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ABSTRACT
There have recently been several reports of apparently periodic variations in the light curves
of quasars, e.g. PG 1302−102 by Graham et al. Any quasar showing periodic oscillations in
brightness would be a strong candidate to be a close binary supermassive black hole and, in turn,
a candidate for gravitational wave studies. However, normal quasars – powered by accretion
on to a single, supermassive black hole – usually show stochastic variability over a wide
range of time-scales. It is therefore important to carefully assess the methods for identifying
periodic candidates from among a population dominated by stochastic variability. Using a
Bayesian analysis of the light curve of PG 1302−102, we find that a simple stochastic process
is preferred over a sinusoidal variation. We then discuss some of the problems one encounters
when searching for rare, strictly periodic signals among a large number of irregularly sampled,
stochastic time series, and use simulations of quasar light curves to illustrate these points. From
a few thousand simulations of steep spectrum (‘red noise’) stochastic processes, we find many
simulations that display few-cycle periodicity like that seen in PG 1302−102. We emphasize
the importance of calibrating the false positive rate when the number of targets in a search is
very large.

Key words: methods: data analysis – methods: statistical – quasars: general.

1 IN T RO D U C T I O N

Detecting and characterizing periodic variations in the brightness
(and other properties) of astrophysical sources is a cornerstone of
observational astronomy. Examples include the discovery of ex-
trasolar planetary systems, using stellar pulsations to establish the
cosmological distance scale, and the study of pulsars and interacting
binary star systems. Nearly sinusoidal modulations are usually the
result of orbital motion or rotation. However, many other astrophys-
ical sources – notably accreting sources such as interacting binary
stars, young stellar objects, and active galactic nuclei (AGN) – show
persistent, random (aperiodic, stochastic, noise) variations in their
brightness driven by the complex and turbulent accretion process.
See Vaughan (2013) for a brief review of random time series in
astronomy. The random variations in AGN can be described as ‘red
noise’ – meaning a random process with a broad power spectrum
increasing smoothly in power density to low frequencies (often with
an approximately power-law shape: P(f) ∝ f−α , with α � 1).

� E-mail: sav2@le.ac.uk

Graham et al. (2015b, henceforth G15a) reported the detection
of periodic modulations (with a period of 5.2 yr) in the optical
brightness of the quasar PG 1302−102 (z = 0.278, MV ≈ −25.8,
virial mass estimate MBH ∼ 3 × 108 M�) based on ∼10 yr of
photometric data. This was found during a search of light curves
from 243 486 spectroscopically confirmed quasars observed with
the Catalina Real-time Transient Survey (CRTS; Drake et al. 2009).
Further details are discussed in Graham et al. (2015a, henceforth
G15b). They interpreted their discovery in terms of a short-period
binary supermassive black hole system (Haiman et al. 2009a). Fur-
ther claims for periodic optical variability in AGN have been made
by Liu et al. (2015) and Zheng et al. (2016). The discovery of
short period binary black holes in quasars is of great importance to
a number of research areas including accretion physics (Begel-
man, Blandford & Rees 1980), hierarchical structure formation
(Volonteri, Haardt & Madau 2003), and gravitational physics
(Haiman, Kocsis & Menou 2009b).

Over the years, there have been many reports of periodic or
quasi-periodic variations from AGN, spanning the range of AGN
types, from radio to gamma-rays, and on time-scales from minutes
to years. However, this field has a chequered history. Many reports
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of periodic variations are based on very few observed cycles of the
claimed period, and a failure to properly account for the random
(red noise) variations which can produce intervals of seemingly pe-
riodic behaviour. See Press (1978) for a general discussion of this
point, and Vaughan & Uttley (2006) for some specific examples of
periodicity claims drawn just from X-ray observations of nearby
AGN.1 Further observations of the same targets usually fail to show
the strictly repeating, coherent oscillations expected from a truly pe-
riodic process. As we enter the era of massive time-domain surveys
capable of studying 105–107 targets, it is becoming more important
to carefully assess detection procedures in order to understand and
control the number of false detections. In this paper, we re-examine
the case of PG 1302−102, and we consider the broader problem
of how different stochastic models can make it difficult to distin-
guish periodic modulation among light curves selected from large
time-domain surveys.

