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Abstract: 

Total Disc Arthroplasty (TDA) can be used to replace a degenerated intervertebral disc in the spine. 

There are different designs of prosthetic discs, but one of the most common is a ball-and-socket 

combination. Contact between the bearing surfaces can result in high frictional torque, which can 

then result in wear and implant loosening. This study was designed to determine the effects of ball 

radius on friction. Generic models of metal-on-metal TDA were manufactured with ball radii of 10, 12, 

14 and 16 mm, with a radial clearance of 0.015 mm. A simulator was used to test each sample in 

flexion-extension, lateral bending and axial rotation at frequencies of 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75 

and 2 Hz under loads of 50, 600, 1200 and 2000 N, in new born calf serum. Frictional torque was 

measured and Stribeck curves were plotted to illustrate the lubrication regime in each case. It was 

observed that implants with a smaller ball radius showed lower friction and showed boundary and 

mixed lubrication regimes, whereas implants with larger ball radius showed boundary lubrication only. 

This study suggests designing metal-on-metal TDAs with ball radius of 10 or 12 mm, in order to 

reduce wear and implant loosening.  

 

Keywords: Ball-and-Socket, Friction, Lubrication, Radius, Total Disc Arthroplasty 
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1. Introduction 

Severe disc degeneration associated with chronic low back pain may be treated by spinal surgery 

(Gamradt and Wang, 2005). The traditional surgical treatment is spinal fusion (Marcolongo et al., 

2006). However, in recent years Total Disc Arthroplasty (TDA) has been introduced as it offers motion 

preservation at the treated levels (Frelinghuysen et al., 2005; Gamradt and Wang, 2005; Hall et al., 

2006; Lee et al., 2008). There are different designs of prosthetic discs, but most involve a ball-and-

socket combination, with a metal-on-polymer or metal-on-metal bearing surface, similar to Total Hip 

Replacement implants. Examples of metal-on-polymer devices include the Charité® Artificial Disc 

(Depuy Spine, Raynham, MA, USA) and the ProDisc-L® Total Disc Replacement (Synthes, West 

Chester, PA, USA).  Examples of metal-on-metal devices include the Maverick
TM

 and the Prestige® 

(Medtronic, Minneapolis, MN, USA) (Kurtz, 2006).  

 

Studies on hip replacement implants indicate that the wear rate of metal-on-metal bearing surfaces is 

less than metal-on-polymer combinations (Lee et al., 2008).  Therefore, such a bearing material 

combination may be favourable for disc arthroplasty.  One of the main concerns of metal-on-metal 

disc implants is creation of wear debris. Studies show that wear particles can result in tissue reaction 

and metal toxicity, which can lead to implant loosening and failure (Affatato et al., 2008; Jin et al., 

1997). However, creation of wear particles can be minimised if the articulating surfaces are in less 

contact and less friction is created between the surfaces. In addition, it is beneficial to reduce friction 

because, by analogy with Total Hip Arthropasty, a high frictional torque may lead to loosening of the 

implant (Simon et al., 1975). 

 

When a prosthetic disc is implanted, it is lubricated by the natural interstitial fluid; however, the nature 

of the lubrication regime could vary for different designs of disc prosthesis. Depending on the 

lubrication regime, the articulating surfaces may still be in direct contact (boundary lubrication), partly 

separated by the fluid (mixed lubrication) or fully separated by the fluid (fluid film lubrication) (Dowson 

and Jin, 2006; Hall et al., 1994). In comparison, friction in the boundary lubrication regime is the 

highest (Hutchings, 1992); hence, it is possible that more wear debris is created. Therefore, an 

understanding of the friction created by the implant is important from a design point of view and also 



   

4 
 

in understanding the likely lubrication regimes between the bearing surfaces. The aim of this work 

was to investigate the effect of change in radius on friction in a metal-on-metal disc arthroplasty. 

 

2. Materials and Methods 

2.1 Disc design and manufacture 

A generic ball-and-socket model of TDA was designed (Figure 1a) based on the dimensions and 

geometry of the metal-on-metal Maverick
TM

 device (Medtronic, Minneapolis, USA). The Maverick
TM

 

consists of bearing surfaces manufactured from Cobalt Chrome Molybdenum alloy (Co-Cr-Mo) (ASTM 

F 1537 – 08), with a ball radius of 10 mm and radial clearance of 0.015 mm between ball and socket.  

The generic ball-and-socket model was designed with ball radii of 10, 12, 14 and 16 mm, each with a 

radial clearance of 0.015 mm (Figure 1b).  These ball radii were based on existing designs of disc 

arthroplasty (Charité ®, Maverick
TM

, ProDisc-L®) and enabled a range of ball radii to be considered 

and compared in the friction tests. The endplates were designed to fix to a spine simulator. 

