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A B S T R A C T

The fungal pathogen Cryptococcus neoformans poses a major threat to immunocompromised patients and
is a leading killer of human immunodeficiency virus (HIV)-infected patients worldwide. Cryptococci are
known to manipulate host macrophages and can either remain latent or proliferate intracellularly within
the host phagocyte, a favourable niche that also renders them relatively insensitive to antifungal agents.
Here we report an attempt to address this limitation by using a fluorescence-based drug screening method
to identify potential inhibitors of intracellular proliferation of C. neoformans. The Prestwick Chemical Library®

of FDA-approved small molecules was screened for compounds that limit the intracellular replication
of a fluorescently-tagged C. neoformans reference strain (H99-GFP) in macrophages. Preliminary screen-
ing revealed 19 of 1200 compounds that could significantly reduce intracellular growth of the pathogen.
Secondary screening and host cell cytotoxicity assays highlighted fendiline hydrochloride as a potential
drug candidate for the development of future anticryptococcal therapies. Live cell imaging demon-
strated that this Ca2+ channel blocker strongly enhanced phagosome maturation in macrophages leading
to improved fungal killing and reduced intracellular replication. Whilst the relatively high dose of fendiline
hydrochloride required renders it unfit for clinical deployment against cryptococcosis, this study high-
lights a novel approach for identifying new lead compounds and unravels a pharmacologically promising
scaffold towards the development of novel antifungal therapies for this neglected disease.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Cryptococcus neoformans is an opportunistic fungal pathogen that
can cause fatal infections in immunocompromised individuals. The
infection process begins with inhalation of infectious agents (spores
or desiccated yeasts) resulting in a primary pulmonary infection,
which, in response to immunosuppression, can further dissemi-
nate to the central nervous system causing meningitis [1]. Human
immunodeficiency virus/acquired immune deficiency syndrome
(HIV/AIDS) patients are particularly prone to cryptococcal infec-
tions, with an estimated overwhelming disease burden of

approximately one million cases of cryptococcal meningitis (CM)
per year [2,3]. The highest incidence of CM-related deaths in HIV-
positive patients occurs in sub-Saharan Africa, with an associated
mortality of 70% [2]. Despite the advent of highly active antiretroviral
therapy, CM-related mortality remains prevalent among HIV/AIDS
patients in developing regions [4,5].

Alveolar macrophages form the first line of defence against Cryp-
tococcus, however the fungus is able to survive and replicate within
the macrophage phagosome following internalisation [6–8]. The
exact mechanisms facilitating intracellular survival of the patho-
gen within phagosomes are not fully understood, but recent data
suggest that the process of phagosomal maturation is subtly per-
turbed leading to reduced antimicrobial activity in this compartment
[9] and phagolysosomal damage [10]. Continued replication of the
fungus eventually leads to lysis of the host macrophage or non-
lytic release of the pathogen by a process termed vomocytosis [11,12].

Current World Health Organization (WHO) guidelines for CM
management in AIDS patients recommend ‘gold-standard’ combi-
nation therapy with amphotericin B (AmB) and 5-flucytosine (5-
FC) followed by lifelongmaintenance with fluconazole (FLU) [13,14].
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However, the need for intravenous dosing together with
significant clinical toxicity and thus a requirement for therapeutic
monitoring, particularly for optimising 5-FC dosing in patients with
renal impairment, has limited deployment of this approach in
resource-limited settings [15–17]. Therefore, novel and effective al-
ternatives to these mainstay anticryptococcal drugs are needed.
Compounds that drive clearance of cryptococci from the intracel-
lular niche offer a powerful alternative approach to treating
cryptococcosis and may hold promise as adjunct therapy to use
alongside existing antifungals.

To identify such compounds, we have employed a high-
throughput fluorescence-based screening approach to probe 1200
US Food and Drug Administration (FDA)-approved small mol-
ecules for their ability to inhibit intracellular proliferation of
C. neoformans in murine macrophages (Fig. 1). Shortlisted com-
pounds were further probed for host cell cytotoxicity and antifungal
activity, and lead molecules were validated in vitro by intracellu-
lar killing assays, leading to the identification of fendiline
hydrochloride as a potential candidate compound. Finally, we dem-
onstrated that fendiline hydrochloride improves the phagosomal
maturation rate and thus facilitates killing of C. neoformanswithin
the host cell.

2. Materials and methods

2.1. Yeast cells and growth conditions

All reagents were purchased from Sigma unless otherwise stated.
Green fluorescence protein (GFP)-expressing C. neoformans sero-
type A strain (H99-GFP) and Cryptococcus gattii serotype B strain
(R265-GFP) were used for this study [18] and were grown over-
night in YPDmedium (2% glucose, 1% peptone and 1% yeast extract)
on a rotator revolving at 240 rpm at 25 °C prior to all experiments.

2.2. Macrophage cell line culture

Cells from the murine macrophage-like cell line J774A.1 were
used between passages 4 and 14 after thawing and were cultured

in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with
2mM l-glutamine, 100 U/mL penicillin, 100 U/mL streptomycin and
10% foetal bovine serum (FBS) at 37 °C and 5% CO2.