2 TH E L I G H T C U RV E O F P G 1 3 0 2−1 0 2

Fig. 1 (top panel) shows the eight years of CRTS photometric data
for PG 1302−102 fitted with a sinusoidal model. The data comprise
290 V-band magnitude estimates with a mean of ≈15.0 mag. The
data were taken from two similar surveys (the Catalina Sky Survey
and the Mt. Lemmon Survey; these provided 234 and 56 photometric
points, respectively). The sampling pattern is irregular, comprising
nine ‘seasons’ each spanning 4 to 5 months with gaps of 6–8 months.
Within each season, there are ∼7 nights of data, each containing
four closely spaced (�t ∼ few minutes) photometric measurements.
The error bars provided by the CRTS pipeline processing are in this
case overestimated by a factor of ≈4 to 5. This effect can be seen
by examining the short time-scale variations in the data: the rms
variation of the magnitude estimates within groups of nearby data
(each group spanning <20 d, where intrinsic variability is expected
to be weak, and only including groups with >5 points) is a factor
of ≈4 smaller than the error bars.2

The data clearly show significant variations, with an rms
∼0.1 mag. We fitted the data (using weighted least squares) with a
model comprising a sinusoid plus a constant offset:

V (t) = A1 cos(2πf0t) + A2 sin(2πf0t) + C. (1)

(This is equivalent to a model A sin(2πf0t + φ) + C with amplitude
given by A2 = A2

1 + A2
2 and phase tan φ = A1/A2.) The best-fitting

amplitude is (A2
1 + A2

2)1/2 = 0.125 mag and the best-fitting (ob-
server frame) period is t0 = 1/f0 = 4.65 ± 0.06 yr, slightly different
from the 5.16 ± 0.24 yr found by G15a. For fitting their sinusoidal
model, G15a included additional archival data – notably LINEAR
data (Sesar et al. 2011) – extending the observational baseline. The
overall fit statistic is χ2 = 85.7 for 287 degrees of freedom, again
indicating that the error bars are too large. Comparing this model to
a constant gives �χ2 = 741.1.

3 BAY E S I A N M O D E L C O M PA R I S O N

It is also possible to fit the data using a stochastic model. However,
is not meaningful to simply compare the χ2 values for these fits.

1 Arguably, the best candidate for quasi-periodic AGN light curve was seen
in RE J1034 − 396 (Gierlinski et al. 2008), which showed ∼16 ‘cycles’ in
a single, continuous X-ray observation.
2 We have examined CRTS data for other AGN of similar magnitude and
find that the photometric error bars are often considerably larger than the
short-term scatter in the data.

Figure 1. Panel (a) shows the ≈8 yr of V-band Catalina Real-time Transient
Survey (CRTS) data for PG 1302−102. Panels (b) and (c) show example
simulations of red noise with the same sampling pattern as the CRTS data
(black points) plus additional data to simulate three seasons of LINEAR
data (blue points). Panels (b) and (c) were generated by random processes
with no periodicity present (a bending power-law power spectrum, and a
damped random walk, respectively). In each case, the continuous, error-free
simulation is shown as a pink curve and the sampled data are shown as
circles. The red curve shows the best-fitting sinusoid. Examples (b) and (c)
were randomly selected from the 100 best candidates in runs of 100 000
simulations of each process.

When fitting stochastic models to individual time series, the χ2 fit
statistic loses its simple meaning as a diagnostic of the ‘goodness of
fit’. (This is because the variance of the process is itself a parameter
to be fitted; the standard χ2 statistic only makes sense as a likelihood
proxy when the variance is fixed. In fact, χ2 → 0 is possible for any
sufficiently flexible stochastic process. See also Kozłowski 2016).

In order to compare a periodic model to a stochastic model, we
have performed a Bayesian model comparison between the sinu-
soidal model and a simple stochastic process, the damped random
walk (DRW) model. We first computed the posterior densities for
the parameters of each model using Markov Chain Monte Carlo
(MCMC) method. We used a method based on the ensemble sam-
pler proposed by Goodman & Weare (2010) with >105 draws based
on 100 ‘walkers’ after removing a ‘burn-in’ period.3 We then com-
puted the full marginal likelihoods (often called ‘evidence’) of each

3 The code, called tonic, is a pure R implementation of the Goodman &
Weare (2010) sampler, and uses a mixture of ‘stretch’ and ‘walk’ moves to
sample the target density. See https://github.com/svdataman/tonic.
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False periodicities in quasar surveys 3147

Figure 2. Posterior distributions for the parameters of the DRW model (left) and sine model (right) fitted to the CRTS light curve of PG 1302−102. The
shaded areas show the posterior densities estimated using 105 samples from a Markov Chain Monte Carlo (MCMC) calculation, and the red curves show the
prior densities. The priors for the DRW model are based on the sample parameters from large quasar surveys. The priors for the sine model are such that
the prior mean variance is similar to the prior mean for the variance of the DRW model, and the period prior is uniform over the range 0–6.67 yr.

model using the methods described in Bailer-Jones (2012) and used
by Andrae, Kim & Bailer-Jones (2013).

