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This document includes the following supplementary figures:  

1. Experimental setup for nonlinear measurements. 

2. Polarisation calibration data for our optical system.  

3. SHG of the five configurations for a pump polarized perpendicular to the bar. 

4. Comparison of experimental and modelled back focal plane (NA=0.6) images.  

5. Electromagnetic simulations of the non-linear polarisation and bright scattering modes 

at 2𝜔 

 

This document includes the following supplementary notes:  

1. Linear electromagnetic simulations 

2. Electromagnetic simulations of the non-linear polarisation and bright scattering modes 

at 2𝜔 

3. Linear scattering multipole interference model 

4. Efficiency of the CIV antenna. 

  



 

Figure S1. Experimental setup for nonlinear measurements. The second harmonic response 

from individual optical antennas was generated by focusing a tunable pulsed Ti:Sapphire laser 

delivering nominally 200 fs pulses at 80 MHz repetition rate with a Nikon S Plan Fluor ELWD 

40X 0.6NA microscope objective. The optical antenna acts as a nonlinear element that converts 

the input signal at a frequency ω into an output signal at the second harmonic 2ω. The collected 

backward-emitted signal at 2ω is reflected by a dichroic mirror (DMLP1180) to an Acton 2300 

Spectrometer.  After the sample, the pump is rejected by 1000 nm cut off short pass (FESH1000) 

and 750 nm bandpass filters (Fb750-10-1, T=60%). (See Methods section from main article for 

more details.) 



  

 

Figure S2. Calibration data to correct for the polarization-dependent detection efficiency 

of our optical system. Laser pulses at 750 nm were transmitted through the optics and the 

spectral peak onto the spectrometer are recorded every 10° rotation of a linear polarizer and a 

constant input laser reference power. In the main article, the back focal plane, resp. the spectral, 

data are collected at the zero (m=0), resp. first (m=1), order of our spectrometer.  Y (150 deg.) – 

polarized back focal plane pixel intensities are divided by a correcting factor of 0.078. X (60 

deg.) – polarized spectral data are divided by 0.447.  

  



  

 

 

Figure S3.  SHG of the five configurations for a pump polarized perpendicular to the 

bar. Since the bar cannot be excited at the fundamental wavelength of 1,500 nm for this 

input polarization, the SHG signal is over 3 orders of magnitude weaker than the data for a 

pump polarized along the bar. Insets are the SEMs of the five nano-antennas explored in 

the main article. 

  



 

  

 

Figure S4.  Comparison of experimental and modelled back focal plane (NA=0.6) images 

for our five configurations (CI to CV). CI models a quadrupole. CII is a combination of 1 dipole 

and 1 quadrupole. CIII is 2 constructively interfering dipoles and 1 quadrupole.  CIV is 2 

destructively interfering dipoles and 1 quadrupole.  CV is 2 constructively interfering dipole and 

1 quadrupole (See Supplementary Note 4). A 2.5deg shift was added to account for an 

experimental shift of the analyser principal axis with the bar principal axis.  



 
 
Figure S5. Electromagnetic simulations of the non-linear polarisation and bright 
scattering modes at 2𝜔. a and b show the non-linear surface charge density, 𝑠(2𝜔), on the air- 
gold interface generated by the bar particle resonance at 𝜔 for CIII and CIV, respectively. 𝑠(2𝜔) 
being the source of SHG, couples to modes of the antennas at 2𝜔. c and d show the linear charge 
distributions, c(2𝜔), of the antenna modes under normal incidence excitation near the peak 
extinction at 2𝜔 in Fig. 2c for CIII and CIV, respectively. 
 
 

  



 

Note 1: Linear electromagnetic simulations  

The three-dimensional linear electromagnetic simulations of the individual antennas were 

performed using the three-dimensional finite-difference-time-domain (FDTD) method using the 

commercial software FDTD solution v8.12 (Lumerical).  The nano-antennas were modelled with 

Au bars of geometrical cross-section 340 nm × 80 nm and Au disc of diameter 160 nm lying on a 

SiO2 substrate. The dielectric functions of Au and SiO2 were extracted from the data of Johnson 

and Christy1 and Palik2, respectively.  