2.3. Assay development and primary screening assay

The Prestwick Chemical Library® containing approximately 1200
FDA-approved small molecules was accessed via the Birmingham
Drug Discovery Facility (University of Birmingham, Birmingham, UK).
Shortlisted compounds were repurchased from Sigma-Aldrich unless
otherwise mentioned. The drugs were dissolved in dimethyl
sulphoxide (DMSO), which served as a negative control, and were
used at a final assay concentration of 10 μM, and AmB (final assay
concentration 1.25 μg/mL) was used as a positive control. Primary
screening of compounds was performed at the Drug Discovery Unit
(University of Birmingham) using a Hamilton STAR liquid han-
dling robot (Hamilton Robotics, Bonaduz, Switzerland) integrated
with a microplate reader (BMG LABTECH, Ortenberg, Germany) en-
abling GFP fluorescencemeasurement. Macrophages (0.25 × 105 cells/
well) were seeded in a glass-bottom 96-well plate (Greiner Bio One
Ltd., Stonehouse, UK) 18 h before infection. An overnight culture of
strain H99-GFP was harvested by centrifugation at 6500 rpm for
2.5 min, washed three times with phosphate-buffered saline (PBS)
and opsonised with 5% pooled human serum (not heat-inactivated)
for 1 h at room temperature prior to infection. Macrophages were
activated with 150 ng/mL phorbol myristate acetate (PMA) for 1 h
in DMEM without FBS and were infected with yeast cells [multi-
plicity of infection (MOI) 10:1] for 2 h at 37 °C. At this point, total
GFP fluorescence was measured (t0′) to control for well-to-well vari-
ation in cryptococcal exposure. Then, themediumwas aspirated and
cells were washed with PBS to remove extracellular yeasts. The GFP
fluorescence corresponding to only intracellular yeast was mea-
sured (t0) and medium containing drugs was added to the cells and
was incubated for a further 18 h at 37 °C in 5% CO2. After 18 h, the
GFP fluorescence was measured (t18′) to determine the total yeast
burden. Extracellular yeast was then removed by washing with PBS
and a final GFP fluorescence reading (representing intracellular yeast
only) was taken (t18). The total (intracellular plus extracellular) pro-
liferation rate (PR) was quantified as the relative fluorescence ratio
of t18′/t0′, whilst the intracellular proliferation rate (IPR) was quan-
tified as the ratio t18/t0. The statistical parameters signal-to-basal
(S/B) ratio, Z′ factor and percent coefficient of variation (%CV) were
calculated as follows [19]:

′ = − +( ) −Z n p n p1 3 3σ σ μ μ

S B n p= μ μ

% CV n n= ×σ μ 100

where μn, σn, μp and σp are the means (μ) and standard deviations
(σ) of the negative and positive controls, respectively.

2.4. Secondary screening (phagosomal maturation studies)

Macrophages (0.5 × 105 cells/well) were seeded into a glass-
bottom 96-well plate and were infected with serum-opsonised H99-
GFP cells (MOI 10:1) following activation with PMA as described
above. Where necessary, yeasts were heat-killed at 55–60 °C for
30 min before serum opsonisation and infection as described pre-
viously [9]. At 2 h post-infection, mediumwas replaced with serum-
free DMEM supplemented with 5 μM of drugs (equivalent to 0.1%
DMSO) or 1.25 μg/mL AmB containing the acidotropic dye 50 nM
LysoTracker® Red DND-99 (Invitrogen, Molecular Probes, Waltham,
MA). Cells were then taken for live imaging for 18 h.

Fig. 1. Screening strategy for library molecules. A total of 1200 US Food and Drug
administration (FDA)-approved small molecules were screened for intracellular growth
inhibition of Cryptococcus neoformans in macrophages. The primary screen yielded
19 active compounds that were further probed for host cell cytotoxicity and fungal
growth inhibition. Eleven compounds were shortlisted for phagosomal maturation
screening, which identified only one promising drug hit candidate, D9 (fendiline hy-
drochloride). Finally, the mechanism of action of fendiline was investigated. MoA,
mode of action.
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2.5. Cytotoxicity assay

Macrophage cell cytotoxicity of the compounds was tested using
the LDH Cytotoxicity Detection Kit (Takara Bio Inc., Kusatsu, Japan)
according to the manufacturer’s protocol. Macrophages were seeded
into 96-well plates at a density of either 0.25 × 105 cells/well or
0.5 × 105 cells/well and were cultured overnight. Medium was re-
placed with serum-free DMEM containing either 5 μM or 10 μM of
drug and cells were incubated at 37 °C in 5% CO2 for a further 18 h.
Lactate dehydrogenase (LDH) enzyme released into the cell culture
supernatant was measured as a colorimetric change after addition
of reaction mixture. The plate was read at 490 nm using a FLUOstar
Omega Microplate Reader (BMG Labtech) after 10 min incubation
at room temperature. 1% Triton X-100 was used as a positive control.
Treatments were done in triplicate and the mean absorbance was
calculated. The percent cytotoxicity for samples was expressed as
a percentage of the positive control (100% for positive control).

2.6. Live imaging

Time-lapse imagingwas performed at 37 °C using a Nikon TE2000
microscope (Nikon, Tokyo, Japan) in a humidified chamber with 5%
CO2 with a 20× or 60× objective (Nikon) as indicated. Images were
captured every 5 min for 18 h and were analysed using NIS-
Elements Advanced Research software (Nikon). The IPR was
determined at 12 h (t12) due to excessive extracellular cryptococ-
cal growth at 18 h precluding measurement at this time point.

