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Abstract 11 

The growth, breakage and re-growth of flocs formed using crude and purified seed extracts of 12 

Okra (OK), Sabdariffa (SB) and Kenaf (KE) as coagulants and coagulant aids was assessed. 13 

The results showed floc size increased from 300μm when aluminium sulphate (AS) was used 14 

as a coagulant to between 696μm and 722μm with the addition of 50mg/l of OK, KE and SB 15 

crude samples as coagulant aids. Similarly, an increase in floc size was observed when each 16 

of the purified proteins was used as coagulant aid at doses of between 0.123 and 0.74mg/l. 17 

The largest floc sizes of 741μm, 460μm and 571μm were obtained with a 0.123mg/l dose of 18 

purified Okra protein (POP), purified Sabdariffa (PSP) and purified Kenaf (PKP) 19 

respectively. Further coagulant aid addition from 0.123 to 0.74mg/l resulted in a decrease in 20 

floc size and strength in POP and PSP.  However, an increase in floc strength and reduced d50 21 

size was observed in PKP at a dose of 0.74mg/l. Flocs produced when using purified and 22 
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crude extract samples as coagulant aids exhibited high recovery factors and strength. 23 

However, flocs exhibited greater recovery post-breakage when the extracts were used as a 24 

primary coagulant. It was observed that the combination of purified proteins and AS 25 

improved floc size, strength and recovery factors. Therefore, the applications of Hibiscus 26 

seeds in either crude or purified form increases floc growth, strength, recoverability and can 27 

also reduce the cost associated with the import of AS in developing countries.  28 

Keywords: Hibiscus extracts, floc strength, coagulants, purified proteins, water treatment 29 

 30 

1.0 Introduction 31 

For decades, different chemicals have been applied in water treatment to aid the removal of  32 

contaminants and harmful substances. Chemical coagulants are added to destabilise the 33 

dispersed colloids, with charge neutralisation, adsorption and sweep flocculation being the 34 

major mechanisms of action (Duan and Gregory, 2003). Accelerated sedimentation is 35 

achieved by aggregating the flocs via slow mixing (flocculation) to form larger macro flocs 36 

facilitating removal in a sedimentation tank. However, to achieve satisfactory treatment, flocs 37 

must demonstrate sufficient strength so as not to be broken by the turbulent flow field found 38 

in the flocculator and clarifier.  Thus, the merit of each coagulant is judged based on, inter 39 

alia, the strength, size and density of the flocs formed. Previous work has observed that 40 

smaller flocs are more likely to resist rupture than larger flocs but may pose some challenges  41 

during removal compared to bigger flocs (Boller and Blaser, 1998, Jarvis et al., 2005c), as the 42 

mechanism and general mode of floc transportation is hampered if the flocs are small in size 43 

and so cannot settle effectively. Conversely, it can be argued that smaller and more compact 44 

flocs with tighter bonds will resist breakage and settle faster than larger, weaker flocs (Jarvis 45 

et al., 2005c). However, it has been reported that the stronger the flocs, the larger they can 46 
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grow under certain shear conditions (Mühle, 1993). However, (Sharp et al., 2006a) revealed 47 

that larger flocs can easily break in high turbulent condition, because they are weaker. It can 48 

be deduced here that highly compact flocs are generally stronger and smaller in size. Thus, it  49 

is challenging to prevent floc breakage under normal plant conditions, particularly in highly 50 

turbulent areas; consequently, the regrowth potential of flocs post-rupture is of interest.  51 

Many researchers have investigated floc properties, including floc strength, using different 52 

coagulants and under different plant operating conditions. Previous work has monitored floc 53 

growth, breakage and re-growth phases after the introduction of high shear rate (Jarvis et al., 54 

2005b, Yu et al., 2012, Xu et al., 2014). Yukselen and Gregory (2004) and Li et al. (2007) 55 

observed in their separate studies that AS flocs exhibit irreversible breakage. Conversely, Yu 56 

et al. (2014) evaluated the property of kaolin-alum flocs at low pH and showed that 100% 57 

floc recovery is possible if AS or Kegging polymer Al13 [AlO4Al12(OH)24(H2O)12]7+ was 58 

used as coagulant at acidic pH. Several others workers have also reported the importance of 59 

low pH in improving floc strength and recoverability using different chemical coagulants 60 

(Cao et al., 2010, Sun et al., 2011). Sharp et al. (2006b) investigated the properties of ferric-61 

NOM flocs and revealed that flocs generated by iron salts are larger and more resistant to 62 

breakage than AS flocs, resulting in accelerated settling. Beside AS producing irreversible, 63 

smaller and weaker flocs (Yukselen and Gregory, 2004, Sharp et al., 2006b, Li et al., 2007), 64 

research has also been undertaken to investigate the relationship between residual aluminium 65 

in water and Alzheimers disease (Gauthier et al., 2000, Flaten, 2001). Cost issues associated 66 

with the import of coagulants such as AS exacerbate these issues further for developing 67 

countries. It is, therefore, imperative to search for alternative natural coagulants and 68 

coagulant aids that will lower the cost of water treatment in developing countries and also 69 

improve water treatment efficiency. By so doing, the number of deaths resulting from 70 
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drinking contaminated water supply could be lowered in rural areas and life expectancy 71 

increased. 72 

Recently, several natural materials have been studied to assess their coagulation potential in 73 

water treatment. Preliminary investigation of some of these natural extracts has so far 74 

provided encouraging results for people in developing countries. Naturally-occurring plant 75 

extracts including Moringa oleifera (MO), Cactus latifaria, and Mustard seeds, have 76 

coagulation capability and can be used in water treatment (Jahn Samia, 1998, Diaz, 1999, 77 

