PG(λ) ≤ PKd,d
(λ)|V (G)|/2d,

where PG(λ) is the Widom–Rowlinson partition function defined above or the independence
polynomial of a graph. Note that the case λ = 1 is the counting result.

There is no such sweeping statement for the class of all d-regular graphs with the bipar-
titeness restriction removed. In [14] and [15], Zhao showed that the bipartiteness restriction
on G in (1) and (1) can be removed for some class of graphs H, including Hind. But such an
extension is not possible for all graphs H; for example, Kd+1 has more homomorphisms to
HWR than does Kd,d (after normalising for the different numbers of vertices). In fact Galvin
conjectured the following:
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Conjecture 1 (Galvin [5, 6]). Let G be a any d-regular graph. Then

hom(G,HWR) ≤ hom(Kd+1, HWR)|V (G)|/(d+1) .

The more general Conjecture 1.1 of [5] that the maximising G for any H is either Kd,d or
Kd+1 has been disproved by Sernau [12].

The above theorems of Kahn and Galvin and Tetali are based on the entropy method (see
[10] and [6] for a survey), but in this context bipartiteness seems essential for the effectiveness
of the method. We will approach the problem differently, using the occupancy method of [3].

We first define the occupancy fraction αG(λ) to be the expected fraction of vertices which
receive a (nonzero) colour in the Widom–Rowlinson model:

αG(λ) =
E[X1 +X2]

|V (G)|
,

where Xi is the number of vertices coloured i by the random assignment χ. A calculation
shows that αG(λ) is in fact the scaled logarithmic derivative of the partition function:

(3) αG(λ) =
λ

|V (G)|
·
P ′G(λ)

PG(λ)
=
λ · (logPG(λ))′

|V (G)|
.

Our main result is that for any λ, αG(λ) is maximised over all d-regular graphs G by Kd+1.

Theorem 2. Let G be any d-regular graph and λ > 0. Then

αG(λ) ≤ αKd+1
(λ)

with equality if and only if G is a union of Kd+1’s.

We will prove this by introducing local constraints on random configurations induced by
the Widom–Rowlinson model on a d-regular graph G, then solving a linear programming
relaxation of the optimisation problem over all d-regular graphs.

Theorem 2 implies maximality of the normalised partition function:

Corollary 3. Let G be a d-regular graph and λ > 0. Then

1

|V (G)|
logPG(λ) ≤ 1

d+ 1
logPKd+1

(λ) ,

or equivalently,
PG(λ) ≤ PKd+1

(λ)|V (G)|/(d+1) ,

with equality if and only if G is a union of Kd+1’s.

The quantity 1
|V (G)| logPG(λ) is known in statistical physics as the free energy per unit

volume. Corollary 3 follows from Theorem 2 as follows: 1
|V (G)| logPG(0) = 0 for any G, and

so

1

|V (G)|
logPG(λ) =

1

|V (G)|

∫ λ

0
(logPG(t))′ dt

≤ 1

d+ 1

∫ λ

0

(
logPKd+1

(t)
)′
dt =

1

d+ 1
logPKd+1

(λ)

where the inequality follows from Theorem 2 and (1). Exponentiating both sides gives Corol-
lary 3.

By taking λ = 1 in Corollary 3, we get the counting result:
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Corollary 4. For all d-regular G,

hom(G,HWR) ≤ hom(Kd+1, HWR)|V (G)|/(d+1)

with equality if and only if G is a union of Kd+1’s.

This proves Conjecture 1.

Discussion and related work. The method we use is more probabilistic than the en-
tropy method in the sense that Theorem 2 gives information about an observable of the
model; in some statistical physics models, the analogue of αG(λ) would be called the mean
magnetisation. We also work directly in the statistical physics model, instead of counting
homomorphisms.

Davies, Jenssen, Perkins, and Roberts [3] applied the occupancy method to two central
models in statistical physics: the hard-core model of a random independent set described
above, and the monomer-dimer model of a randomly chosen matching from a graph G. In
both cases they showed that Kd,d maximises the occupancy fraction over all d-regular graphs.
In the case of independent sets this gives a strengthening of the results of Kahn, Galvin and
Tetali, and Zhao, while for matchings, it was not known previously that unions of Kd,d

maximises the partition function or the total number of matchings.