The DRW is a stochastic process often used to describe quasar
variability from survey data. See Kelly, Bechtold & Siemiginowska
(2009), MacLeod et al. (2010), Andrae et al. (2013) and Zu et al.
(2013). It is among the very simplest continuous-time stochastic
processes. The DRW has an auto-covariance function ACV(t) =
(cτ/2) exp (−t/τ ), specified by two parameters, c and τ , which
determine the (total) variance and characteristic time-scale, respec-
tively. Equivalently, the DRW has a power spectrum (the Fourier
transform of the ACV) that is flat (power-law index 0) below
fbend = 1/(2πτ ), and smoothly bends to a power law with index
−2 at higher frequencies. We have fitted this model, with three pa-
rameters {c, τ , ν}, to the mean-subtracted PG 1302−102 data. The
parameter ν is a scale factor applied to the photometric error bars
(see also Kelly et al. 2014). We assigned the following prior densi-
ties on these parameters. For τ and c (which are positive-valued),
we assigned lognormal priors, in both cases with σ = 1.15 (corre-
sponding to 0.5 dex). The means of each lognormal prior were set
based on the geometric mean τ of 200 d from quasar samples in
MacLeod et al. (2010), Kozłowski et al. (2010) and Andrae et al.
(2013), and to give σ T = (cτ/2)1/2 ∼ 0.1 mag. For ν, we assigned a
uniform prior. The posterior and prior densities of these parameters
are shown in Fig. 2 (left) and summarized in Table 1. The posterior
shows ν is low, consistent with the conclusion above (Section 2)
that the error bars are a factor of 4 too large.

We also fitted a sine model with four parameters {A1, A2, t0,
ν} to the mean-subtracted PG 1302−102 data. The model is based

Table 1. Summary of prior and posterior distributions.

Parameter Prior Posterior 90 per cent
description mode interval

DRW
c lognormal 1.2 × 10−2 [0.79, 2.4] × 10−2

(mag2 yr−1) μ = −4.0, σ = 1.15
τ lognormal 1.5 [0.79, 50.1]
(yr) μ = −0.6, σ = 1.15
ν uniform 0.24 [0.22, 0.28]

min = 0, max = 1.5
sine
A1 normal −0.119 [− 0.127, −0.110]
(mag) μ = 0, σ = 0.08
A2 normal 0.031 [0.007, 0.051]
(mag) μ = 0, σ = 0.08
t0 uniform 4.66 [4.57, 4.77]
(yr) min = 0, max = 6.67
ν uniform 0.56 [0.51, 0.63]

min = 0, max = 1.5

on equation (1) with an additional, ν, to re-scale the error bars.
The two amplitude parameters, A1 and A2, were given zero-mean
normal priors (and σ chosen to give a prior mean σ T ∼ 0.1 mag (the
same mean prior variance as the DRW model). The period t0 was
assigned a uniform distribution (equivalent to using a Pareto prior
distribution for the frequency, f0). The ν parameter was given the
same uniform prior as for the DRW model.
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3148 S. Vaughan et al.

The posterior and prior densities of these parameters are shown
in Fig. 2 (right) and Table 1.

We then estimated the marginal likelihood of each of these
models,

p(D|M) =
∫

p(D, θ |M) dθ

=
∫

p(D|θ,M)p(θ |M) dθ, (2)

where θ represents all the parameters of model M, p(θ |M) is their
combined prior density, and p(D|θ , M) is the usual likelihood func-
tion given data D. The ratio, B12 = p(D|M1)/p(D|M2), called the
‘Bayes factor’, provides a way to weigh the probabilities of two
models, M1 and M2. Here, the two model are the DRW and sine
models.

Marginal likelihoods are usually difficult to compute. We there-
fore used three methods to calculate B12.4 Using all the three meth-
ods, we found log10(B12) > 60, indicating a very strong preference
for the DRW over the sine model. This does not mean the DRW
provides an adequate description of the data, only that it is strongly
favoured over the sine model. This may at first seem surprising,
given the smooth nature of the light curve (top panel of Fig. 1).
However, close inspection reveals that the sine model fails to cap-
ture structure in the light curve (such as the different peak magni-
tudes of the two maxima) that can be modelled by the DRW. This
is despite the fact that PG 1302−102 was chosen to be among the
most periodic from ∼250 000 light curves.

4 SI M U L AT I O N S O F R E D N O I S E

In the above analysis, we found the simple stochastic model to be
strongly preferred over the sinusoidal model, despite the undulating
appearance of the light curve of PG 1302−102. We next study how
often simple stochastic processes produce nearly sinusoidal light
curves by producing a number of fake time series with the same
sampling pattern as the PG 1302−102 CRTS + LINEAR data but
generated using

(i) a Gaussian noise process with a steep, bending power law
(BPL) power spectrum,

(ii) a DRW,
(iii) a sinusoidal process.

We refer to the three types of process as the BPL, DRW, and sine
models, respectively.

The BPL and DRW are intended to simulate observations of
normal (single BH) quasars, but with different assumptions about
the typical quasar power spectrum. We initially set the DRW time-
scale parameter τ = 200 d, the geometric mean of the quasar samples
in MacLeod et al. (2010) and Andrae et al. (2013).