Perfect matched layers in all simulation boundaries were used to model a single configuration 

over a semi-infinite substrate scenario. The solver-defined TFSF source was used to reduce 

computation effort, as it allows definition of the plane-wave excitation within the volume 

enclosing only the nano-antennas. The 𝑥-polarized plane-wave excitation was incident normal to 

each configuration from the semi-infinite free space. The incident temporal pulse had central 

wavelength 1,500 nm and spectral width ~23.65 nm (i.e. pulse length of 140 fs, similar to the 

200 fs of the used laser). The solver-defined conformal variant 1 mesh was used to accurately 

map the details of the model. The larger and smaller cubic grid in the simulation is 20 nm × 20 

nm × 30 nm (outside TFSF source) and 2.5 nm × 2.5 nm × 0.5 nm, respectively. The residual 

energy in the simulation box volume was at least 50 dB lower than its peak value to ensure that 

the continuous-wave information obtained by discrete Fourier transformations was valid. A 

standard convergence test was performed to ensure negligible numerical errors. 

  



Note 2: Electromagnetic simulations of the non-linear polarisation and bright scattering 

modes at 2𝜔 

In order to gain a deeper understanding of the observations on CIII and CIV, we have simulated 

the electromagnetic fields at the antenna’s 𝜔 and 2𝜔 resonances, shown in Supplementary 

Figure S5. The strength of SHG into a given mode of an antenna depends how the 𝑠(2𝜔) 

nonlinear source distribution couples to the mode’s linear field distribution. Supplementary 

Figures S5a and S5b show the distribution of the non-linear surface charge, 𝑠(2𝜔), on the top 

air-gold interface of configurations CIII and CIV, respectively. The reader will note that 𝑠(2𝜔) is 

symmetric and localized mainly on the bar interface of each antenna, where the electromagnetic 

field at 𝜔 is resonant. The source of SHG is the non-linear surface polarisation vector, 𝑃𝑖(2𝜔), 

within the metal described by the following tensor equation, 

𝑃𝑖(2𝜔) = ∑ 𝜒𝑖𝑗𝑘
(2)

𝐸𝑗(𝜔)𝐸𝑘(𝜔)

𝑗,𝑘

 

In metals, a second-order nonlinear response is known to arise from a metal’s surface3,4, with 

non-zero second order susceptibility components, 𝜒∥⊥∥
(2)

= 𝜒∥∥⊥
(2)

 , 𝜒⊥∥∥
(2)

 and 𝜒⊥⊥⊥
(2)

. Here we used the 

experimental values from Wang et al.5  Our numerical study evaluates the corresponding non-

linear polarisation charge density,𝑠(2𝜔) = 𝑅{𝑃⊥(2𝜔)} on the upper metal surface of the 

particles, allowing a simplified calculation using only the linear fields from FDTD simulations, 

𝑠(2𝜔) = 𝑅{𝜒⊥⊥⊥
(2)

𝐸⊥(𝜔)𝐸⊥(𝜔)}.  

Supplementary Figures S5c and S5d show the modes of antennas CIII and CIV from our 

simulation of the extinction at 2𝜔 in Fig. 2c, are shown in Figs. 5c and 5d, respectively, in terms 

of their linear charge distributions, c(2𝜔). Since these modes cause observable normal incidence 

extinction, they are bright dipole-active modes of the two configurations. The dipolar SHG from 

CIII is possible because 𝜎(2𝜔) (Fig. 5a) and c(2𝜔) (Fig. 5c) are both symmetric allowing 

effective coupling whereas dipolar SHG from CIV is forbidden since 𝜎(2𝜔) (Fig. 5a) and c(2𝜔) 

(Fig. 5c) are not symmetric forbidding effective coupling.  