 

The samples were manufactured from Co-27Cr-5.5Mo-0.06C by Westley Engineering Ltd. 

(Birmingham, UK).  The samples were machined from bar, using MIKRON VCP600 and WS71D 

Machining Centres (Rottweil, Germany) and highly polished by a Black & Decker Bench Grinder 

(Berkshire, UK); for the final surface finish the grinding wheel was changed to a polishing mop. Prior 

to testing, the specimens were washed with Virkon disinfectant (Antec International, Sudbury, UK), 

then ultrasonically cleaned in a propan-2-ol bath (Scientific Laboratory Supplies, Hessle C, East 

Yorkshire, UK) and washed again with acetone (Sigma-Aldrich, MO, USA). After being left at room 

temperature for 48 hours, the surface roughness of each sample was measured using a Taylor 

Hobson Form Talysurf-120L (Leicester, UK). The average surface roughness for the balls and 

sockets were 48.5 ± 11.9 and 47.9 ± 23.0 nm, respectively.  These values are comparable to 

measurements made on a Maverick
TM

 prosthesis, where the average surface roughness was 

measured to be 50 ± 0.55 nm. 

 

2.2 Frictional torque 

Frictional torque tests were performed using a Bose SDWS-1 Spine Simulator (Bose Corporation, 

Minnesota, USA) fitted with a multi-axial load cell (Figure 2). The simulator has 6 degrees of freedom 
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and enables ± 15° flexion/extension, ± 12° lateral bend, ± 9° axial rotation and 3 kN axial load. 

Frictional torque was measured (with a precision of 0.01 N.m) using an AMTI MC3-6-1000 load cell 

(Berkshire, England), supplied with the simulator, that was calibrated every 12 months. The simulator 

is fitted with a temperature controlled fluid bath. 

 

The specimens were mounted on custom-designed fixtures to allow the correct alignment within the 

simulator.  The fixtures were then placed inside the bath and mounted to the machine with the ball 

endplate connected to the base of the simulator and the socket to the top. The testing was guided by 

the standards ISO 18192-1:2008 and ASTM F2423-05, which were developed for the wear testing of 

disc arthroplasty. The specimens were tested in a solution of new born calf serum (SeraLab, West 

Sussex, UK) diluted with de-ionised water to a concentration of 30 ± 2 g protein per litre, at a 

controlled temperature of 37°C (BS ISO 18192-1:2008).  Each specimen was tested under a constant 

axial compressive load of 50, 600, 1200 and 2000 N. At each load, the sample was subjected to a 

sinusoidally varying axial rotation from 0° to 2° at frequencies of 0.25, 0.5, 0.75, 1, 1.25, 1.50, 1.75 

and 2 Hz. Each test was carried out for 100 cycles and the frictional torque was measured. The 

procedure was then repeated under flexion to +6°, extension to -3° and lateral bending to +2°. 

 

To determine the maximum torque generated in each test condition, a graph of frictional torque 

against angle was plotted for each test, using Excel software (Microsoft Office, Washington, USA). An 

average peak frictional torque was calculated based on the values from the last 10 cycles. In order to 

observe the effects of frequency and load on frictional torque, graphs of mean frictional torque against 

both frequency and load were plotted. For these graphs a linear regression analysis was performed, 

using Minitab software (Minitab Inc., Pennsylvania, USA). 

 

2.3 Stribeck analysis 

To indicate the lubrication regime under which the samples were acting, Stribeck analysis was used 

where the friction factor, , was plotted against the Sommerfeld number,    (Scholes and Unsworth, 

2006). Frictional torque measurements, from the experiments, were converted to a friction factor from: 
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where    is the frictional torque between the bearing surfaces,    is the ball radius and    is the applied 

load. The Sommerfeld number, , was calculated from: 

  
   

 
                                                                                                                                                                                       

where    is the lubricant viscosity,    is the entraining velocity of the bearing surface, which is 

conventionally defined by  

  
  

 
                                                                                                                                                                               

where    is the angular frequency and   is the frequency at which the test was performed (Mattei et 

al., 2011; Shaheen and Shepherd, 2007; Wang et al., 2008). 

 

When the friction factor decreases, with increasing Sommerfeld number, a mixed lubrication regime is 

indicated, whereas an increasing friction factor, with increasing Sommerfeld number, indicates a fluid 

film regime; a constant friction factor indicates a boundary lubrication regime (Jones et al., 2009). The 

viscosity of the lubricant was measured using an AR-G2 cone-on-plate rheometer (TA Instruments, 

West Sussex, UK) under 0.5% constant strain, at 37º C. The viscosity of diluted new born calf serum 

was found to be 1.44 ± 0.4 mPa.s. 