2.7. Fungal growth inhibition assay

For the fungal growth inhibition assay, 105 yeast cells were added
per well in YPD broth supplemented with 5 μM of drug or the re-
spective control (1.25 μg/mL AmB or 0.1% DMSO) in a 48-well plate
(Greiner Bio One). Fungal growth kinetics was measured over a 24-h
time period by reading the plate at 600 nm every 30 min using a
FLUOstar OmegaMicroplate Reader. Plates were incubated through-
out at 25 °C in the plate reader.

2.8. Statistical analysis

All statistical analyseswere performed using GraphPad Prism soft-
ware (GraphPad Software Inc., La Jolla, CA) with all data represented
as the mean ± standard deviation (S.D.) from at least three inde-
pendent experiments unless otherwise stated. Data analyses were
done using the Mann–Whitney U-test, one-way analysis of vari-
ance (ANOVA) or Fisher’s exact test (two-tailed) as indicated in the
respective figure legends.

3. Results

3.1. Assay development to monitor intracellular proliferation of
C. neoformans in macrophages and primary screen design

To identify small molecules that inhibit the intracellular growth
of C. neoformans in macrophages, a high-throughput fluorescence-
based automated screen was designed to score replication of a GFP-
expressing C. neoformans in macrophages (Fig. 1). Macrophages were
infected with strain H99-GFP in 96-well plates and the IPR of the
yeast was quantified by GFP fluorescence after 18 h following phago-
cytosis and drug addition. As a proof of concept and in order to
establish the accuracy of the assay principle in evaluating intracel-
lular proliferation of H99-GFP under different drug treatments, the
IPR and total PR in response to DMSO, AmB and FLU were first as-
sessed manually (Fig. 2A). Whilst the IPR values remained mostly
consistent for DMSO (the carrier control) and FLU (which has poor
penetration into the phagosome), it decreased significantly for AmB

(Fig. 2A), demonstrating that the screening set-up is able to dis-
criminate agents that are active intracellularly from those with only
extracellular activity. Therefore, we proceeded with the high-
throughput screen using DMSO and AmB as negative and positive
controls, respectively, which yielded significantly different IPR values
for DMSO and AmB treatments (Fig. 2B). High-throughput screens
are typically characterised by a Z′ factor ≥0.5 and high S/B values
[19,20]. According to Zhang et al, an assay with a Z′ value >0 and
<0.5 is considered to bemarginal but feasible for screening [19]. Both
the Z′ factor (0.37) and S/B (4.3) values for our screen fell within
the range that is deemed suitable for high-throughput screening
[19,20], and the %CV value of 12% was well below the recom-
mended 20% limit [20] (Table 1; Fig. 2B). Thus, the screening
procedure, whilst inherently noisy, appears sufficiently sensitive to
identify promising lead compounds.

To exclude the possibility of molecules inhibiting phagocytic
uptake of yeasts, the compound library was added after phagocy-
tosis. From the preliminary screening, only those compounds that
exhibited a statistically significant decrease in IPR (i.e. 2 S.D. lower
than the mean IPR of the total 1200 compounds) were considered
as ‘primary hits’ (Fig. 2C). This preliminary screening yielded a total
of 19 small molecules that significantly inhibited intracellular growth
relative to the DMSO control (data not shown). Compounds that vi-
sually exhibited significant macrophage toxicity or with previously
reported antimicrobial (including antifungal) activity were further
discarded. Compounds that significantly lowered PR values (i.e.
showed potent extracellular fungicidal effects) were also excluded
(data not shown). After applying these filters, 13 unique mol-
ecules that limit C. neoformans survival in macrophages were
identified. These selected compounds were repurchased from com-
mercial sources for further tests and are denoted as D2–D14 (data
not shown).

3.2. Validating host cell cytotoxicity and direct antifungal activity of
D2–D14 compounds

To confirm the primary screen-specific effects, the 13 selected
repurchased compoundswere tested under different conditions using
a reduced compound concentration (5 μM), lower DMSO content
(0.1%) and higher macrophage density. As observed in Fig. 3A, treat-
ment of amacrophage cell density of 0.25 × 105 cells/well with 10 μM
compounds (1.25 μg/mL AmB) and a corresponding 2.5% DMSO
control yielded a high level of macrophage cytotoxicity. In con-
trast, treatment with a 5 μM drug dose corresponding to a lowDMSO
content of 0.1% and higher cell density (0.5 × 105 cells/well) en-
hanced macrophage survival (Fig. 3B), thereby prompting us to use
the latter setting for further investigation.

We validated that the selected doses of the compounds (5 μM
and corresponding 0.1% DMSO) were not directly toxic to the fungi.
For this, the growth inhibitory activity of the selected compounds
was tested against an H99-GFP axenic culture over a period of 24 h
(Fig. 3C). Compounds D5 and D6 significantly inhibited fungal growth
to the same extent as the positive control AmB and were there-
fore excluded from further screening. The remainder of the
compounds exhibited comparable growth kinetics to the un-
treated control, suggesting that these compounds do not exhibit

Table 1
Summary of quality control parameters for screening assay (n = 100).