Bodlund et al., 2014). Similarly, other natural plants, such as Hibiscus, are widely used in 78 

many tropical countries because of their nutritional values. Among the many Hibiscus plant 79 

species, only OK seed pod has been investigated as a flocculant in the treatment of water and 80 

wastewater (Agarwal et al., 2001, de Jesus et al., 2013). Recently, Jones and Bridgeman 81 

(2016) have demostrated the capability of OK seed extract in removing turbidity and bacteria 82 

in river water. Additionally, it has been reported that activated carbon derived from KE fibre, 83 

another Hibiscus plant could be used to treat water and wastewater with high heavy metal 84 

contents (Chowdhury et al., 2012). Conversely, there is no known report on the use of SB 85 

seed in either water or wastewater treatment. However, SB extract was found as an effective 86 

inhibitor of microbial growth when it was applied on some isolated microbes (Nwaiwu et al.,  87 

2012). Most of the reported work has centred on the coagulation activities of the extracts, 88 

whereas problems related to floc strength and recovery have not been investigated, despite 89 

their importance in the treatment process. Therefore, the aim of this study was to investigate 90 

the potential of using Hibiscus plant as a primary coagulant and as a coagulant aid, and to 91 

assess the floc characteristics in terms of floc size, strength, and recovery ability.   92 

 93 

2.0 Materials and methods 94 

2.1 Collection and preparation of the seeds 95 
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All the seeds used in this study, OK, KE and SB, were obtained from a local market in 96 

Nigeria. The seeds were manually prepared by removing the seeds from the capsules and 97 

pods to access the seed kernels. The seeds were cleaned by washing with tap water to remove 98 

contaminants such as stones, plant debris and dust and then dried in an oven at 60ºC for six 99 

hours. The dried seeds were ground into a fine powder for 2 minutes using a Tema laboratory 100 

disc mill. The ground seed powders were then sieved and the powder retained in the 212 µm,  101 

and 300 µm sieve sizes was combined and subsequently used in the preparation of the 102 

coagulants.  103 

 104 

2.2 Chemicals and reagents 105 

Analytical grade sodium chloride, aluminium sulphate and hydrochloric acid (Fisher 106 

Scientific, UK), kaolin Fluka-60609, (Sigma-Aldrich, Germany), sodium phosphate 107 

monobasic monohydrate (Sigma-Aldrich, Germany), and sodium phosphate dibasic (Sigma-108 

Aldrich, UK) were used in the study. Deionized (DI) water was used to prepare all 109 

suspensions and concentration solutions. 110 

 111 

2.3 Preparation and extraction of the natural seed coagulants 112 

1M sodium chloride (NaCl) solution was prepared by dissolving 58.5 g NaCl in 1000 ml of 113 

DI water to obtain the required concentration. The crude seed extract (CSEs) were prepared 114 

from the ground seed powders by adding 1.0 M NaCl solutions to the seed powder to make 115 

2% (w/v) suspension. The suspension was stirred vigorously using a magnetic stirrer for 116 

15min at room temperature (19±2ºC). The suspension was then centrifuged at 4500 rpm for 117 

10 minutes using a Heraeus Megafuge16 (Thermo Scientific, Germany). The suspension was  118 

decanted and the residual solids dried in an oven at 50ºC overnight. The weight of the dried 119 

solid material was measured to ascertain the amount of seed powder used in making the 120 
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suspension. The decanted suspension was then filtered through a Whatman No. 42 filter 121 

paper. The filtrates were termed crude extracts and were then used as primary coagulant or 122 

coagulant aids in a series of jar test experiments.  123 

2 g of AS powder was dissolved in 100 ml of DI water and the suspension rapidly mixed for  124 

15 minutes, using a magnetic stirrer. This AS coagulant was applied in the jar test 125 

experiments to determine the optimum coagulant dose required in the strength test.  126 

2.4 Protein purification and lipid extraction from the seed 127 

The ground seed powders (212µm−300µm) were defatted using high-grade hexane in an 128 

electro-thermal Soxhlet extractor. 20g of the seed powder was used during the extraction. For  129 

efficient extraction, 2L of solvent volume (hexane) was used and heated to 60 °C. The 130 

process was run continually for 8 hours with each complete cycle taking 2 to 3 minutes. The 131 

residues were dried overnight at room temperature (19±2°C) and the dried residue was 132 

ground into a fine powder using pestle and mortar and was applied in the subsequent 133 

purification processes. 134 

 135 

2.4.1 Purification by ion exchange column chromatography 136 

A HiTrap Q HP (1 ml) anion column, (GE Healthcare, Sweden) was used for the purification 137 

of the protein of interest of the hibiscus plants. The column connected to a pump (Watson-138 

Marlow Breeder pump 323, UK), and the pump head adjusted to a flow rate of 1 ml per 139 

minute. The preservatives were washed with 10ml of DI water, followed by ten column 140 

volumes (CV) of 1 M NaCl dissolved in the phosphate buffer. The column was then 141 

equilibrated with the phosphate buffer 10 CV before loading the protein. 5g of the oil-free 142 

powder was dissolved in 0.1 M phosphate buffer and mixed thoroughly for one hour using a 143 
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magnetic stirrer. The mixture was centrifuged at 20,000 rpm at 4°C for 40 minutes before 144 

decanting the supernatant. The supernatant was injected using a peristaltic pump onto the ion 145 

exchange column to separate the protein of interest from the contaminants.  146 

The sample was loaded at a flow rate of 1 ml per minute, where the protein of interest was  147 

bound to the Column matrix throughout the loading process. The weakly bound contaminants 148 