The BPL model has a steep high-frequency power spectrum. This
choice of model is motivated by the analysis of the high-quality
Kepler light curves of nearby AGN which showed much steeper
power spectra than the standard DRW model allows (Mushotzky
et al. 2011; Edelson et al. 2013, 2014), with power-law in-
dices α � 3. Steep high-frequency power spectra are also com-
mon in rapid X-ray variability of nearby AGN (e.g. Gonzalez-

4 The three methods were: simple Monte Carlo integration based on sam-
pling from the prior with N = 108 draws, the Laplace approximation of the
posterior distribution, and the K-fold cross-validation method described in
Bailer-Jones (2012).

Martin & Vaughan 2012). It has the form given in section 3.5 of
Summons et al. (2007), with two bend frequencies, flow and fhi.
We use power-law indices of 0 (below flow), −2 (between flow and
fhi), and −3.5 (above fhi). The frequencies were initially set to
flow = 0.2 yr−1 (time-scale ∼5 yr) and fhi = 7.3 yr−1 (time-scale
∼50 d). This is based on the high-quality optical power spectrum of
Zw 229-15 from Kepler data (Edelson et al. 2014) with frequen-
cies scaled down by a factor of ∼10 as expected for an MBH ∼
few ×108 M� quasar. The sine model simulations are intended
to fake data as if from short-period binary quasars, with each
simulation having a single modulation period randomly drawn
from a uniform distribution over the range 0.2–20 yr (correspond-
ing to a frequency distribution p(f) ∝ f−2 over the range 0.05–
5 yr−1). More details of the simulation procedure are given in the
Appendix.

We simulated 100 000 time series using each of the three pro-
cesses. We then fitted each with the sinusoidal model. We identified
as ‘periodic candidates’ all simulations for which (1) the fit is good
(χ2 < dof) and the improvement in the fit compared to a constant is
large (�χ2 > 700), and (2) the period is in the range 5.38–1.25 yr.
The first criterion is used to select data with significant variability
that resembles a sinusoidal modulation (�χ2 > 700 is comparable
to that found for PG 1302−102 above). The longest allowed period
was chosen to match that of G15a and G15b who selected only
periodic candidates with >1.5 cycles in the 9-yr CRTS data. We
found it necessary to impose a limit on the shortest allowed periods
that is slightly longer than the typical spacing of the CRTS seasons.
Allowing shorter periods results in a large number of good fits with
periods ∼1 yr or shorter, where the quasi-periodic sampling pattern
of the CRTS data occasionally aligns with local maxima or minima
of the simulation. This is an aliasing effect also discussed in the ap-
pendix of MacLeod et al. (2010). Fig. 1(b) and (c) show examples
of candidate periodicities drawn from simulations of the BPL and
DRW processes.

Apart from our choice of the range of accepted periods, the above
criteria are not intended to reproduce the period detection methods
of G15a and G15b, or any other paper. We are simply selecting
time series that have a sinusoidal shape (those that give a good
match, in a least squares sense, to a sinusoid, and a poor match
to a constant model). Any reasonable period detection algorithm
should be able to identify the same time series as appearing to be
periodic over at least 1.5 cycles. A more general selection and fit-
ting procedure that allowed for non-sinusoidal periodicities and, for
additional trends in the data, will mostly likely identify additional
false periods that were not selected by our fitting, and so our method
is conservative. Furthermore, we selected candidates based on fits
to 360 data points spanning ∼10.6 yr (appropriate for a combined
CRTS + LINEAR data set) – this included more points and a longer
baseline than most of the CRTS data used by G15b – and so our
criteria for selecting periodic variability are, in this sense, more
strict.

Simulated data meeting our selection criteria were produced with
a rate of ∼1–2 per 1000 simulations for the DRW and BPL pro-
cesses, with parameters defined as above. The periods of the fitted
sinusoids are long, most are in the range 4.0–5.3 yr (i.e. 1.5–2.5
cycles over the simulated data), and the strongest cases have peri-
ods of ≈5.3 yr, always near the lower limit of the allowed range.
The distribution of periods is shown in Fig. 3 for the 111 candidates
identified by G15b from the CRTS data, and from the 100 strongest
period detections in simulations of the BPL, DRW, and sine pro-
cesses. The steep spectrum (red noise) random processes produce
nearly sinusoidal variations when sampled intermittently, and most
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False periodicities in quasar surveys 3149

Figure 3. Period distributions of periodic candidates. Panel (a) shows the
distribution of the 111 period candidates identified by G15b. Panels (b)–(d)
show the frequencies of the 100 best candidates from 100 000 simulations
of (b) red noise with BPL spectrum, (c) red noise with a DRW spectrum,
(d) sinusoids with uniformly distributed periods. The histograms show the
density of periods, i.e. each is normalized such that its total area is unity.
There is a clear tendency to find phantom periodicities with long periods
(∼5 yr) while truly sinusoidal signals are most easily recovered at shorter
periods (a preference for periods of ∼2 yr is expected from sampling theory,
given the roughly annual spacing of the observing seasons).

of these ‘phantom periodicities’ show only a few cycles, typically
less than three.5