Note 3 – Linear scattering multipole interference model  

The model represents each mode of the structure as dipoles that interfere in the far field. For 

simplicity and emphasis of the experimental result, the description of the geometry does not 

include modes of higher order than quadrupole, which here is represented as two destructively 

interfering dipoles5.   

Since the sizes of our radiative SHG sources (disk and bar) are smaller than the wavelength, we 

model our system under the electric dipole approximation. We assume the motion of charges to 

be non-relativistic, and the observation point at a distance r from the origin is far away from the 

source (|𝒓| ≫ 𝜆). In spherical coordinate, 𝒓̂, is expressed 

by 𝒓̂ = sin(𝜃) cos(𝜙) 𝒙̂ + sin(𝜃) sin(𝜙) 𝒚̂ + cos(𝜃) 𝒛̂, where 𝜃 is the elevation angle from the z – 

axis and 𝜙 is the azimuth angle. 

The electric field, 𝑬(𝒓), at a point, r,  from a dipole of polarisation, 𝒑, placed at a distance, 𝒔, from 

the origin, in the plane 𝑥 – 𝑦, is given by6: 

𝑬(𝒓 − 𝒔) =  −
1

4𝜋𝜖𝑜
𝑘2(𝒓̂𝑠 × 𝒑 × 𝒓̂𝑠) {

𝑒𝑖 (𝒌.|𝒓−𝒔|)

|𝒓 − 𝒔|
} 

(1) 

Where 𝒓̂𝑠 =
𝒓−𝒔 

|𝒓−𝑠|
 

Assuming the far field approximation, |𝒓| ≫ |𝒔| and 𝒓̂𝑠 ≈ 𝒓̂, this expression can be simplified to  

𝑬(𝒓 − 𝒔) =  (𝒓̂ × 𝒑 × 𝒓̂) [
1

4𝜋𝜖𝑜
𝑘2]

 𝑒𝑖 (𝒌.𝒓)

|𝒓|
𝑒−𝑖 (𝒌.𝒔) =  𝑬(𝒓)𝑒−𝑖 (𝒌.𝒔) 

 

(2) 

We express 𝑬(𝒓) using the field distribution for an interfacial dipole parallel to an interface of 

refractive index, n=1.5, as described by Engheta’s formula7,8, and generalised to the case where 

the dipole is orientated at an arbitrary angle, 𝜙𝑑, compared to the origin. 

In a spherical coordinate system,  

𝐸̂𝜃(𝜃, 𝜙 − 𝜙𝑑) ∝ [𝑓(𝜃) −
2𝑓(𝜃) − 1

(𝑛2 − 1)𝑓(𝜃) + 1
sin2(𝜃)] cos(𝜃) cos(𝜙 − 𝜙𝑑) 

(3) 

𝐸̂𝜙(𝜃, 𝜙 − 𝜙𝑑) ∝ −𝑓(𝜃) sin(𝜙 − 𝜙𝑑) (4) 

 

  Where 

𝑓(𝜃) =  
cos (𝜃)

cos(𝜃) + √𝑛2 − sin2(𝜃)
 

(5) 

In our experiment, our back focal planes were measured for 𝒙 – polarisation or 𝒚 – polarisation 

with an analyser at an azimuthal angle, 𝜙𝑝𝑜𝑙 , with respect to the origin axis 𝒙.  Therefore, we 

express the spherical vectors (Eq. 3 and Eq. 4) as cartesian vectors 𝑬̂(𝒓) = 𝑬̂𝑥(𝒓) + 𝑬̂𝑦(𝒓) using 

the transformation:  



(
𝐸𝑥

𝐸𝑦
) =  (

cos(𝜃) cos(𝜙) − sin( 𝜙)

cos(𝜃) sin(𝜙) cos(𝜙)
) (

𝐸𝜃

𝐸𝜙
) 

(8) 

 

Then, using Jones matrices, we express the electric field after our analyser, 𝑬̂′(𝒓) =  𝑬̂𝑥
′  + 𝑬̂𝑦

′  

from the electric field 𝐸𝑥 and 𝐸𝑦: 