were washed away with the equilibrating (initial) buffer using 10 CV. The proteins of interest 149 

were eluted, beginning with, 0.3, 0.5 and 1.0 M of NaCl−phosphate buffers and the various  150 

fractions collected. The collected fractions were analysed for absorbance using a 151 

spectrophotometer (Varian Carey 50 probe UV-visible, Australia) and coagulation 152 

performance using a standard jar tester (Phipps and Bird, 7790-900B USA). The purified 153 

protein contents were evaluated for floc strength using a laser diffraction particle size 154 

analyser (Mastersizer, Malvern 2000, UK). 155 

 156 

2.5 Preparation of the synthetic turbid water 157 

Turbid water samples for the jar test experiments were prepared by adding kaolin particles to 158 

tap water. 40 g of laboratory grade kaolin (Fluka and high-grade, Sigma-Aldrich) was added 159 

to 400ml of tap water, and the suspension stirred for 30min using a magnetic stirrer. The 160 

suspension was made up to 1L by adding 600ml of tap water and then stirred for a further 161 

30min. The suspension was allowed to stand for 24hr for the kaolin to hydrate and then 162 

allowed to stand for another seven days. The supernatant was decanted, and 0.3ml of the 163 

stock solution was mixed with 1L of tap water to produce turbidity value ranges of 46 ± 164 

1NTU. 165 

2.6 Jar test experiments 166 

Jar tests were conducted using a standard apparatus (Phipps and Bird, 7790-900B, USA) 167 

comprising six 1L beakers  to evaluate the optimum coagulant dose for the coagulation tests. 168 
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For effective dispersion of the coagulant, the water was rapidly mixed at 200 rpm for 1.5 169 

minutes during which time various doses of the coagulant were added to the beakers. The 170 

mixing speed was then reduced to 30rpm for a further 25 minutes to simulate the flocculation 171 

stage. The suspension was then allowed to stand undisturbed for 1 hour to facilitate 172 

settlement. The long sedimentation time was adopted in order to assess the effectiveness of  173 

the process and to see whether the requirement to filter might be avoided after prolonged 174 

settlement for people in rural areas. A final treated water sample (10 ml) was drawn via 175 

syringe 2cm from the top surface of the water in the beakers. Both initial and final water 176 

turbidity were then measured using a turbidity meter (HI 93703, Hanna). In a separate 177 

experiment using river water, residual dissolved organic carbon (DOC) was measured in 178 

water before and after treatment with crude and purified samples. DOC measurement was 179 

conducted using TOC analyser (Shimadzu TOC-V-CSH). All experiments were performed at 180 

room temperature (19 ± 2ºC). 181 

2.7 Floc formation, breakage and reformation experiments  182 

To assess floc regrowth, flocs were broken by introducing rapid mixing at 200 rpm for 1.5 183 

min. The rotor speed was then reduced to 30 rpm for 25 min to determine the floc re-growth 184 

capability of the various coagulants. To compare the flocculation capacity of the seed extracts 185 

as coagulant aids, a predetermined dose was added before the end of the coagulation test with 186 

AS as a primary coagulant (i.e. 45s after the AS was dosed). 187 

Floc growth, breakage and re-growth were assessed using a laser diffraction instrument 188 

(Mastersizer 2000, Malvern, UK), following (Jarvis et al., 2005b, Li et al., 2007, Yu et al., 189 

2012). The Mastersizer was connected to a jar test apparatus and the liquid suspension was  190 

monitored by continuously drawing water through the optical unit of the Mastersizer and 191 

returning to the jar tester, as shown in Fig. 1.  192 
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 193 

Fig 1 Systematic connection of the Mastersizer 2000 and a jar test apparatus for floc properties 194 
monitoring. 195 

Pumping was via a peristaltic pump (Watson-Marlow, 323S, USA) positioned on the return 196 

tube with 4.8 mm internal diameter peristaltic pump tubing. The inflow and the outflow were 197 

located 10 mm above the blade of the jar tester and opposite each other. Measurements were 198 

taken every 35s for the duration of the experiment, and the results automatically logged onto 199 

a computer. The flow rate was kept at 2 L/hr (i.e. @33.3 ml/min) throughout the experiment  200 

to avoid either floc breakage or floc settling in the tubing. The coagulant dosage was the dose 201 

obtained from the earlier jar test results as described above.   202 

2.7.1 Floc strength and floc recovery factors 203 

To understand the properties of the coagulated flocs, it is important to consider the floc 204 

strength and floc recovery after exposure to high shear. Floc strength reveals the resistance of 205 

the flocs to stress and can be described using a strength factor. Similarly, the recovery factor 206 

reveals the ability of a floc to re-grow after breakage. Floc strength and recovery factors were 207 

calculated using Equations 1 and 2 following (Sun et al., 2011, Xiao et al., 2011, Yu et al., 208 

2014):  209 
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Sf = 𝑑2
𝑑1  × 100          Eq. 1 210 

Rf = 𝑑3−𝑑2
𝑑1−𝑑2

× 100         Eq. 2 211 

where d1 is the average median floc size established at the steady phase before breakage, d2 is  212 

the median floc size achieved after it was subjected to high shear rate. The average median 213 

size, d3, is the average median floc size achieved at the final steady phase after floc breakage. 214 

3.0 Results and discussion 215 

3.1 Floc growth and size of Hibiscus seed extracts as primary coagulants       216 

The results of the floc formation and breakage experiments using crude extracts of OK, SB 217 

and KE and AS as primary coagulants are shown in Fig 2. 50 mg/l dose of each extract was 218 

employed as primary coagulants in this work, and the median d50 floc size was considered 219 

throughout the study. The concentration of proteins in the extracts was 1.018 mg/ml in OK, 220 