Statistical parameter Value

Z′ factor 0.37
S/B ratio 4.3
%CV 12.01
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direct antifungal activity but rather suppress intracellular growth
of the fungus (Fig. 3C).

3.3. Secondary screening reveals D9-triggered phagosomal
acidification in macrophages

To probe how the remaining 11 compounds reduced the intra-
cellular proliferation of C. neoformans, their effect on phagosome
maturation was assessed. Phagosome maturation is a multistep
process eventually resulting in phagolysosome fusion, acidifica-

tion and enhanced antimicrobial properties [21]. Several intracellular
pathogens such asMycobacterium tuberculosis, Legionella pneumophila,
Salmonella Typhimurium and Leishmania donovani evade macro-
phage killing by perturbing the phagosomal maturation process
[22,23]. Recently, we showed that C. neoformans is also capable of
altering phagosomal acidification in host cells to facilitate intra-
cellular survival [9]. Therefore, we considered the possibility that
compounds identified as reducing intracellular growth of crypto-
cocci may do so by improving phagosomal maturation. To test this
hypothesis, phagosome acidification was monitored using the flu-

Fig. 2. Assay development and determination of Z′ factor for automated screen. (A) Manual intracellular proliferation rate (IPR) evaluation for different drug treatments,
including 2% dimethyl sulphoxide (DMSO), 1.25 μg/mL amphotericin B (AmB) and 10 μg/mL fluconazole (FLU). Values represent the mean ± standard deviation (S.D.) from
four independent experiments [IPR and proliferation rate (PR) separately analysed by Mann–Whitney U-test, *P < 0.05]. (B) Scatter plot showing the distribution of DMSO-
treated (negative control) and AmB-treated (positive control) signal representing the IPR of H99-GFP in macrophages (n = 100). (C) Primary screening of 1200 Prestwick
Chemical Library® compounds using automatic robot showing the mean IPR of all compounds (solid black line) as well as two S.D. higher and lower IPR values (dashed
black lines). IPR value of AmB is indicated in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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orescent acidotropic dye LysoTracker Red in response to drug
treatment during infection. Whilst live untreated cryptococci-
containing phagosomes hardly acquired a LysoTracker-positive signal,
almost 100% of the phagosomes in the heat-killed control became
LysoTracker-positive over the 18 h period of infection (Fig. 4A). Most
of the drug treatments, including the DMSO control, did not yield

any significant phagosomal acidification compared with the un-
treated control (Fig. 4A). Interestingly, however, treatment with drug
D9 significantly enhanced phagosomal acidification and yielded a
striking 87.14% LysoTracker-positive phagosomes compared with
untreated and DMSO controls (Fig. 4A–D; Supplementary
Movies S1–S3). Surprisingly, D9 yielded significantly higher

Fig. 3. Effect of drug treatments on host cell cytotoxicity and fungal growth inhibition. (A,B) Lactate dehydrogenase (LDH) released from murine macrophages was mea-
sured after 18 h of drug treatment with 10 μM drugs (2.5% DMSO) (A) and 5 μM drugs (0.1% DMSO) (B), and 1.25 μg/mL AmB. 0.1% Triton X-100 was used as a positive control.
Values represent the mean ± standard deviation (S.D.) from three independent experiments (one-way ANOVA + Dunnett’s post-test, *P < 0.05, **P < 0.01 and ***P < 0.001).
(C) Effect of 5 μΜ drugs (0.1% DMSO) on growth kinetics of H99-GFP cells. AmB (1.25 μg/mL) was used as a positive control. The growth curve shown is representative of
three independent experiments. Values represent mean ± S.D. DMSO, dimethyl sulphoxide; NT, untreated cells.
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LysoTracker-positive signal than AmB, which is a mainstay
anticryptococcal drug with fungicidal activity against cryptococci
but generated only 43.53% LysoTracker-positive phagosomes up to
18 h of infection (Fig. 4A; Supplementary Movie S1). Upon careful
analysis of time-lapsemovies, it was found that the D9-induced acid-
ification events occurred typically within the first 4–5 h of infection
(Fig. 4D; SupplementaryMovie S3). Conversely, untreated and DMSO-
treated phagosomes remained mostly negative at that time point
(Fig. 4B,C; Supplementary Movies S2 and S3) and failed to retain a
significant amount of LysoTracker-positive signal even 18 h post-
infection. Thus, D9 appears to act by enhancing phagosomal
maturation and either killing or disabling the intracellular
cryptococci.

3.4. Drug D9 is active against intracellular cryptococci at 5 μM but
loses efficacy at 1 μM

Next, we were prompted to analyse the efficacy of D9 at a lower
dose of 1 μM that would be ideal for clinical applications. However,
D9 failed to retain its activity upon lowering the drug dose and the
LysoTracker-positive signal significantly dropped to 3.58% com-
pared with that of the 5 μM dose (Fig. 5A). Furthermore, the effect
of D9 at both doses on intracellular proliferation of C. neoformans
in macrophages was assessed from time-lapsemovies until 12 h post
infection (Fig. 5B). Congruently with its effect on phagosomal acid-
ification, a 5 μM dose of D9 significantly reduced the IPR of H99-
GFP cells in macrophages compared with untreated and DMSO