(
𝐸𝑥

′

𝐸𝑦
′ ) = (

cos2(𝜙𝑝𝑜𝑙) cos(𝜙𝑝𝑜𝑙) sin(𝜙𝑝𝑜𝑙)

cos(𝜙𝑝𝑜𝑙) sin(𝜙𝑝𝑜𝑙) sin2(𝜙𝑝𝑜𝑙)
) (

𝐸𝑥

𝐸𝑦
) 

(11) 

In the general case of an array of N dipoles 𝒑𝒏, orientated in the 𝒙 – 𝒚 plane,  at respective 

positions 𝒔𝑛 from the origin,  of respective field amplitude 𝑎𝑛,  oscillating with a phase 𝜓𝑛,  

compared to the incident driving electric field (in this work, the nonlinear surface charge 

polarisation of the bar), the electric field of the dipole array, 𝑬′(𝒓),  can be written as, 

𝑬′(𝒓, 𝜽, 𝝓) =  ∑ 𝑎𝑛𝑒𝑖𝜓𝑛𝑬′
𝒏

(𝒓, 𝜽, 𝝓 − 𝝓𝒏)𝑒−𝑖(𝒌.𝒔𝒏)

𝑁

𝑛=1

 
(9) 

The angular distribution of the average power, 𝑃̅, from an arbitrary dipole array is proportional 

to the square of the electric field, 

𝑑𝑃̅

𝑑Ω
 𝛼 |𝑬′(𝒓, 𝜽, 𝝓)|2 

(10) 

This is the quantity that we will use to fit our back focal and polarisation data.   

Numerical parameter fits 

The mode of the structure is decomposed as dipoles of polarisation vectors 𝒑𝒏 , 𝑛 ∈ {1,2,3,4} , of 

amplitude, 𝑎𝑛, at respective vector positions, 𝒔𝑛 = (𝑥𝑛, 𝑦𝑛),  from the origin in a cartesian 

coordinate.  The mode of each disc is represented by a single dipole. The mode of the bar is 

represented by a quadrupole as two dipoles of opposite orientation (i.e. oscillating out of phase 

with each other).  The position of each dipole is given by the geometry of each structure: 

dimensions of bars are 340 × 80 × 40 nm in 𝒙, 𝒚 and 𝒛, respectively, while discs are of the same 

thickness with diameters of 160 nm. The gaps between the discs and the bar are 20 nm for all 

cases. The position of the disc relative to the bar influences the total radiation pattern via adding 

an additional geometric phase terms 𝑒−𝑖 (𝒌.𝒔𝒏). This causes the radiation pattern at the back focal 

plane of our microscope objective to rotate in the plane x –y as shown in Fig. 3b (CII) and Fig. 4b 

(CIV) of the main publication. 

Each dipole orientation, 𝜙𝑑, is set with respect to the surface charge nonlinear polarisation of 

the bar, and it is intuitively set to point inward the bar as supported with the linear simulation at 

750 nm of CIII (Supplementary Figure S5).  Following this, the model estimates the right angle.  

As shown in the main publication, a detuning of the resonance of the disc with respect to the bar 

adds an extra phase term, 𝑒𝑖𝜓𝑛 .  The effect can be seen in the asymmetry of the radiation pattern 

in CV, and some features in the back focal plane of the structure CII to CIV at different 

polarisation angles. This will be investigated in another publication.   



Finally, a proportional factor relates the back focal plane data (taken at the order zero of our 

spectrometer) to the polarisation data (taken at the first order) due to the spectrometer 

different efficiency for the respective polarisation, and variability in the power of the laser 

system, while a measurement.  