0.918 mg/ml in SB and 0.631 in KE respectively. Fig 2 shows that the median floc sizes for  221 

SB and KE were approximately 176µm and 142µm respectively, lower than the 300µm floc  222 

size generated by AS as primary coagulants before breakage. While OK and AS achieved 223 

their largest floc sizes after reaching the steady growth phase, it is likely that SB and KE flocs 224 

were yet to reach the steady state when the high shear was reintroduced. Furthermore, the 225 

growth rate in SB and KE was found to be slower (Fig 2); hence, their flocs needed more 226 

time to reach the steady phase before a clearer comparison can be made between the floc 227 

sizes. It is clear that the performance of SB and KE extracts as primary coagulants in terms of 228 

floc growth was very poor compared with AS flocs due to slow growth rate. Generally, floc  229 

growth rates achieved by the crude extracts as primary coagulants were very slow as seen in 230 

Fig. 2. This is because the NOM contents, especially the lipid content in the seeds has the 231 

potential to coat the surfaces of the flocs (Harold, 2001, Eman N et al., 2010). Previously, 232 
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(Xiao et al., 2011) have shown that NOM can impede the aggregation of flocs in kaolin-233 

humic substance water sample. However, the floc growth rate was much faster in OK than in 234 

AS, demonstrating a shorter period to achieve maximum floc size, probably due to the high 235 

inter-particle bridging capability of the extract, which in real terms could result in lower cost 236 

of water treatment (Zhao et al., 2013b). In addition, when used as a primary coagulant, the 237 

OK sample exhibited good performance achieving the same floc size as that obtained by AS, 238 

(approximately 300µm). However, under these flocculation conditions, OK produced larger 239 

floc sizes due to its high protein concentration, 25% as reported by (Oyelade et al., 2003), 240 

compared to SB and KE seed with a lower protein content of 18.8% (Rao, 1996) and 13.04% 241 

(Mariod et al., 2010) respectively. Additionally, the high bridging action in OK may have 242 

been caused by the 5.09 mg of its protein in the 50 mg/l extract that was used for coagulation 243 

while in SB and KE, the amount of protein used for coagulation was 4.59 mg and 3.16mg 244 

respectively in the 50 mg/l extract.  245 

Several studies have indicated that the main agent of coagulation in natural extracts is the 246 

presence of dimeric cationic protein with molecular mass of 6.5 and 14kDa (Ndabigengesere 247 

et al., 1995, Ghebremichael et al., 2005, Bodlund et al., 2014).   248 
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 249 

Fig 2 Floc growth, breakage and re-growth of KE, OK, SB extracts and AS used as primary coagulants 250 

3.2 Floc growth and size of Hibiscus seed extracts as coagulant aids 251 

The growth, breakage and re-growth factor of AS and AS+extracts flocs were evaluated as  252 

shown in Fig 3. The AS dose was 5 mg/l, as determined from preliminary jar test experiment.  253 

Similarly, 50 mg/l of each extract was employed as coagulant aids in this work. The results  254 

show that floc growth was influenced greatly by the use of crude extract samples, the effect 255 

being to increase the effective particle collision radius to give greater contact opportunity. 256 

The floc growth patterns were found to be similar for all the extracts for the duration of the 257 

experiments. It appears that floc growth of AS+OK, AS+KE and AS+SB assume a rapid 258 

growth within a few minutes of the coagulation process, although the growth was faster in 259 

AS+SB extract than in AS+KE and AS+OK samples. At steady state, when used as coagulant 260 

aids, SB, KE and OK produced floc sizes of 696µm, 701µm and 722µm respectively, but did 261 

not re-grow to their original sizes after breakage. It is believed here that the organic matter 262 

contents in the seed extracts which affected floc growth in Fig 2, was removed by employing 263 

AS as a primary coagulant. Matilainen et al. (2005) showed that AS is capable of removing 264 

up to 95% of high molecular weight NOM in water. Comparing the floc size of AS+extracts 265 
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and AS alone in Fig. 3, the d50 values for the AS+extract combinations were more than twice 266 

the floc size of AS used as primary coagulant (approximately 300µm). The increase in size of 267 

the AS+extract combination compared to AS alone is attributed to the double action of 268 

charge neutralisation and adsorption of AS, being further enhanced by the bridging effect of  269 

the extracts. The extracts consist of several protein molecules that contain coagulation 270 

compounds that are not limited to charge neutralisation only but exhibit absorption and 271 

bridging also (Zhao et al., 2013a), which give rise to increased floc growth. It is believed that  272 

the most important coagulation mechanism here involves charge neutralisation and patchwise 273 

adsorption of AS, which later provides adsorption sites for the extracts to form bridges with 274 

the other particles. It is clear that the addition of AS first then followed by the extracts 275 

provided the most effective flocculation process to increase floc size. This result is in 276 

agreement with work reported by Yu et al. (2009), who observed that flocs formed by charge 277 

neutralisation and bridging action are larger than flocs generated by simple charge 278 

neutralisation. The AS floc size reported in this study (approximately 300µm) is the same as  279 

that obtained by (Zhao et al., 2013b), who used Enteromorpha extract as a coagulant.   280 

 281 
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 282 

Fig. 3 Floc growth, breakage and re-growth of OK, KE and SB extracts used as coagulant aids 283 

 284 

However, particle concentration in water has an impact on floc growth and size since the rate 285 

of adsorption and bridging by natural extract increases as particle concentration increases. 286 