Fig. 4. Effect of drugs on macrophage phagosomal maturation. (A) Phagosomal acidification was quantified by staining with LysoTracker® Red and is indicated by percent
LysoTracker-positive cryptococcal-containing phagosomes (CCPs) after 18 h treatment with 5 μM drugs. Heat-killed cells served as a positive control. Values represent the
mean ± standard deviation (S.D.) collected from observing 300–400 phagosomes at each time point for each treatment across three to five biological repeats (Fisher’s exact
test, ***P < 0.001; NS, not significant). (B–D) Merged images of brightfield, green fluorescent protein (GFP) and LysoTracker Red (red fluorescence) taken from time-lapse
microscopy experiments at the indicated time points post-phagocytosis on a 60× objective. Images from panels B, C and D represent status of phagosomal acidification by
accumulation of LysoTracker Red in CCPs for untreated (NT), DMSO control and D9-treated cells, respectively. Phagocytosed cryptococci are indicated by arrowheads (white).
Time-lapse frames are extracted from Supplementary Movies S1–S3.
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controls. Conversely, D9 failed to inhibit intracellular growth of Cryp-
tococcus at the lower dose of 1 μM and retained an IPR level
comparable with the untreated control, suggesting loss of efficacy
at this dose (Fig. 5B). This strong threshold effect itself reflects a re-
quirement for a minimum signalling flux to activate the phagosome
maturation pathway in order to successfully kill intracellular
cryptococci.

To test whether the activity of D9 is species-specific, the effect
of D9 on phagosomal acidification against the other main patho-
genic cryptococcal species, C. gattii (R265-GFP), was also tested. As
with C. neoformans, D9 effectively increased LysoTracker-positivity
of C. gattii phagosomes, an effect that dropped significantly with
reduced drug dosage (Supplementary Fig. S1), suggesting that this
drug is effective against both human-infective species of Cryptococcus.

Unblinding the screening compounds revealed D9 to be fendiline
hydrochloride, a known inhibitor of l-type Ca2+ channels that re-
portedly increases the intracellular Ca2+ concentration [Ca2+]i via
calcium release from endoplasmic reticulum stores [24,25]. There-
fore, to assess the intracellular calcium flux in macrophages in
response to fendiline, drug concentrations ranging from 1 to 20 μM
were tested to check the concentration-dependent effects previ-
ously reported for other cell types with this drug [24–26] (see
Supplementary method). Interestingly, fendiline barely had an effect
on [Ca2+]i at a concentration of 1 μM compared with the DMSO
control (Supplementary Fig. S2A), but the [Ca2+]i markedly in-
creased at 5 μM or 20 μM (Supplementary Fig. S2A). Thus, this sharp
concentration threshold is likely attributable to the differential ef-
ficacy observed between 1 μM and 5 μM. Furthermore, to investigate
whether the rise in [Ca2+]i upon fendiline treatment is mainly due
to discharge of Ca2+ from intracellular stores, we tested whether the
inhibitor thapsigargin specifically blocking endoplasmic reticu-
lum Ca2+ pumps could alleviate the rise in [Ca2+]i observed with
fendiline [25,26] (see Supplementary method). Indeed, exposing the
cells to 0.5 μM thapsigargin caused a significant drop in [Ca2+]i com-
pared with the cells exposed to only 5 μM fendiline (Supplementary
Fig. S2B). These results suggest that fendiline induces a Ca2+ sig-
nalling flux in J774A.1 macrophages that involves Ca2+ influx to the
cytoplasm from intracellular stores.

4. Discussion

Considering the poor status of current anticryptococcal drugs,
new treatment options for cryptococcosis are much needed. Studies
from several groups have attempted to address this and have mostly
focused on drugs that act on extracellular, rather than intracellu-
lar, cryptococci [27,28]. Recently, Butts et al screened the Prestwick
library of FDA-approvedmolecules to identify compoundswith direct
fungicidal activity against C. neoformans based on loss of cellular in-
tegrity and thereby release of intracellular enzyme adenylate kinase
[16]. Although our screening assay utilised the same compound
library, it is complementary in approach since it was designed to
identify only those molecules that induce intracellular killing, ex-
cluding all molecules with direct antifungal activity (including those
identified by Butts et al). Importantly, there are no previously re-
ported screens designed to identify adjunct therapies that may
augment macrophage-based killing of cryptococci. Therefore, we de-
veloped a simple approach to screen the Prestwick compound library
by infecting macrophages with the H99-GFP strain and quantify-
ing the GFP fluorescence as an index for intracellular proliferation.
Similar approaches to probe intracellular replication using GFP ex-
pression have been successfully applied for other intracellular
pathogens such as M. tuberculosis [29] and Leishmania [30]. Intra-
cellular screens are technically challenging, as reflected by the
relatively poor Z′ score and S/B ratio of our screen, and thus carry
a high false-negative rate. However, our screen was supported by
a valid %CV value and the fact that it identified the current