The idea of calculating the log partition function by integrating a partial derivative is not
new of course; see for example, the interpolation scheme of Dembo, Montanari, and Sun [4]
in the context of Gibbs distributions on locally tree-like graphs. The method is powerful
because it reduces the computation of a very global quantity, PG(λ), to that of a locally
estimable quantity, αG(λ).

Some partial results towards the Widom–Rowlinson counting problem were obtained by
Galvin [5], who showed that a graph with more homomorphisms than a union of Kd+1’s must
be close in a specific sense to a union of Kd+1’s.

2. Proof of Theorem 2

2.1. Preliminaries. To prove Theorem 2, we will use the following experiment: for a d-
regular graph G, we first draw a random χ from the Widom–Rowlinson model, then select
a vertex v uniformly at random from V (G). We then write our objective function, the oc-
cupancy fraction, in terms of local probabilities with respect to this experiment, and add
constraints on the local probabilities that must hold for all G. We then relax the optimisa-
tion problem to all distributions satisfying the local constraints, and optimise using linear
programming.

Fix d and λ. Define a configuration with boundary conditions C = (H,L) to be a graph
H on d vertices with family of lists L = {Lu}u∈H , where each Lu ⊆ {1, 2} is a set of allowed
colours for the vertex u. Here H represents the neighbourhood structure of a vertex v ∈ V (G)
and the colour lists Lu represent the colours permitted to neighbours of v, given an assignment
χ on the vertices outside of N(v) ∪ {v}. (See Figure 3.) Denote by C the set of all possible
configurations with boundary conditions in any d-regular graph.

We now pick the assignment χ at random from the Widom–Rowlinson model on a fixed d-
regular graph G, pick a vertex v uniformly at random from V (G), and consider the probability
distribution induced on C.
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v

{ , }
{ }

{ } {}

...
...

...
...

...

Figure 3. An example configuration with boundary conditions based on a
colouring χ. The graph H consists of the four neighbours of v along with the
black edges, and the list Lu is shown above each vertex u of H. The colours
assigned by χ to v and its neighbours are immaterial and so are not shown.

For example, if G = Kd+1 then with probability 1 the random configuration C is H = Kd

with Lu = {1, 2} for all u ∈ V (H). If G = Kd,d then H is always d isolated vertices and the
colour lists can be any (possibly empty) subset of {1, 2}, but the lists must be the same for
all u ∈ V (H).

For a configuration C = (H,L), define

αvi (C) = P[χ(v) = i | C]

αui (C) =
1

d

∑
u∈V (H)

P[χ(u) = i | C],

where the probability is over the Widom–Rowlinson model on G given the boundary condi-
tions L. Note that the spatial Markov property of the model means that these probabilities are
“local” in the sense that they can be computed knowing only C. Let αv(C) = αv1(C)+αv2(C)
and αu(C) = αu1(C) + αu2(C). Then we have

αG(λ) =
1

|V (G)|
∑

v∈V (G)

P[χ(v) ∈ {1, 2}] = EC [αv(C)](4)

=
1

d

1

|V (G)|
∑

v∈V (G)

∑
u∼v

P[χ(u) ∈ {1, 2}] = EC [αu(C)] ,

where the expectations are over the probability distribution induced on C by our experiment
of drawing χ from the model and v uniformly at random from V (G), and the last sum is
over all neighbours of v in G. Equality of the two expressions for α follows since sampling a
uniform neighbour of a uniform vertex in a regular graph is equivalent to sampling a uniform
vertex. We will show that this expectation is maximised when the graph G is Kd+1.

We can in fact write explicit formulae for αv(C) and αu(C). For a configuration C = (H,L),

let P
(0)
C (λ) be the total weight of colourings of H satisfying the boundary conditions given by

the lists L (corresponding to the partition function for the neighbourhood of v conditioned on

χ(v) = 0). Also, write P
(i)
C (λ) for the total weight of colourings of H satisfying the boundary

conditions and using only colour i and 0 (corresponding to the partition functions for the

neighbourhood of v conditioned on χ(v) = i). Finally, let P
(12)
C (λ) = P

(1)
C (λ) + P

(2)
C (λ) and

let

PC(λ) = P
(0)
C (λ) + λP

(12)
C (λ)
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be the partition function of N(v) ∪ {v} conditioned on the boundary conditions given by C.