In summary, the fitting parameters are:  

1. Amplitude of each dipole, 𝑎𝑑𝑖 for the disc and, 𝑎𝑞 for the bar.  

2. Orientation of each dipole and quadrupole (two opposite dipoles), 𝜙𝑑𝑖,𝑞 

3. Detuning phase,  𝜓𝑑𝑖. 

4. A proportional factor G between the polarisation data and the back focal plane.  

In practice, since the dimension of the bar for each structure (CI to CV), and the input power, 

should remain the same, we first evaluate the amplitude of quadrupole (two opposite dipoles) of 

the bar only (CI) and, then, knowing it from the model, we restrict the amplitude of quadrupole 

in the other structures (CII to CV) to +-15% around this value.  It enables us to represent the 

correct physics. For instance, due to the cancellation of the quadrupole via the two disc’s dipoles 

in CIII, the model underestimates the amplitude of the quadrupole if unbound.  

Similarly, since the amplitude of the dipole,  𝑎𝑑𝑖, is correlated to the dipole orientation, 𝜙𝑑𝑖,  we 

fix the dipole orientation. Due to the symmetry of each nano-structure, we assume that the angle 

of the dipole relative to the bar should remain the same for all the different configurations (CII to 

CV). We select a value of ±0.34 rad after numerous subsequent fits, and selecting that was 

appearing more often. In particular, fitting only the back focal plane cross section leads to 

incorrect polarisation data; there are extremely sensitive to the dipole orientation and are 

therefore required to estimate it.   

The temporal phase was assume to be positive and to be within 0 and 
𝜋

2
.  The fit gives values 

ranging from 0.4 to 0.7 rad for the various configurations.  

Finally, we round up the parameter to the nearest decimal to account for deviation of the 

experimental data due to noise, and imperfection of the structure.  In our model, a structure is 

“perfect” if dipole amplitudes of the two discs are equal. In practice, different disc amplitudes are 

visible with a rotation of the polarisation data, and/or asymmetric radiation pattern as seen in 

CIV, Fig. 4b. The model is designed primarily to capture the overall physics of each structure, and 

illustrates how the different phases (of each element contribute to generate the correct back 

focal plane).  

 

 

  



A summary of all the parameters and the dipole orientations given by the model are presented 

in the table below.  

 

xp=[-85,85];  X - Position of the dipole  (nm)  

yp=[0,0];         Y - Position of the dipole  (nm)  

p=[95,95];      Amplitude of each individual dipole 

phi=[pi,0];      Orientation of each dipole with respect to the x – 

axis. 

psi=[0,0];    Temporal phase coupling (rad) relative to the bar 

G=7.2e-4;    Proportional factor between back focal plane data 

and polarisation. 

 

xp=[-85,85,170]; 

yp=[0,0,140]; 

p=[105,105,47]; 

phi=[pi,0,pi/2+0.34]; 

psi=[0,0,0.41]; 

G=7.4e-4; 

 

xp=[-85,85,-170,170];   
yp=[0,0,140,140];   
p=[95,95,53,53];   
phi=[pi,0,pi/2-0.34,pi/2+0.34]; 
psi=[0,0,0.62,0.62];   
G=3.6e-4;  

 

xp=[-85,85,-170,170];  
yp=[0,0,-140,140];   
p=[105,105,44,44];   
phi=[pi,0,pi+pi/2+0.34,pi/2+0.34]; psi=[0,0,0.7,0.7];   
G=6.4-4;  



 

xp=[-85,85,170,170];   

yp=[0,0,-140,140];   
p=[110,110,59,59];   
phi=[pi,0,-pi/2-0.34,pi/2+0.34];  
psi=[0,0,0.6,0.6];   
G=7.2e-4;  

In summary, the key insights are:  

In CI, the main mode of the bar is a quadrupole. 

In CII, the disc adds a dipole component along X and Y.  

In CIII, the projection of the two dipoles along Y are orientated in the same direction, which 

leads to in - phase radiation (constructive interferences). Along X, the two dipoles interfere 

destructively with the quadrupole, which explains the drop of SHG observed.  

In configuration CIV, the two dipoles from the disks are orientated in opposite direction, which 

leads to 𝜋 out of phase radiation (destructives interferences) in the far field for both X and Y 

polarisation. 

In configuration CV, the two dipoles are out of phase along Y (‘dark mode’), and in phase along X. 