Fig. 5. Dose-dependent effect of D9 on phagosomal maturation and intracellular
killing. (A) Phagosomal acidification at differential doses of D9 quantified by
LysoTracker® Red staining after treatment with the respective drug dose for 18 h.
Values represent the mean ± standard deviation (S.D.) collected from observing 300–
400 phagosomes at each time point for each treatment across three to five biological
repeats (Fisher’s exact test, ***P < 0.001). (B) Effect of respective doses of D9 on in-
tracellular viability of H99-GFP in J774A.1 murine macrophages as quantified from
time-lapse movies. The intracellular proliferation rate is calculated as t12/t0 ratio,
where t12 and t0 indicate the number of internalised cryptococci at 12 h and 0 h post-
infection, respectively; n = 3 (one-way ANOVA + Tukey post-test, ***P < 0.001; NS, not
significant). NT, untreated; DMSO, dimethyl sulphoxide; AmB, amphotericin B; CCP,
cryptococcal-containing phagosome.
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frontline anticryptococcal drug (AmB) included in the library.
However, we note that there is a possibility that additional
anticryptococcal compounds within the collection may have been
missed by our screening strategy. Nonetheless, the screen suc-
ceeded in identifying a small set of lead compounds, at least one
of which appears to be a potential drug candidate.

The screening identified a novel compound D9 (fendiline hy-
drochloride), an l-type calcium-channel blocker widely used in the
treatment of angina [25,31]. Notably, D9 does not exhibit a direct
antifungal effect against C. neoformans, but instead triggers signif-
icant phagosomal acidification in host macrophages. Fendiline is
thought to act by transiently elevating [Ca2+]i in certain cell types
via release from intracellular endoplasmic reticulum calcium stores
[25,26]. In agreement, we observed an increase in [Ca2+]i levels at
doses of fendiline above 5 μM, which is inhibited by blocking calcium
release from the endoplasmic reticulum with thapsigargin. Inter-
estingly, a previous study by Huang et al showed that a 1 μM dose
of fendiline barely triggered any significant increase in [Ca2+]i above
baseline [25]. This may explain the strong threshold effect at 5 μM,
but almost none at the 1 μM drug dose. Considering that intracel-
lular calcium dynamics are altered during cryptococcal infection [9],
it is tempting to speculate that fendiline may re-adjust intracellu-
lar calcium signalling to allow full phagosome maturation and thus
fungal killing, a hypothesis that would be worthy of future inves-
tigation in appropriate animal models.

Pharmacologically, fendiline offers some attractive properties rel-
evant for C. neoformans infection. Its physiochemical structure
comprises a highly lipophilic region linked to a weak base, which
enables accumulation in intracellular acidic compartments such as
the phagolysosome [32,33]. In addition, it is known to be an FDA-
approved neuroprotective drug and is included in the
Neurodegeneration Drug Screening Consortium of 1040 com-
pounds, most of which have access to the blood–brain barrier [34].
This makes the drug scaffold relevant for the treatment of CM in-
fections [35]. However, fendiline itself appears only to be active in
vitro at concentrations significantly higher than the typical serum
level of 0.6 μM following oral administration [36]. Although this
makes fendiline itself unfit for clinical translation, the drug scaf-
fold still offers scope for potential optimisation in the future to
improve either efficacy or bioavailability. Alternatively, existing FDA-
approved compounds with structural similarity to fendiline may
provide promising lines of investigation that would not necessi-
tate extensive pre-clinical testing prior to clinical trials. Importantly,
previous studies have highlighted a role for calcium-channel block-
ers in inhibition of drug efflux pumps and drug resistance in
M. tuberculosis infection, which shares a similar intraphagosomal life-
style [37,38], and thus it is possible that fendiline-derived compounds
may have wide applicability.

In conclusion, this work demonstrates an effective screening plat-
form using a whole-cell-based approach to identify inhibitors against
intracellular proliferation of C. neoformans that can be potentially
applied to other intracellular pathogens. We identified a novel off-
patent drug, fendiline hydrochloride, that itself is not fungicidal to
C. neoformans but potently manipulates intraphagosomal replica-
tion and viability within the cell. Taken together, these findings
propose a role for calcium-channel blockers as potential inhibi-
tors of intracellular survival of C. neoformans in infectedmacrophages
and therefore represent a promising strategy for future
anticryptococcal drug design and therapy.

Acknowledgements

The authors gratefully acknowledge Dr. Luke Alderwick and the
Birmingham Drug Discovery and Screening Facility (University of
Birmingham, Birmingham, UK) for help and guidance in setting up
this screen. The authors are also thankful to the School of Medi-

cine, University of Birmingham, for providing the perfusion chamber
system for microfluorimetry analysis.

Funding: This work was supported by funding from the Medical
Research Council [MR/J008176/1] and the European Research Council
under the European Union Seventh Framework Programme [FP/
2007–2013]/ERC Grant Agreement No. 614562 (project MitoFun).
RCM is supported by a fellowship from the Lister Institute for Pre-
ventiveMedicine and a Royal SocietyWolfson ResearchMerit Award;
RAH by a Career Development Award from the Medical Research
Council [MR/L00903X/1]; KV by funding from the Wellcome Trust
ISSF grant; and MG by a fellowship from the Islamic Development
Bank.

Competing interests: None declared.
Ethical approval: Not required.

Appendix. Supplementary data

Supplementary data associated with this article can be found,
in the online version, at doi:10.1016/j.ijantimicag.2016.04.018.

References

[1] Velagapudi R, Hsueh YP, Geunes-Boyer S, Wright JR, Heitman J. Spores as
infectious propagules of Cryptococcus neoformans. Infect Immun 2009;77:4345–
55.