Note that if L has a1 lists containing 1 and a2 lists containing 2, then P
(i)
C (λ) = (1 + λ)ai .

Now we can write

αv(C) =
λP

(12)
C

PC
and αu(C) =

λ
(

(P
(0)
C )′ + λ(P

(12)
C )′

)
dPC

,(5)

where P ′ is the derivative of P in λ. We will suppress the dependence of the partition
functions on λ from now on.

For G = Kd+1, we have

PKd+1
= 2(1 + λ)d+1 − 1

αKd+1
(λ) =

2λ(1 + λ)d

2(1 + λ)d+1 − 1
.

If G = Kd+1 then the only possible configuration is CKd+1
, the complete neighbourhood

Kd with full boundary lists, so we also have αu(Kd) = αv(Kd) = αKd+1
(λ) (we can also

compute these directly). Since this quantity will arise frequently, we will use the notation
αK = αKd+1

(λ).

2.2. A linear programming relaxation. Now let q : C → [0, 1] denote a probability distri-
bution over the set of all possible configurations. Then we set up the following optimisation
problem over the variables q(C), C ∈ C.

α∗ = max
∑
C∈C

q(C)αv(C) subject to(6) ∑
C∈C

q(C) = 1∑
C∈C

q(C)[αv(C)− αu(C)] = 0

q(C) ≥ 0 ∀C ∈ C.

Note that this linear program is indeed a relaxation of our optimisation problem of max-
imising αG(λ) over all d-regular graphs: any such graph induces a probability distribution on
C, and as we have seen above in (2.1), the constraint asserting the equality Eαv(C) = Eαu(C)
must hold in all d-regular graphs.

We will show that for any λ > 0 the unique optimal solution of this linear program is
q(CKd+1

) = 1, where CKd+1
is the configuration induced by Kd+1: H = Kd and Lu = {1, 2}

for all u ∈ H.

The dual of the above linear program is

α∗ = min Λp subject to

Λp + Λc(α
v(C)− αu(C)) ≥ αv(C) ∀C ∈ C,

with decision variables Λp and Λc.

To show that the optimum is attained by CKd+1
, we must find a feasible solution to the

dual program with Λp = αK = 2λ(1+λ)d

2(1+λ)d+1−1
. Note that with Λp = αK the constraint for

CKd+1
holds with equality for any choice of Λc. In other words, it suffices to find some convex
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combination of the two local estimates αu and αv which is maximised by CKd+1
over all

C ∈ C.
Let C0 be a configuration with Lu = ∅ for all u ∈ H (in which case the edges of H are

immaterial, and so abusing notation we will refer to any one of these configurations as C0).
We find a candidate Λc by solving the constraint corresponding to C0 with equality:

αK = Λc(α
u(C0)− αv(C0)) + αv(C0)

= (1− Λc)
2λ

1 + 2λ
.

This gives

Λc = 1− αK
2λ

(1 + 2λ) =
αK
2λ

(1 + λ)d − 1

(1 + λ)d
.

With this choice of Λc, the general dual constraint is

αK ≥
αK
2λ

(1 + λ)d − 1

(1 + λ)d
αu(C) +

αK
2λ

(1 + 2λ)αv(C) .

Using (2.1), this becomes

(P
(0)
C )′ + λ(P

(12)
C )′

2P
(0)
C − P (12)

C

≤ d(1 + λ)d

(1 + λ)d − 1
.(7)

From this point on we may assume that C has some non-empty colour list, since otherwise
the configuration is equivalent to C0 and the constraint holds with equality by our choice of

Λc. This assumption tells us, among other things, that (P
(0)
C )′ > 0 and 2P

(0)
C − P (12)

C > 0.

Our goal is now to show that (2.2) holds for all C. We consider the two terms separately.

Claim 5. For any C 6= C0,

λ(P
(12)
C )′

2P
(0)
C − P (12)

C

≤ dλ(1 + λ)d−1

(1 + λ)d − 1
,

with equality if and only if the lists Lu are all equal and C has no dichromatic colourings.