We have repeated the simulation experiments above with different
choices for the BPL bend frequencies and the DRW time-scale. The

5 One way to understand this is in terms of the Fourier decomposition of
a realization of a steep-spectrum stochastic process, sampled at a finite
number of discrete times. The observed time series can be decomposed into
a finite number of ‘modes’ with different frequencies; modes with lower
frequencies have (on average) much higher amplitudes due to the steep
power spectrum. But the amplitudes (at a given frequency) fluctuate greatly
between different realizations of the same process (e.g. Timmer & König
1995). With steep spectrum processes, it will often be the case that a single
low-frequency mode dominates the power (variance) of the data, due to
random fluctuations.

rate of phantom periods is highest when τ ∼ 200–400 d (DRW) or
flow ∼ 0.2 yr−1 (BPL). The power spectra that show f × P(f) peaks
(∼1/2πτ for the DRW model) near the observable frequency range
(∼0.1–1 yr−1) produce time series with strong, smooth variations on
the time-scales sampled, and are mostly likely to produce phantom
periods. MacLeod et al. (2010) and Andrae et al. (2013) found a
geometric mean of τ ∼ 200 d (0.55 yr) from their DRW model fitting
to large samples of quasars. This is the right order of magnitude for
phantom periods to be most easily produced in data spread over
∼few years. If the DRW spectrum is modified to have a high-
frequency slope of 3 (rather than 2), the rate of phantom periods is
increased by a factor of ∼few, to ∼1 in 200 simulations.

The reduction in the rate of phantom periods with higher/lower
DRW characteristic time-scale can be understood as follows. If the
time-scale above which the power spectrum flattens to α � 1 (≈2πτ

in the DRW model, ≈1/flow in the BPL model) is shorter than the
≈1 yr inter-season spacing of the data, phantom periods are rare.
In such cases, the inter-season variability is essentially white noise
and this is unlikely to produce smooth undulations between seasons.
On the other hand, if this time-scale is considerably longer than the
≈10 yr span of the observations, and the power spectrum remains
steep far below the lowest observable frequencies (longest time-
scales), the variations will be dominated by smooth, quasi-linear
trends that get weaker as flow moves lower (in our models, the total
power in the power spectrum is constant, so power moves out of the
observed band as flow decreases). The chance of the variations being
dominated by a succession of roughly equally spaced peaks (and/or
troughs) is therefore reduced (unless one applies ‘detrending’ to the
data, which then increases the rate of phantom periods).

5 SEEING PATTERNS I N THE N OISE

These simulation experiments demonstrate that when trying to de-
tect periodic signals from a large pool of red noise time series
sampled like CRTS data, ‘phantom’ periodicities will be found, and
their periods tend to be near the longest allowed period (1.5–2.5 cy-
cles over the available data, assuming obvious aliasing periods are
ignored). This effect was previously discussed by Kozłowski et al.
(2010) and MacLeod et al. (2010) from large surveys of quasar light
curves. By contrast, genuinely periodic variations are most easily
detected with periods ∼2 yr due to the seasonal sampling of the
data. We stress that the precise number of phantom periods we find
should not be directly compared to the survey of G15a, G15b, or of
Liu et al. (2015), and Charisi et al. (2016) – our detection criteria are
different, and our simulation experiment focuses on above-average
data quality (a bright, variable quasar). The key point is that light
curves with a sinusoidal appearance are produced at a rate that is not
insignificant, and this rate depends strongly on the power spectrum.
Our lack of knowledge (or poor assumptions) about the true range of
power spectral shapes for normal quasars translates to uncertainty
about (or poor calibration of) the rate of phantom periods in quasar
surveys.

That apparently sinusoidal time series are generated is not due to
a problem with the analysis procedures, it is an intrinsic property
of random processes with steep power spectra. Time series from
red noise processes, which span time-scales over which the power
spectrum is steep (α � 2), will usually be dominated by smooth
variations showing modulations occurring on time-scales of the or-
der of the length of the time series. Intermittent time sampling and
low signal/noise of the data make it easier to mistake a phantom
periodicity for a real one. Fundamentally, they can only be distin-
guished by much longer time series spanning many cycles of the
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putative period; truly periodic processes will continue to oscillate
while red noise processes are progressively less likely to show fur-
ther oscillations. [An intermediate possibility, beyond the scope of
this paper, is that of quasi-periodic oscillations (QPOs) which show
drifts in period, phase or amplitude.]

6 T H E D I F F I C U LT Y O F S E L E C T I N G
F RO M L A R G E SA M P L E S

When searching for rare events in a very large survey of sources, it is
particularly important to understand the false positive rate. Once the
false positive probability per source is higher than the true incidence
of the event in the survey population, there will (on average) be
more false than true detections. The periodic candidate identified
by G15a, and the 111 candidates identified by G15b, were selected
from ≈250 000 quasars. The characteristic time-scales and other
properties of quasar power spectra are still only poorly understood,
but are likely to depend on the mass and other properties of the
AGN (McHardy et al. 2006; Kelly, Bechtold & Siemiginowska
2009; MacLeod et al. 2010; Kelly, Sobolewska & Siemiginowska
2011). The quasars in any large sample spanning a range of z and L
will likely include a range of power spectral shapes. Those quasars
with a high-power density and steep spectra over the observed time-
scale range will be most likely to produce phantom periods, and a
survey containing a few thousand such quasars should be expected
to produce many phantom periods.