For instance, Muyibi and Evison (1995) and Ndabigengesere et al. (1995) reported in 287 

separate studies that MO extract was found to be ineffective in coagulating low turbidity 288 

water. Similarly, Lee et al. (2001) used a low molecular weight polymer (10 and 50 kDa) as 289 

primary coagulant and observed that the polymer was more effective in the treatment of water 290 

with high turbidity. Thus the size of the floc in the work reported here may have increased 291 

beyond that size if higher turbidity water had been used. However, water samples with higher  292 

turbidity than the one used here were found to affect the measurement due to light 293 

obscuration.  Furthermore, the presence of many macro-molecules in the extracts with 294 

different MW proteins and polysaccharides with long carbon chains may be responsible for 295 

particle bridging. Such polymeric chains can effectively absorb colloids through absorption 296 

and bridging effects as in Fig. 3, which resulted in the formation of larger flocs. 297 

To examine the impact of low pH coagulation, the growth, breakage and re-growth of flocs 298 

formed by OK, SB and KE seed extracts at pH 4 are presented in Fig 4. At lower pH, the 299 
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average floc sizes of SB and KE were observed to be approximately 210µm and 174µm 300 

respectively; i.e. larger than their corresponding floc sizes of 176µm and 142µm when used 301 

as primary coagulants at neutral pH. However, during the same growth period, the d50 floc 302 

size of OK decreased from 300µm to 240µm at pH 4. One primary cause of the decrease in 303 

floc size in OK is thought to be due to the high lipid content in the seed and partly that there 304 

may be proteins in OK seed that are sensitive to pH change and so deteriorated at low pH. 305 

The change in pH may have caused a change in the protonation pattern of the proteins 306 

especially at lower pH where protein confugiration changes. Conversely, the increase in 307 

average d50 floc size in SB and KE is attributed to improved coagulation efficiency between 308 

the colloids and the coagulants at low pH, because kaolin particles have been reported to be 309 

less negatively charged at pH lower than neutral (Yin, 2010). 310 

 311 

Fig 4 Floc growth, breakage and re-growth using OK, SB and KE crude extracts at pH 4. 312 

3.3 The size of re-grown flocs of Hibiscus seed extracts   313 

The d50 values for all samples were found to decrease rapidly with the re-introduction of the 314 

high shear rate at 200 rpm. The flocs began to re-grow when the slow mixing was re-315 

introduced. Examination of Fig. 2 shows that when the extracts were used as primary 316 
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coagulants, whilst the size of the re-grown flocs were almost the same, (approximately 317 

146µm), the breakage was most severe in OK due to its high organic matter content, because 318 

flocs formed under such conditions are more fragile (Jarvis et al., 2005b). Furthermore, flocs  319 

generated by KE possess a higher strength factor than flocs produced by OK or SB under the 320 

same experimental condition. It is possible in this case that the ligand-binding site in KE has 321 

higher affinity than those of OK and SB seeds, which provide stronger bonding with other 322 

molecules. As re-growth floc sizes were similar across all the extracts, it is postulated that the 323 

breakage force may have induced similar changes on the floc properties because of 324 

similarities in amino acid sequence in the seeds and therefore the charge re-distribution 325 

resulted in similar floc re-growth. Therefore, the use of the extract as primary coagulants is 326 

not technically beneficial except that, it is affordable and easy to process to low income 327 

countries.  328 

Fig. 3 shows that as coagulant aids, AS+OK produced the largest regrown floc size of 350μm 329 

at steady state, compared to 280μm and 274μm for AS+SB and AS+KE respectively. The 330 

difference in size of the regrown flocs may have been caused by charge re-distribution after  331 

breakage. As a result, each extract took a different pattern of floc re-growth which could be 332 

linked to individual peptide structure (bonding sequence) of the extract. The results show no 333 

significant difference between the AS+SB and AS+KE flocs at steady state before and after 334 

breakage. The behaviour and response of the samples to the breaking force was similar but 335 

more extensive in AS+KE followed by AS+SB whereas the amount of breakage recorded in 336 

AS+OK was found to be lower. The performance of AS+OK was superior to that of AS+SB 337 

and AS+KE after floc breakage, due to the high protein concentration in OK. Such behaviour 338 

confirms that all the samples may possess similar protein compounds, although they may 339 

differ in composition and coagulation activity. 340 

 341 
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3.4 Floc strength and recovery factors of Hibiscus seed crude extracts 342 

Table 1 summarises floc strength and recovery ability, using coagulants extracted from 343 

Hibiscus seeds. The results show that as coagulant aids, OK exhibited the highest strength 344 

(25.5%) exceeding KE and SB (21.8% and 15.0% respectively). While floc strength factor 345 

increased from 21.8% to 33.8% in KE and 15% to 25.0% in SB, the strength of the OK-346 

derived flocs deteriorated from when used as coagulant aid to when used as primary 347 

coagulant. The low lipid contents in SB and KE extracts are thought to have helped in 348 

improving the inter-particle bonding resulting in higher strength factors. Conversely, the 349 

decrease in floc strength from (25.0% to 23.3%) in OK, is thought to be due to the presence 350 

of high lipid content in the seed which can inhibit inter-particle bonding due to lack of 351 

bridging action (Eman N et al., 2010, Sharp et al., 2006a). After floc breakage, a notable floc  352 

recovery was seen in both SB and KE as primary coagulants (100% and 76.5%, respectively). 353 

Following its low floc strength performance, OK again showed a corresponding poor floc 354 

regrowth by recovering only 32.6% of its original floc size.  Further evaluation of the flocs 355 

after breakage when OK, SB and KE were used as coagulant aids shows that, OK recorded 356 

the highest floc recovery factor of 38.6% compared with 26.6% and 23.5% recovery ability 357 

recorded by SB and KE respectively. The high recovery ability in OK which coincides with 358 

its high strength factor when used as coagulant aid is likely to be due to the combine effect of  359 