Proof. Since the partition function P
(0)
C is at least the total weight P

(1)
C +P

(2)
C −1 of monochro-

matic colourings (with equality when C has no dichromatic colourings), we have

(P
(12)
C )′

2P
(0)
C − P (12)

C

≤
(P

(12)
C )′

P
(12)
C − 2

=
a1(1 + λ)a1−1 + a2(1 + λ)a2−1

(1 + λ)a1 + (1 + λ)a2 − 2

(where, as above, ai is the number of vertices in H allowed colour i under the given boundary
conditions), and so we need to show that

a1(1 + λ)a1−1 + a2(1 + λ)a2−1

(1 + λ)a1 + (1 + λ)a2 − 2
≤ d(1 + λ)d−1

(1 + λ)d − 1
.(8)

In general, to show that (a+ b)/(c+d) ≤ t it suffices to show that a/c ≤ t and b/d ≤ t. Thus
it is enough to show that

(9)
a(1 + λ)a−1

(1 + λ)a − 1
≤ d(1 + λ)d−1

(1 + λ)d − 1
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whenever 1 ≤ a ≤ d. (Note that if either a1 = 0 or a2 = 0 then (2.2) reduces to (2.2), and if
both a1, a2 = 0 then the configuration is C0). Indeed, it is not hard to check via calculus that
the left hand side of (2.2) is increasing with a. This completes the proof of the inequality in
Claim 5.

We have equality in this final step when a1 = a2 = d or when one is 0 and the other is
d. So we have equality overall whenever the lists are all equal and there are no dichromatic
colourings (recall that we are assuming C has some non-empty colouring list). �

Claim 6. For any C 6= C0,

(P
(0)
C )′

2P
(0)
C − P (12)

C

≤ d(1 + λ)d−1

(1 + λ)d − 1
,

with equality if and only if the lists Lu are all equal and C has no dichromatic colourings.

Proof. We can write

λ(P
(0)
C )′

2P
(0)
C − P (12)

C

=
λ(P

(0)
C )′

P
(0)
C

·
P

(0)
C

(P
(0)
C − P (1)

C ) + (P
(0)
C − P (2)

C )

=
EC [X1] + EC [X2]

PC [X1 > 0] + PC [X2 > 0]
,

where now Xi is the number of vertices coloured i in a random colouring chosen from the
Widom–Rowlinson model on C. Noting that EC [X1] = 0 whenever PC [X1 > 0] = 0, it suffices
as above to show that whenever colour 1 is permitted anywhere in C,

EC [X1]

PC [X1 > 0]
= EC [X1 | X1 > 0] ≤ λd(1 + λ)d−1

(1 + λ)d − 1
= EKd

[X1 | X1 > 0] ,(10)

and similarly for X2, but this will follow by symmetry.

We can decompose the expectation as

EC [X1 | X1 > 0] =
∑

S⊆V (H)

PC [χ−1(2) = S | X1 > 0] · EC [X1 | X1 > 0 ∧ χ−1(2) = S] .

The partition function restricted to colourings satisfying X1 > 0 and χ−1(2) = S is just

PS(λ) = λ|S|((1 + λ)aS − 1), where aS is the number of vertices in H \ S which are allowed
colour 1 and are not adjacent to any vertex of S. The conditional expectation is then

EC [X1 | X1 > 0 ∧ χ−1(2) = S] =
aSλ(1 + λ)aS−1

(1 + λ)aS − 1
≤ dλ(1 + λ)d−1

(1 + λ)d − 1

with equality precisely when S is empty and 1 is available for every vertex. That is,

EC [X1 | X1 > 0] ≤
∑

S⊆V (H)

PC [χ−1(2) = S | X1 > 0] · dλ(1 + λ)d−1

(1 + λ)d − 1
=
λd(1 + λ)d−1

(1 + λ)d − 1
,

as desired. We have equality in (2.2) when PC [aS = d | X1 > 0] = 1, which holds for the
configurations where 1 is available to every vertex but which have no dichromatic colourings.
That is, for equality to hold in the claim C must have no dichromatic colourings, and any
colour which is available to some vertex u must be available to every vertex (so the lists must
be identical). �
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Adding the inequalities in Claims 6 and 5 shows that (2.2) holds for all C, proving opti-
mality of Kd+1.