G15a used DRW simulations to assess the significance of the
PG 1302−102 detection. They performed two different tests, one
was a simulation for each quasar in their survey, the other was an
analysis of 1000 simulations of data like that of PG 1032−102.
The apparent significance in the latter test only demonstrates that
their simulations are not good at reproducing particular properties
of the data, they do not demonstrate that a period has been de-
tected. If quasar power spectra are steeper than the DRW model
(as indicated by e.g. the Kepler studies cited above), the simulation
test based on DRW simulations could underestimate the number of
false positives. By the same argument, it is meaningless to quote –
as G15a and Liu et al. (2015) do – the detection significance of peri-
odicities using periodogram statistics (including the Lomb–Scargle
periodogram) that are calibrated against a white noise null hypoth-
esis, when the alternative hypothesis is non-white noise. A small
p-value in such cases simply rejects the white noise null hypothe-
sis (already known to be false!), it does not necessarily support a
periodic alternative.

There are several other potential problems with the simulation
test of G15a. One is that the PG 1302−102 was selected to be
among the most periodic of 250 000 quasars, hence there is a large
‘look elsewhere’ effect6 for the number of quasars searched. Fur-
ther, the wavelet method they used decomposes the data by time and
frequency, increasing still more the ‘look elsewhere’ effect. Precise
calibration of the survey-wide false positive rate would require one

6 The ‘look elsewhere’ effect, more generally known as the multiple com-
parison problem, occurs whenever an analysis includes many statistical tests
or estimates. In the context of quasar surveys, where many quasar time se-
ries are each tested for periodicity, the chance of noise being mistaken for
a period increases with the number of quasars in the survey (for a fixed test
procedure). Allowing for greater flexibility in the tests being applied – such
as testing for transient periodicity or applying detrending to the data – also
increases the opportunities for false detections. Understanding or controlling
the false discovery rate in large-scale surveys is an area of current research
(Algeri et al. 2016).

to simulate the entire distribution of quasars many times over, ac-
counting for the plausible range of aperiodic power spectra for each
quasar, and with sufficient statistics to determine the probability of
a false positive to an accuracy of �10−5 per object.

Another issue is the treatment of measurement errors in simula-
tions. The CRTS photometric errors for PG 1302−102 are signif-
icantly overestimated; simulating random measurement errors that
are larger than the measurement errors of the real data (as in G15a)
will lead to unrealistic simulations. In this case, that means too much
‘white noise’ in the simulations, which then reduces the probabil-
ity of the simulations producing strong, smooth modulations. If
we repeat our simulations tests adding random measurement errors
with a standard deviation equal to the CRTS pipeline error bars, the
number of phantom periodicities drops by more than an order of
magnitude. (Our selection procedure relies on obtaining a good fit,
i.e. χ2 ≤ dof, which is much harder to achieve in the presence of
increased white noise.)

7 C O N C L U S I O N S

Fortunately, in particular cases such as PG 1302−102 (G15a) or
PSO J334.2028+01.4075 (Liu et al. 2015), the issue of stochastic
or nearly periodic variations can be resolved by further observa-
tions. If more ‘cycles’ of data – ideally with a higher sampling rate
and improved precision – match the extrapolation of the current
sinusoidal model, that would strongly support the periodic model.
The more future cycles that remain coherent with the model (based
on current data), the stronger the evidence for a true periodicity.
If the light curve diverges from the model, and in an apparently
random manner, that will be evidence against the periodic model.
On the other hand, a smooth and systematic period or phase drift
could indicate the presence of an optical QPO, e.g. a strong res-
onance in the accretion flow not related to the orbit of a binary
SMBH.

In the short term, however, it is often more practical to ‘go wide’
(light curves from many more targets) than to ‘go deep’ (longer,
better quality time series of individual targets), so it is particularly
important to calibrate the false positive rate of few-cycle periodic-
ities in irregular and noisy data. If true periodicities are rare – as
one might expect, given that most quasars are powered by accretion
on to a single BH and show stochastic variations, with only a small
minority7 of spectroscopic quasars expected to be short period bi-
nary SMBHs – a slight underestimate in the adopted value of the
false positive rate could mean the false period detections outnumber
the true detections.8