 

3. Results 

3.1. Frictional torque 

The results show that there was variation in frictional torque with frequency (Figure 3). The maximum 

mean frictional torque was about 9.5 N.m, which occurred for the specimen with a ball radius of 16 

mm, in flexion at a frequency of 0.25 Hz, under a load of 2000 N. The results also show that, for all 

four motions and for all four sample radii, frictional torque increased with load, as expected.  

 

There was a positive linear correlation between mean frictional torque and load for all motions and all 

ball radii, in the range investigated. An example is shown in Figure 4, where there is a significant 

linear correlation between the mean frictional torque and load, in flexion, for all ball radii. 
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Figure 5 shows a significant linear correlation between frictional torque and radius, in flexion, at a 

frequency of 1 Hz, for the range of loads investigated. Similar results were observed for the other 

motions.  

 

3.2 Lubrication regime analysis 

To investigate the lubrication regimes, Stribeck curves were plotted for each motion. The Stribeck 

curves for the sample with a ball radius of 10 mm, in flexion, (Figure 6a) showed an initial decrease in 

friction factor and a gradual increase as Sommerfeld number increased. It was observed that the 

graphs go through a clear minimum. The results for 50 N load has been omitted from the graphs, as 

the values of friction factor were much higher than those for other loads and so could not be shown 

clearly on the same axes. For the 16 mm ball (Figure 6b), the friction factor initially decreased and 

then flattened out of a fairly constant value, with increasing Sommerfeld number. The graph has clear 

minimum for 600 N but not for higher loads. The results for 12 mm samples followed the same pattern 

as 10 mm sample, whilst the graphs for 14 mm sample showed clear minimum for all loads except 

2000 N.  

 

4. Discussion 

A linear correlation between frictional torque and load was found, as expected. This indicates that by 

increasing the axial load on the spinal implant, a higher frictional torque between the articulating 

surfaces is created. Ma et al. (1983) and Unsworth (1978) found a similar correlation between 

frictional torque and load in metal-on-metal and metal-on-polymer hip implants. The frictional torque 

significantly decreased with ball radius; this result is also to be expected since the average frictional 

torque is given by      , where   is the coefficient of friction. Streicher et al. (1996) reported similar 

results for metal-on-metal hip implants; they observed that by reducing the diameter, the friction is 

reduced due to the reduction in contact area. Bishop et al. (2008) in another study on metal-on-metal 

hip joint bearings concluded that bearings with smaller diameter have lower frictional torques.  The 

maximum frictional torque found in this study was 9.5 N.m and this is well below the torques 

generated in the natural spine (Adams and Dolan, 1991) and so metal on metal disc arthroplasty is 

unlikely to affect spinal kinematics. 
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The friction factors in this study were found to be of the same order as those found in other studies on 

hip implants, under similar loads (Scholes et al., 2000a; Scholes et al., 2000b; Scholes and Unsworth, 

2000). Frictional torque plotted against frequency showed varying trends and this was analysed 

further by producing Stribeck curves which can give an indication of the lubrication regime (Scholes 

and Unsworth, 2000). A decrease in friction factor with increasing Sommerfeld number is an indication 

of boundary or mixed lubrication, whilst a gradual increase from a low friction factor with increasing 

Sommerfeld number suggests the possibility of a fluid film regime. Such results were observed in the 

sample with ball radius of 10 mm; the sample showed mixed lubrication at low frequencies and the 

possibility of fluid film at higher frequency. However, within a motion cycle, different lubrication 

regimes are likely to be acting at different times and hence the amount of contact between the bearing 

surfaces (leading to wear) will vary. The sample with ball radius of 16 mm appeared to demonstrate 

boundary lubrication as the friction factor was fairly constant with increasing Sommerfeld number. 

Although a theoretical study (Shaheen and Shepherd, 2007) of ball-and-socket disc prostheses with 

radii of 14, 21 and 28 mm, suggested that metal-on-metal disc implants are more likely to show 

boundary lubrication, the current experimental study showed that it is also possible to achieve mixed 

or fluid film lubrication. Such lubrication regimes were also found in a study (Smith et al., 2001) of 

metal-on-metal hip joint replacements, where hip implants with 14 and 18 mm femoral head radii 

showed mixed and fluid film lubrication, respectively. 

 

Although not within the scope of this study, the size of radial clearance will also affect the friction and 

lubrication in disc arthroplasty, as seen in hip arthroplasty (Jacobs et al., 1998; Scholes et al., 2000a; 

Scott and Schroeder, 1997).  