2.3. Uniqueness.

Lemma 7. The distribution induced by Kd+1 is the unique optimum of the LP relaxation
(2.2).

Proof. Complementary slackness for our dual solution says that any optimal primal solu-
tion is supported only on configurations C with identical boundary lists and no dichromatic
colourings. These fall into three categories:

Case 0: Lu = ∅ for all u. In this case the edges of H are immaterial, as none of H can
be coloured. This is the configuration C0 above.

Case 1: Lu = {i} for all u (for i = 1 or 2). The edges of H are again immaterial, as
every colouring of H with only colour i is allowed. Call this configuration C1.

Case 2: Lu = {1, 2} for all u. In this case the prohibition on dichromatic colourings
requires that C = CKd+1

.

We can calculate αv(C) and αu(C) for each case. For Case 0 we have

αv(C0) =
2λ

1 + 2λ
and αu(C0) = 0.

For Case 1 we have

αv(C1) =
λ+ λ(1 + λ)d

λ+ (1 + λ)d+1
and αu(C1) =

λ(1 + λ)d

λ+ (1 + λ)d+1
.

And of course, for Case 2 we have

αv(Kd) = αu(Kd) = αK .

In both Case 0 and Case 1 we have αu < αv, so the only convex combination q of the three
cases giving

∑
C q(C)αu(C) =

∑
C q(C)αv(C) (as is required for feasibility) is the one which

puts all of the weight on CKd+1
. �

3. Distinct activities

It is also natural to consider a weighted version of the Widom–Rowlinson model with
distinct activities λ1, λ2 for the two colours, so that the configuration χ is chosen according
to the distribution

P[χ] =
λ
X1(χ)
1 λ

X2(χ)
2

PG(λ1, λ2)

where the partition function is

PG(λ1, λ2) =
∑

χ∈Ω(G)

λ
X1(χ)
1 λ

X2(χ)
2 .

We can ask which d-regular graphs maximise P (λ1, λ2)1/|V (G)|.

Conjecture 8. For any λ1, λ2 > 0, and any d-regular graph G,

(11) PG(λ1, λ2) ≤ PKd+1
(λ1, λ2)|V (G)|/(d+1).
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Now denote by α1
G(λ1, λ2) and α2

G(λ1, λ2) the expected fraction of vertices of G that receive
colours 1 and 2 respectively in this model.

Conjecture 9. For any λ1, λ2 > 0, the weighted occupancy fraction

αG(λ1, λ2) =
λ2α

1
G(λ1, λ2) + λ1α

2
G(λ1, λ2)

λ1 + λ2

is maximised over all d-regular graphs by Kd+1.

In fact, Conjecture 9 implies Conjecture 8. To see this, assume λ1 ≥ λ2, and let FG(x) =
1
n logPG(λ1 − λ2 + x, x). We have

1

n
logPG(λ1, λ2) = FG(λ2) = FG(0) +

∫ λ2

0

dFG
dx

(x) dx

FG(0) = 1
n logPG(λ1 − λ2, 0) = log(1 + λ1 − λ2) for all graphs G, and so if we can show

that for all 0 ≤ x ≤ λ2, dFG
dx (x) is maximised when G = Kd+1, then we obtain (the log of)

inequality (8). We compute:

dFG
dx

(x) =
1

n

d
dxPG(λ1 − λ2 + x, x)

PG(λ1 − λ2 + x, x)

=
1

n

∑
χ
xX1+(λ1−λ2+x)X2

x(λ1−λ2+x) (λ1 − λ2 + x)X1 · xX2

PG(λ1 − λ2 + x, x)

=
1

x(λ1 − λ2 + x)

1

n

∑
χ(xX1 + (λ1 − λ2 + x)X2)(λ1 − λ2 + x)X1 · xX2

PG(λ1 − λ2 + x, x)

=
1

x(λ1 − λ2 + x)

[
xα

(1)
G (λ1 − λ2 + x, x) + (λ1 − λ2 + x)α

(2)
G (λ1 − λ2 + x, x)

]
.

Conjecture 9 implies that this is maximised by Kd+1.
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