Improving our understanding of the range of quasar noise power
spectra would improve any search for outliers in samples of quasar
variability. Any true binary accreting black hole system likely under-
goes stochastic variability in addition to periodic variations, so it is
not yet clear that searches for the purely periodic signals are the best
approach to finding these systems. We encourage further develop-
ment of methods to identify periodic and mixed periodic/stochastic
processes hidden among a range of stochastic processes, and to bet-
ter identify the limitations of such methods when applied to sparsely
sampled photometric data. In a preliminary investigation (applying
the Bayesian analysis of Section 3 on sinusoidal simulations from
Section 4), we found that even strictly sinusoidal variations were

7 G15b estimate that 1–10 in every 1000 field quasars (at z < 1.0) may be
expected to harbour a short period SMBH binary system.
8 This is an example of the so-called false positive paradox of statistics.
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difficult to distinguish from a simple stochastic process when the
number of cycles was �2, but relatively straightforward to distin-
guish with ∼5 cycles. Further work needs to be done to uncover the
fundamental limitations of distinguishing periodic and stochastic
signals, given a particular sampling strategy.

In 1978, Bill Press closed his article on Flicker noises in astron-
omy and elsewhere with a note of caution about how easy it is for
the eye-brain system to select ‘three-cycle’ periodicities in random
time series (Press 1978). We might note here that, as we enter the
era of ‘big-data’ time domain surveys, one might do well to also
regard with caution few-cycle periodicities selected by machine
methods when they come from large samples of noisy time series.
One should not be too pessimistic, however. As our understanding
of the variability of different source populations improves, we will
be better able to calibrate detection procedures and realize the po-
tential of machine learning methods for mining the large time series
compendia for rare, exotic behaviour.

NOTE ADDED IN PRESS

We have recently been made aware of a Bayesian likelihood anal-
ysis (D’Orazio et al. 2015; see model (4) in their Methods) and
simulation tests (Charisi et al. 2015; see their section 3.1) of the
DRW model for PG 1302-102. These found stronger support for a
periodicity, but also significantly smaller τ values compared to our
analysis. The reason for the difference with our results is not clear at
present. Charisi et al. (2015) also assessed the false detection rates
in a pure red noise model (closer to our DRW case) and found those
to be similar to those found in section 4 of our paper, making PG
1302-102’s periodicity insignificant in this model.

AC K N OW L E D G E M E N T S

We thank an anonymous referee for a prompt and thoughtful re-
port. SV acknowledges support from STFC consolidated grant
ST/K001000/1. WNA acknowledges support from the European
Union Seventh Framework Programme (FP7/2013-2017) under
grant agreement n.312789, StrongGravity. MJM acknowledges sup-
port from an STFC Ernest Rutherford fellowship. DH acknowl-
edges support by the Moore–Sloan Data Science Environment
at NYU. This research made use of NASA’s Astrophysics Data
System. The CSS survey is funded by the National Aeronau-
tics and Space Administration under Grant No. NNG05GF22G
issued through the Science Mission Directorate Near-Earth Ob-
jects Observations Program. The CRTS survey is supported by the
US National Science Foundation under grants AST-0909182 and
AST-1313422. SV thanks Tom Maccarone for early discussions of
some ideas in this paper, and C. Bailer-Jones for advice about his
R code.

R E F E R E N C E S

Algeri S., van Dyk D. A., Conrad J., Anderson B., 2016, Eur. J. Phys. C.,
in press

Andrae R., Kim D.-W., Bailer-Jones C. A. L., 2013, A&A, 554, A137
Bailer-Jones C. A. L., 2012, A&A, 546, 89
Begelman M. C., Blandford R. D., Rees M. J., 1980, Nature, 287, 307
Charisi et al., 2015, MNRAS, 454, L21
Charisi M., Bartos I., Haiman Z., Price-Whelan A. M., Graham

M. J., Bellm E. C., Laher R. R., Marka S., 2016, MNRAS,
in press

Davies R. B., Harte D. S., 1987, Biometrika, 74, 95
Drake A. J. et al., 2009, ApJ, 696, 870

D’Orazio et al., 2015, Nature, 525, 351
Edelson R., Mushotzky R., Vaughan S., Scargle J., Gandhi P., Malkan M.,

Baumgartner W., 2013, ApJ, 766, 16
Edelson R., Vaughan S., Malkan M., Kelly B. C., Smith K. L., Boyd P. T.,

Mushotzky R., 2014, ApJ, 795, 2
Gierlinski M., Middleton M., Ward M., Done C., 2008, Nature, 455, 369
Gonzalez-Martin O., Vaughan S., 2012, A&A, 544, 80
Goodman J., Weare J., 2010, Commun. Appl. Math. Comput. Sci., 5, 65
Graham M. J. et al., 2015a, MNRAS, 453, 1562 (G15b)
Graham M. J. et al., 2015b, Nature, 518, 74 (G15a)
Haiman Z., Kocsis B., Menou K., Lippai Z., Frei Z., 2009a, Class. Quantum