AS plus the high protein content in the seed which improve the charge neutralisation and 360 

bridging action. The work reported here observed a direct relationship between strength 361 

factor and recovery factor in both OK and KE extracts. The results show that a poor floc 362 

strength factor led to limited floc recovery, whereas stronger flocs exhibited a level of 363 

significant floc re-growth.   364 

Table 1 shows that there was very little difference between the floc strengh in OK and KE 365 

extracts at low pH (29.3% in OK, 28.7% in KE and 33.3% in SB).  It is clear that the acidic  366 
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pH value played an important role in improving the strength of OK and SB, enabling 367 

adsorption sites for tighter bonding but slower floc growth, especially in OK. However, the 368 

floc strength of KE at pH 4 when used as a primary coagulant is reduced from (33.8% to 369 

28.7%). Table 1 further shows the re-growth of flocs formed by the three samples at low pH 370 

after floc breakage, indicating a recovery ability of 46.8% for KE, 65.7% for SB and 75.7% 371 

for OK. In separate studies, Cao et al. (2010)  and Sun et al. (2011) reported that flocs formed 372 

in acidic pH region were stronger and more recovarable than flocs generated in alkaline 373 

conditions. However, despite the high floc strength of 33.3% recorded at pH 4 by SB, floc re-374 

growth was 65.7%; i.e. lower than the 100% floc recovery ability recorded when its floc 375 

strength was 25% as primary coagulant. The cause of this is likely to be due to a change in 376 

protonation pattern of SB protein at low pH which affected its binding activity during floc re-377 

growth.  378 

 379 

Table 1 Characteristics of floc strength and recovery factor of crude extract used as primary coagulants and as coagulant aids 380 

         Crude coagulant  

Parameters  OK                 SB  KE 

Strength factor (%)    

• CE+AS @ neutral pH  25.5               15.0 21.8 

• CE @ neutral pH  23.3               25.0 33.8 

• CE @ pH4  29.3               33.3 28.7 

Recovery factor (%)    

• CE+AS @ neutral pH  38.6               26.6 23.5 

• CE @ neutral pH  32.6               100 76.5 

• CE @ pH4  75.7                65.7 46.8 

 381 

3.5 Floc growth and size of purified Hibiscus seed as coagulants and as coagulant aids 382 
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The performance of purified protein samples on floc growth and size as primary coagulants  383 

or as coagulant aids are presented in Figs 5, 6 and 7. In the work reported here, coagulant 384 

protein doses used in the experiments were 0.123, 0.37 and 0.74 mg/L with a pre-determined 385 

AS dosage of 5mg/L obtained from preliminary jar test results. The concentration of each of  386 

the purified proteins used in the study was found to 1.238 in POP, 1.211 in PSP and 1.092 387 

mg/ml in PKP respectively. Fig 5 shows that the largest floc size of approximately 741μm 388 

was recorded when 0.123 mg/l of POP was added to 5 mg/l of AS, as coagulant aid. It is 389 

clear, therefore, that the purification of OK seed proteins greatly improves its performance as 390 

a coagulant aid. Further increase in POP dose from 0.123 mg/l to (0.37 and 0.74mg/L) led to 391 

a decrease in floc size, producing median d50 floc sizes of 490μm and 502μm respectively. 392 

This decrease in floc size is attributed to the release of excessive charged species from the 393 

combined effects of AS and POP needed for effective charge neutralisation, adsorption and 394 

bridging flocculation to occur. It is essential for successful bridging to occur using natural 395 

coagulant that sufficient particles with available unoccupied surfaces are present in order to 396 

facilitate polymer chains attachment that are adsorbed on other particles (Bolto and Gregory, 397 

2007). In this case, subsequent addition of the coagulant proteins+AS reduced the available 398 

particle surfaces for charge neutralisation, resulting in insufficient adsorption sites for inter-399 

particle bridging. These conditions of increasing coagulant aid dose to 0.37 and 0.74 mg/l 400 

resulted in the formation of smaller floc sizes. Interestingly, the re-growth ability of flocs 401 

formed from water coagulated with 0.37 and 0.74 mg/l of POP as coagulant aid, and when 402 

POP was used as primary coagulant, was much lower than when 0.123 mg/l was employed as  403 

a coagulant aid. Overall, the floc sizes attained were approximately 300µm with 0.123 mg/l, 404 

196 µm with 0.37 mg/l, and 232 µm in both 0.74 mg/l and POP despite their small pre-405 

breakage floc sizes.  406 
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 407 

Fig 5 Floc growth, breakage and re-growth of POP used as primary coagulant and as coagulant aids 408 

Fig 6 shows the growth, breakage and re-growth of aggregated floc formed by PSP. A faster  409 

initial floc growth rate was exhibited by the PSP sample with coagulant aid doses of 0.123, 410 

0.37 and 0.74 mg/l in combination with AS than when used as a primary coagulant. At steady 411 

state, maximum floc sizes, d50 of 580μm and 519µm were achieved with 0.123 mg/l and 0.37 412 

mg/l doses respectively.  The flocs generated with 0.74 mg/l of PSP in conjunction with AS 413 

were weaker and smaller in size, producing 491µm diameter flocs. This reduced floc size is  414 

largely due to saturation of polymer bridging sites caused by the additional coagulant dose. 415 