[2] Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TM.
Estimation of the current global burden of cryptococcal meningitis among
persons living with HIV/AIDS. AIDS 2009;23:525–30.

[3] Rajasingham R, Rolfes MA, Birkenkamp KE, Meya DB, Boulware DR. Cryptococcal
meningitis treatment strategies in resource-limited settings: a cost-effectiveness
analysis. PLoS Med 2012;9:e1001316.

[4] Vidal JE, Penalva de Oliveira AC, Dauar RF, Boulware DR. Strategies to reduce
mortality and morbidity due to AIDS-related cryptococcal meningitis in Latin
America. Braz J Infect Dis 2013;17:353–62.

[5] Warkentien T, Crum-Cianflone NF. An update on Cryptococcus among HIV-
infected patients. Int J STD AIDS 2010;21:679–84.

[6] Feldmesser M, Kress Y, Novikoff P, Casadevall A. Cryptococcus neoformans is a
facultative intracellular pathogen in murine pulmonary infection. Infect Immun
2000;68:4225–37.

[7] Tucker SC, Casadevall A. Replication of Cryptococcus neoformans in macrophages
is accompanied by phagosomal permeabilization and accumulation of vesicles
containing polysaccharide in the cytoplasm. Proc Natl Acad Sci USA
2002;99:3165–70.

[8] Voelz K, Lammas DA, May RC. Cytokine signaling regulates the outcome of
intracellular macrophage parasitism by Cryptococcus neoformans. Infect Immun
2009;77:3450–7.

[9] Smith LM, Dixon EF, May RC. The fungal pathogen Cryptococcus neoformans
manipulates macrophage phagosomematuration. Cell Microbiol 2015;17:702–
13.

[10] Davis MJ, Eastman AJ, Qiu Y, Gregorka B, Kozel TR, Osterholzer JJ, et al.
Cryptococcus neoformans-induced macrophage lysosome damage crucially
contributes to fungal virulence. J Immunol 2015;194:2219–31.

[11] Ma H, Croudace JE, Lammas DA, May RC. Expulsion of live pathogenic yeast
by macrophages. Curr Biol 2006;16:2156–60.

[12] Alvarez M, Casadevall A. Phagosome extrusion and host-cell survival after
Cryptococcus neoformans phagocytosis by macrophages. Curr Biol
2006;16:2161–5.

[13] World Health Organization. Rapid advice: diagnosis, prevention and
management of cryptococcal disease in HIV-infected adults, adolescents and
children. Geneva, Switzerland: WHO; 2011.

[14] Perfect JR, Dismukes WE, Dromer F, Goldman DL, Graybill JR, Hamill RJ, et al.
Clinical practice guidelines for the management of cryptococcal disease: 2010
update by the Infectious Diseases Society of America. Clin Infect Dis
2010;50:291–322.

[15] Pasqualotto AC. Amphotericin B: the higher the dose, the higher the toxicity.
Clin Infect Dis 2008;47:1110.

[16] Butts A, DiDone L, Koselny K, Baxter BK, Chabrier-Rosello Y, Wellington M, et al.
A repurposing approach identifies off-patent drugs with fungicidal cryptococcal
activity, a common structural chemotype, and pharmacological properties
relevant to the treatment of cryptococcosis. Eukaryot Cell 2013;12:278–87.

[17] Vermes A, Guchelaar H-J, Dankert J. Flucytosine: a review of its pharmacology,
clinical indications, pharmacokinetics, toxicity and drug interactions. J
Antimicrob Chemother 2000;46:171–9.

[18] Voelz K, Johnston SA, Rutherford JC, May RC. Automated analysis of cryptococcal
macrophage parasitism using GFP-tagged cryptococci. PLoS ONE 2010;5:e15968.

[19] Zhang J-H, Chung TDY, Oldenburg KR. A simple statistical parameter for use
in evaluation and validation of high throughput screening assays. J Biomol
Screen 1999;4:67–73.

76 S. Samantaray et al. / International Journal of Antimicrobial Agents 48 (2016) 69–77

http://dx.doi.org/10.1016/j.ijantimicag.2016.04.018
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0010
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0010
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0010
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0015
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0015
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0015
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0020
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0020
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0020
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0025
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0025
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0025
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0030
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0030
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0035
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0035
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0035
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0040
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0040
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0040
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0040
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0045
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0045
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0045
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0050
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0050
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0050
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0055
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0055
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0055
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0060
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0060
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0065
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0065
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0065
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0070
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0070
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0070
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0075
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0075
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0075
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0075
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0080
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0080
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0085
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0085
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0085
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0085
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0090
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0090
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0090
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0095
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0095
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0100
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0100
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0100


[20] Gao Q, Wang Z, Liu Z, Li X, Zhang Y, Zhang Z, et al. A cell-based high-throughput
approach to identify inhibitors of influenza A virus. Acta Pharm Sin B
2014;4:301–6.

[21] Kinchen JM, Ravichandran KS. Phagosome maturation: going through the acid
test. Nat Rev Mol Cell Biol 2008;9:781–95.

[22] Swanson MS, Fernandez-Moreia E. A microbial strategy to multiply in
macrophages: the pregnant pause. Traffic 2002;3:170–7.