Gravity, 26, 094032
Haiman Z., Kocsis B., Menou K., 2009b, ApJ, 700, 1952
Kelly B. C., Bechtold J., Siemiginowska A., 2009, ApJ, 698, 895
Kelly B. C., Sobolewska M., Siemiginowska A., 2011, ApJ, 730, 52
Kelly B. C., Becker A. C., Sobolewska M., Siemiginowska A., Uttley P.,

2014, ApJ, 788, 33
Kozłowski S. et al., 2010, ApJ, 708, 927
Kozłowski S., 2016, MNRAS, 459, 2787
Liu T. et al., 2015, ApJ, 803, L16
McHardy I. M., Koerding E., Knigge C., Uttley P., Fender R. P., 2006,

Nature, 444, 730
MacLeod C. L. et al., 2010, ApJ, 721, 1014
Mushotzky R. F., Edelson R., Baumgartner W., Gandhi P., 2011, ApJ, 743,

L12
Press W. H., 1978, Comment. Astrophys., 7, 103
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Summons D. P., Arévalo P., McHardy I. M., Uttley P., Bhaskar A., 2007,

MNRAS, 387, 649
Timmer J., König M., 1995, A&A, 300, 707-710
Uttley P., McHardy I. M., Vaughan S., 2005, MNRAS, 359, 345
Vaughan S., 2013, Phil. Trans. R. Soc. A, 371, 1984
Vaughan S., Uttley P., 2006, Adv. Space Res., 38, 1405
Volonteri M., Haardt F., Madau P., 2003, ApJ, 582, 559
Zheng Z.-Y., Butler N. R., Shen Y., Jiang L., Wang J. X., Chen X., Cuadra

J., 2016, ApJ, in press
Zu Y., Kochanek C. S., Kozłowski S., Udalski A., 2013, ApJ, 765, 106

A P P E N D I X A : M O R E D E TA I L S O N T H E
SI MULATI ONS

For each stochastic simulation, we generated a time series with N
= 214 points and 400 points per year, spanning ≈40 yr. The simu-
lations are of linear, stationary, Gaussian processes with zero mean
and a smooth (‘broad-band noise’) power spectrum, generated with
the fast method of Timmer & König (1995, see also Davies &
Harte 1987). The models are discussed in section 4, and their power
spectra illustrated in Fig. A1. Strictly, we simulate variations in the
V-band magnitude, so the simulations naturally account for the log-
normal distribution of (linear) flux (see Uttley, McHardy & Vaughan
2005).

The power spectrum is normalized such that the expected total
power (integral over all positive frequencies) is 7.5 × 10−3 mag2

(which translates to a fractional rms of Fvar = σ F/〈F〉 = 0.2 for
the linear fluxes). This is equivalent to SF∞ = 0.122 mag in the
notation of MacLeod et al. (2010). To the simulated 40 yr light
curves, we add an offset of 〈V〉 = 15.0, ignore the first 10 yr of fake
data (to mitigate ‘edge effects’ in the simulation) and use linear
interpolation between the regularly spaced (dt = 21.915 h) fake
data points to recover fluxes at ‘observation’ times with the same
sampling pattern as the CRTS data for PG 1302−102. We then add
independent random, Gaussian noise (μ = 0, σ = 0.015 mag) to
simulate observational noise. Finally, we truncate the magnitudes
to two decimal places to represent the discretization of the CRTS
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Figure A1. Power spectral models used for the simulations. The left-hand
panels show the power density P(f), the right shows f × P(f) which better
illustrates the power per decade in frequency. Frequency is in units of yr−1.
BPL is the (doubly) bending power-law model with bend frequencies at
flow = 1/(5 yr) and fhi = 1/(50 d). The mBPL is a modified model with
the low-frequency bend moved down to flow = 1/(20 yr). The DRW is the
‘damped random walk’ model which bends to an index −2 above fbend ∼
(2πτ )−1. In this case, τ = 200 d (the mean from MacLeod et al. 2010).
mDRW is a modified DRW model with a high-frequency index of −3.

photometric data. Error bars are then assigned with σ = 0.06 mag,
i.e. four times larger than the random error (as in the real data; see
section 2).

G15b include archival photometric data in addition to CRTS to
extend the length of their light curve. The best sampled of these is

the LINEAR data (Sesar et al. 2011) which adds another two seasons
of data prior to the start of the CRTS data. We have simulated this
by taking the sampling pattern of the first three CRTS seasons and
reversing it around the mid-point of the first CRTS season, to create
new time points with realistic sampling extending ≈2 seasons before
the first CRTS season. The fake CRTS + LINEAR data contain
360 data points.

For each periodic simulation, we employ a similar procedure
except the stationary Gaussian process is replaced by a sinusoid
with a random phase (in the range (−π , +π )), an amplitude of
0.125 mag (obtained by fitting the PG 1302−102 data; Section 2),
and a period drawn uniformly from the range 0.2–20 yr, i.e. 0.4–40
cycles over the 9-yr duration of the CRTS data. We then add the
mean magnitude, apply the same time sampling pattern, include
random errors, and discretize the magnitudes as above.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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