At steady state, PSP assumed a different pattern of floc growth, where the absolute deviation 416 

of the median floc size about the mean value was found to be greater than in flocs generated 417 

by POP. However, the pattern taken by the regrown flocs was similar for all samples 418 

regardless of coagulant aid dosage and also irrespective of pre-breakage floc size. During 419 

flocculation, thread-like flocs, visible to the naked eye under lamination, grow in length and 420 

circumference. At the end of the measurement period, the regrown flocs reached a steady 421 

phase d50 floc size of 243μm in all the samples, including flocs formed by PSP as primary 422 

coagulant. It is noteworthy that, when used as primary coagulant, PSP produced an initial 423 

median floc size, ranging between 295 and 300μm similar to the floc generated by AS as 424 
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coagulant, (approximately 300μm). However, the ionic strength of SB species was not 425 

sufficient to compress the double layer during coagulation as revealed by its surface charge 426 

potential.   427 

 428 

Fig 6 Floc growth, breakage and re-growth of PSP used as primary coagulant and as coagulant aids 429 

Fig 7 shows floc growth, breakage and re-growth performance when using PKP as coagulant 430 

and as a coagulant aid. A maximum median floc size of 480μm was recorded when 0.123 431 

mg/l of PKP was used as coagulant aid in conjunction with AS. The results show a decrease 432 

in floc size as the dosage of the coagulant aid increased, similar to the trend of floc growth 433 

shown by POP and PSP. A maximum floc size of 335μm was recorded with 0.37 mg/l of 434 

PKP and 310μm diameter floc size was generated with 0.74 mg/l dose. This again is due to 435 

insufficient adsorption sites as most of the available particle surfaces are covered with 436 

increased coagulant addition. This situation can be overcome by improving bridging 437 

flocculation conditions. La Mer (1966) postulated that optimum dosage corresponds to half of 438 

the particle surface coverage. Hence, understanding the surface charge potential in a system 439 

plays an important role in achieving enhanced floc formation during flocculation. Again, the 440 

recovery ability of floc generated by 0.37 and 0.74 mg/l of PKP as coagulant aid and PKP as  441 
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primary coagulant was found to be higher than floc recovered by 0.123 mg/l of PKP used as  442 

coagulant aid. While the d50 size of the regrown floc was 201μm with 0.123 mg/l dose of 443 

PKP, the 0.37 and 0.74 mg/l doses achieved post-breakage steady d50 sizes of 164μm and 444 

211μm respectively. Thus, as coagulant aid, PKP exhibited the greatest floc strength and re-445 

growth capability at a higher dose, although the initial floc size was smaller. There was a 446 

modest, yet noticeable, amount of thread-like flocs using PKP, but this was less than that 447 

observed in PSP flocs, indicating that the two seeds may have linked amino acid 448 

characteristics.   449 

 450 

Fig 7 Floc growth, breakage and re-growth of PKP used as primary coagulant and as coagulant aids 451 

3.6 Floc strength and recovery using purified Hibiscus seed proteins 452 

Table 2 presents floc strength and recovery of the purified hibiscus proteins used as primary 453 

coagulants and as coagulant aids. When the purified seed proteins were used as primary 454 

coagulants, the results show that the highest strength factor of 24.3% was recorded for POP, 455 

21.7% for PSP and 18.2 % for PKP while flocs formed by AS had a strength factor of 456 

approximately 20%. In addition, the results show that flocs formed with POP and PSP dosed 457 

as coagulant aids can resist marginally higher shear with a 0.123 mg/l dose compared to AS 458 
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at 5mg/l dosage under the same coagulation conditions. The high floc strength recorded by 459 

the two purified samples is thought to be due to the protein contents and their sequence in the 460 

seeds with a higher affinity to bind other molecules. The presence of many macromolecules  461 

from natural extracts is reported elsewhere to be associated with adsorption and bridging 462 

action which is believed to be the main agent for the coagulation activity (Antov et al., 2010).  463 

Furthermore, the addition of the 0.123 mg/l dose as coagulant aid with AS produced larger 464 

floc size with corresponding decrease in floc strength of POP and PKP, whereas the floc 465 

strength of PSP remain largely unchanged . This results agrees with (Jarvis et al., 2005a) who 466 

observed that the resistance of smaller flocs in turbulent flow regions is higher than that of 467 

larger flocs. 468 

Table 2 Characteristics of floc strength and recovery factor of purified proteins used as primary and as 469 
coagulant aids  470 

 

Parameters                                                            POP              PSP            PKP             AS 

Strength factor (%) 

• Primary coagulant                                     24.3              21.7           18.2             20 

• AS + 0.123 mg/l                                        20.8              21.4           14.0              ͟ 

• AS + 0.37 mg/l                                          20.9              22.2           31.3              ͟  

• AS + 0.74 mg/l                                          19.2              19.5           35.6              ͟ 

Recovery factor (%) 

• Primary coagulant                                     70.7              71.4            64.3             50 

• AS + 0.123 mg/l                                        27.3              25.7            38.0             ͟ 

• AS + 0.37 mg/l                                          28.4              25.2            25.1             ͟ 

• As + 0.74 mg/l                                           36.9             31.4             59.0             ͟ 

Interestingly, when the coagulant dose was increased from 0.123 to 0.37 mg/l, and 471 

maintaining the same shear rate, the strength factor was broadly the same for POP (20.8% to 472 