The dipole interferes with the quadrupole, but, due to a detuning phase of 0.6, the radiation 

pattern is asymmetric.  

  



 

Supplementary Note 5: Efficiency of the CIV antenna. 

The nonlinear coefficient was calculated by taking the ratio of the peak output power divided by 

the peak input power squared as defined in Ref. 10. Both peak powers were estimated by 

including the losses incurred by the spectrometer, the optics and the microscope objective 

transmission and collection efficiency.  

This leads to a non-linear coefficient of:  

𝜂 =
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
2  >  4.10−7 

Calculation of 𝑷𝒊𝒏 

Pump Wavelength (m)  1500 × 10-9 

Repetition Rate (Hz) f 80 × 106 

Pulse width (s)  >2 × 1013 

Average Power (W) - 30% transmission efficiency of 

the microscope objective at 1,500 nm 
Pav 1.2 × 10-3 

Real NA - The laser beam is smaller than the back 

aperture so the full NA is not used 
NA 0.5 

Spot Diameter (m) D = 1.22
𝜆

𝑁𝐴
 3.7 × 10-6 

Peak Power (W) 
𝑃𝑎𝑣

𝑓∆𝜏
 <75 

Scattering Cross Section / Spot Area. We use the 

dipole cross section 11 

3𝜆2

4𝜋

1

𝜋(𝐷/2)2
 

0.05 

 

Input Peak Power (W) Pin <3.83 

 

Calculation of 𝑷𝒐𝒖𝒕 

The output peak power is calculated taking into account all the various losses due to the 

spectrometer sensitivity, reflections at various optical surfaces and collection efficiencies of the 

microscope objective.  We have assumed an optimum bright dipole emission of p-polarised due 

to the bright dipole mode of the disks emitted primarily for this structure.  

Total SHG (photons over 75 s): Integrated value of the 

spectra times. Four photons per count. 
 3.21 x 1007 

SHG (photons/s) 𝑁𝑆𝐻𝐺  4.28 x 1005 

SHG Average Power (W) 𝑃𝑆𝐻𝐺 =
ℎ𝑐

𝜆
𝑁𝑆𝐻𝐺  1.13 × 10-13 

SHG Peak Power (W) 
𝑃𝑆𝐻𝐺

𝑓∆𝜏
 7.09 × 10-09 

Forward Scattered SHG peak Power (W).Included the 

transmission loss and the collection efficiency. 

(n=1.42) 

𝑃𝑆𝐻𝐺
+ =

1

1 + 𝑛𝑠
3

𝑃𝑆𝐻𝐺  1.65 × 10-07 

Backward Scattered SHG peak Power (W) – Light that 

is going through the substrate (n=1.42). 
𝑃𝑆𝐻𝐺

− =
𝑛𝑠

3

1 + 𝑛𝑠
3

𝑃𝑆𝐻𝐺  5.58 × 10-06 

Total Peak Power 𝑃𝑜𝑢𝑡  7.24 × 10-06 



 

Losses in the optical system.  

This includes the spectrometer efficiency, the transmission of the optical system and the 

collection efficiency.  

Lists of all the detection losses  

Quantum efficiency of the Princeton Excelon Camera 0.8 

Cropped – Data as the back focal plane does not fit on the whole CCD array.  0.87 

Transmission Efficiency (p - polarized) (Acton SP2300) 0.4 

Transmission / Reflection of Optics (4 Lenses plus dichroic mirror ) 0.68 

Polarizer transmission 0.78 

Bandpass Filter 0.6 

Transmission microscope objective at 750nm 0.84 

Collection efficiency (assume a dipole emission and a Collection angle of 0.6 
=36° Solid angle). 

0.26 

Substrates effect –  Silica (refractive index n=1.5@750nm) 0.23 
Total 0.0043 

 

Note the loss of approximately 22% due to the transmission (78% @750nm) of the analyser 

(LPVIS100-MP2 from Thorlabs) should be taken into account when measuring 𝑥 and 𝑦 

polarisation of the SHG.   
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