[23] Thi EP, Lambertz U, Reiner NE. Sleeping with the enemy: how intracellular
pathogens cope with a macrophage lifestyle. PLoS Pathog 2012;8:
e1002551.

[24] Cheng J-S, Wang J-L, Lo Y-K, Chou K-J, Lee K-C, Liu C-P, et al. Effects of the
antianginal drug fendiline on Ca2+ movement in hepatoma cells. Hum Exp
Toxicol 2001;20:359–64.

[25] Huang C, Huang C, Cheng J, Liu S, Chen I, Tsai J, et al. Fendiline-evoked [Ca2+]i
rises and non-Ca2+-triggered cell death in human oral cancer cells. Hum Exp
Toxicol 2009;28:41–8.

[26] Lin M-C, Jan C-R. The anti-anginal drug fendiline elevates cytosolic Ca2+ in rabbit
corneal epithelial cells. Life Sci 2002;71:1071–9.

[27] Zhai B, Zhou H, Yang L, Zhang J, Jung K, Giam C-Z, et al. Polymyxin B, in
combination with fluconazole, exerts a potent fungicidal effect. J Antimicrob
Chemother 2010;65:931–8.

[28] Liu W, Li LP, Zhang JD, Li Q, Shen H, Chen SM, et al. Synergistic antifungal effect
of glabridin and fluconazole. PLoS ONE 2014;9:e103442.

[29] Stanley SA, Barczak AK, Silvis MR, Luo SS, Sogi K, Vokes M, et al. Identification
of host-targeted small molecules that restrict intracellular Mycobacterium
tuberculosis growth. PLoS Pathog 2014;10:e1003946.

[30] Varela REM,Muñoz DL, Robledo SM, Kolli BK, Dutta S, Chang KP, et al. Leishmania
(Viannia) panamensis: an in vitro assay using the expression of GFP for screening
of antileishmanial drug. Exp Parasitol 2009;122:134–9.

[31] van der Hoeven D, Cho K, Ma X, Chigurupati S, Parton RG, Hancock JF. Fendiline
inhibits K-Ras plasma membrane localization and blocks K-Ras signal
transmission. Mol Cell Biol 2013;33:237–51.

[32] Beckmann N, Sharma D, Gulbins E, Becker KA, Edelmann B. Inhibition of acid
sphingomyelinase by tricyclic antidepressants and analogons. Front Physiol
2014;5:331.

[33] Kornhuber J, Tripal P, Reichel M, Terfloth L, Bleich S, Wiltfang J, et al.
Identification of new functional inhibitors of acid sphingomyelinase using a
structure−property−activity relation model. J Med Chem 2008;51:219–37.

[34] Wang X, Zhu S, Pei Z, Drozda M, Stavrovskaya IG, Del Signore SJ, et al. Inhibitors
of cytochrome c release with therapeutic potential for Huntington’s disease. J
Neurosci 2008;28:9473–85.

[35] Krysan DJ. Toward improved anti-cryptococcal drugs: novel molecules and
repurposed drugs. Fungal Genet Biol 2015;78:93–8.

[36] Regenthal R, Krueger M, Koeppel C, Preiss R. Drug levels: therapeutic and toxic
serum/plasma concentrations of common drugs. J Clin Monit Comput
1999;15:529–44.

[37] Gupta S, Salam N, Srivastava V, Singla R, Behera D, Khayyam KU, et al. Voltage
gated calcium channels negatively regulate protective immunity to
Mycobacterium tuberculosis. PLoS ONE 2009;4:e5305.

[38] Adams Kristin N, Takaki K, Connolly Lynn E, Wiedenhoft H, Winglee K, Humbert
O, et al. Drug tolerance in replicating mycobacteria mediated by a macrophage-
induced efflux mechanism. Cell 2011;145:39–53.

77S. Samantaray et al. / International Journal of Antimicrobial Agents 48 (2016) 69–77

http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0105
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0105
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0105
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0110
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0110
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0115
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0115
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0120
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0120
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0120
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0125
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0125
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0125
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0130
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0130
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0130
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0135
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0135
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0140
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0140
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0140
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0145
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0145
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0150
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0150
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0150
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0155
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0155
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0155
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0160
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0160
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0160
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0165
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0165
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0165
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0170
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0170
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0170
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0175
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0175
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0175
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0180
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0180
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0185
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0185
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0185
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0190
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0190
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0190
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0195
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0195
http://refhub.elsevier.com/S0924-8579(16)30096-6/sr0195

	 Novel cell-based in vitro screen to identify small-molecule inhibitors against intracellular replication of Cryptococcus neoformans in macrophages
	 Introduction
	 Materials and methods
	 Yeast cells and growth conditions
	 Macrophage cell line culture
	 Assay development and primary screening assay
	 Secondary screening (phagosomal maturation studies)
	 Cytotoxicity assay
	 Live imaging
	 Fungal growth inhibition assay
	 Statistical analysis

	 Results
	 Assay development to monitor intracellular proliferation of C. neoformans in macrophages and primary screen design
	 Validating host cell cytotoxicity and direct antifungal activity of D2–D14 compounds
	 Secondary screening reveals D9-triggered phagosomal acidification in macrophages
	 Drug D9 is active against intracellular cryptococci at 5 M but loses efficacy at 1 M

	 Discussion
	 Acknowledgements
	 Supplementary data
	 References