20.9%) but increased slightly for PSP from 21.4% to 22.2%.  In the case of PKP, the increase 473 

was significantly higher, from 14.0% to 31.3%. Further increase in coagulant aid dose to 0.74 474 

mg/l caused further floc strength decline in POP and PSP. It is thought that a lack of proper  475 
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initial bonding due to polymer saturation may have been the major cause of this trend in floc 476 

strength deterioration. Under the same conditions, floc strength improved further in PKP 477 

from (31.3% to 35.6%). PKP flocs were found to behave in a similar fashion to AS in work 478 

reported by (Yu et al., 2014), who showed that an increase in alum dose during coagulation 479 

resulted in increased floc strength. The work reported here noted that an increase in PKP 480 

dosage from 0.123 to 0.74 mg/l resulted in a further increase in floc strength factor, from 18.2 481 

to 36.0%. Although PKP has low protein content as reported earlier, flocs generated by 0.37 482 

and 0.74 mg/l PKP were stronger than flocs formed by POP and PSP under the same dosage 483 

condition. The result demonstrated that if PKP is used as coagulant aid with AS, at a higher 484 

dose of 0.74mg/l, the improvement in floc strength was significantly higher compared with 485 

0.123 and 0.37 mg/l doses. Further investigation revealed that floc reversibility of the purified 486 

proteins was better when the samples were used as primary coagulants, with PSP, POP and 487 

PKP re-growing to 71.4%, 70.7% and 64.3% of their original size respectively, whereas AS 488 

flocs recovered only 50% of their original size. The slight difference in floc recovery ability 489 

in PKP may be attributed to its low protein content of 10.56% as reported by (Mariod et al., 490 

2010). However, there is a clear indication that all the seeds have some similarity in their 491 

amino acid sequence, since they are of the same species, and the redistribution of the surface 492 

charge after breakage took a broadly similar pattern. Furthermore, at a higher coagulant aid 493 

dose of 0.74 mg/l, the recovery factor improved across all the samples compared to 0.123 494 

mg/l dose. While floc recovery ability was 59.0% in PKP and 36.9% in POP, the recovery 495 

factor was only 31.4% in PSP which was lower than the recovery ability recorded by the 496 

other samples. Again, at the 0.123 mg/l dose, floc recovery by the PKP sample was much 497 

higher than the maximum floc re-growth achieved by PSP and POP at 0.74 mg/l as coagulant 498 

aid. It is noteworthy, however, that the re-growth of PSP and PKP flocs was the same, 499 

(approximately 25% at 0.37 mg/l dose) while the regrown floc was 28.4% in POP. 500 

Nevertheless, all flocs generated by POP and PKP as coagulant aids achieved higher floc 501 
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recovery factors than PSP flocs under the same shear force condition, probably as a result of 502 

the thread-like flocs formed by PSP being easily broken.  503 

 504 

3.7 Effect of DOC in treated water using Hibiscus plants 505 

Figure 8 shows the residual DOC concentration when water was dosed with specific Hibiscus 506 

crude extract concentrations. The result reported in this work is in agreement with several 507 

previous research studies (Ndabigengesere and Subba Narasiah, 1998, Okuda et al., 2001) 508 

where DOC addition in final water was found to be significant. The DOC concentration 509 

increased from 6.7 mg/l in raw water to 19.1, 15.7 and 17.1 mg/l when dosed with 100 mg/l 510 

of OK, SB and KE, respectively. Crude extracts may contain compounds other than proteins  511 

such as fats carbohydrate, fibre etc. which impacted the overall water treatment quality. The 512 

organic matter from the extracts may be a surrogate for disinfection by-products (DBPs) 513 

formation if chlorine is used (Liu et al., 2014).  514 

 515 

 Fig 8 Impact of DOC additions in treated water using OK, SB and KE seed extracts. 516 
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Similarly, Figure 9 shows the performance of the purified proteins in terms of DOC 518 

concentration in the clarified water. It is noteworthy that the use of POP, PSP and PSP 519 

lowered the treated water DOC in the final water. At optimum doses, DOC decreased from 520 

6.7 mg/l to 5.0, 5.1 and 5.5 mg/l in POP, PSP and PKP treated waters. It is clear that the use 521 

of the purified proteins can reduce the impact of DBP formation in water and the purification 522 

process achieved the desired goal of obtaining the proteins in pure state. All the contaminants 523 

in the seeds that may have contributed to increasing the overall organic matter in water were 524 

removed.  525 

 526 

Fig 9 Impact of DOC in treated water using POP, PSP and PKP as coagulants. 527 
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4.0 Conclusions  529 

1. When used as a coagulant aid in conjunction with AS as the primary coagulant, 530 

Hibiscus seed extracts can significantly improve floc growth and strength in water 531 

treatment. A doubling of floc size was achieved with a 0.123 mg/l dose of purified 532 

seed proteins. The floc recovery ability of POP, PSP and PKP was found to increase 533 

as coagulant aids doses increased to 0.74 mg/l, but an improved floc re-growth of 534 
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70.7%, 71.4% and 64.3% was achieved by POP, PSP and PKP when the samples 535 

were used as primary coagulants. 536 

2.  Flocs formed by PKP at a dose of 0.74 mg/l and flocs formed with 0.123 mg/l of PSP 537 

were more resistant to breakage than AS flocs, but POP flocs were strongest when it  538 

was used as a primary coagulant.   539 

3.  The application of Hibiscus seeds can help to prevent filter clogging because it 540 

generate larger flocs that can settle effectively, especially as coagulant aids.  In crude 541 

form, SB and KE exhibited excellent re-growth capability (100% and 76.5%, 542 

respectively).  543 

4. The findings support the hypothesis that the dominant flocculation mechanism for all 544 

the extracts was favoured by sorption and bridging action due to the availability of 545 

many macro-molecular proteins which are anionic. 546 

5. The effects of Hibiscus plant seeds as coagulant aids were clearly demonstrated in this  547 

work and so a notable benefit can be derived from its application by people in low 548 

income countries, because it is non-toxic and significant cost savings can be achieved 549 

in water treatment due to the lower dose of AS requirement.     550 
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