 

The ultimate test of a TDA is after implantation into the human body, but pre-clinical wear testing can 

be used to determine the potential performance of devices. Based on experience of Total Hip 

Arthroplasty, understanding the factors that influence friction in the prosthesis is likely to aid the 

development of improved designs, as creating less friction can result in the creation of less wear 

debris, and reduced implant loosening (Simon et al., 1975).  However, the friction and lubrication 

results shown here cannot be used to determine the wear mechanism; this can only be determined 

from wear tests. 
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5. Conclusions 

This study has investigated the friction in metal-on-metal TDA. Frictional torque has been found to 

increase with load and also with the radius of the bearing surface. The analysis of the Stribeck curves 

indicated that most metal-on-metal TDAs operate in the boundary/mixed lubrication regime. However, 

discs with ball radius of 10 mm offer the possibility of fluid film lubrication under high loads and 

frequencies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

10 
 

Conflict of interest statement 

The authors have no conflict of interests. 

 

Acknowledgements 

This work was supported by the Engineering and Physical Sciences Research Council [grant number 

EP/F014562/1].  The AR-G2 rheometer (TA Instruments, West Sussex, UK) used in this research was 

obtained, through Birmingham Science City: Innovative Uses for Advanced Materials in the Modern 

World (West Midlands Centre for Advanced Materials Project 2), with support from Advantage West 

Midlands (AWM) and part funded by the European Regional Development Fund (ERDF). 

 

  



   

11 
 

References 

Adams, M. A., Dolan, P., 1991. A technique for quantifying the bending moment acting on the lumbar 

spine in vivo. Journal of Biomechanics 24, 117- 126. 

 

Affatato, S., Spinelli, M., Zavalloni, M., Leardini, W., Viceconti, M., 2008. Predictive role of the 

Lambda ratio in the evaluation of metal-on-metal total hip replacement. Proceedings of the Institution 

of Mechanical Engineers Part H-Journal of Engineering in Medicine 222, 617-628. 

 

ASTM F 1537 – 08: Standard Specification for Wrought Cobalt-28Chromium-6Molybdenum Alloys for 

Surgical Implants (UNS R31537, UNS R31538, and UNS R31539). Pennsylvania, American Society 

for Testing and Materials. 

 

ASTM F 2423 – 05: Standard Guide for Functional, Kinematic, and Wear Assessment of Total Disc 

Prostheses. Pennsylvania, American Society for Testing and Materials. 

 

Bishop, N. E., Waldow, F., Morlock, M. M., 2008. Friction moments of large metal-on-metal hip joint 

bearings and other modern designs. Medical Engineering and Physics 30, 1057-1064. 

 

BS ISO 18192-1:2008: Implants for surgery- Wear of total intervertebral spinal disc prostheses. Part 

1: Loading and displacement parameters for wear testing and corresponding environmental 

conditions for test. London, British Standard Institution. 

 

Dowson, D., Jin, Z. M., 2006. Metal-on-metal hip joint tribology. Proceedings of the Institution of 

Mechanical Engineers Part H-Journal of Engineering in Medicine 220, 107-118. 

 

Frelinghuysen, P., Huang, R. C., Girardi, F. P., Cammisa, F. P., 2005. Lumbar total disc replacement 

part I: rationale, biomechanics, and implant types. Orthopedic Clinics of North America 36, 293-299. 

 

Gamradt, S. C., Wang, J. C., 2005. Lumbar disc arthroplasty. Spine Journal 5, 95-103.  

 



   

12 
 

Hall, R. M., Brown, T. D., Fisher, J., Ingham, E., Mendoza, S. A., Mayer, H. M., 2006. Introduction to 

lumbar total disc replacement: factors that affect tribological performance. Proceedings of the 

Institution of Mechanical Engineers Part J-Journal of Engineering Tribology, 220, 775-786. 

 

Hall, R. M., Unsworth, A., Wroblewski, B. M., Burgessa, I. C., 1994. Frictional characterisation of 

explanted Charnley hip prosthesis. Wear 175, 159-166.  

 

Hutchings, I. M., 1992. Tribology- friction and wear of engineering materials. Arnold, London, pp. 58-

76. 

 

Jacobs, M. A., Schmidt, M. B., Farrar, R., 1998. The effect of clearance and diameter on the debris 

generation in a metal-on-metal hip. The Journal of Arthroplasty 13, 224. 

 

Jin, Z. M., Dowson, D., Fisher, J., 1997. Analysis of fluid film lubrication in artificial hip joint 

replacements with surfaces of high elastic modulus. Proceedings of the Institution of Mechanical 

Engineers Part H-Journal of Engineering in Medicine 211, 247-256. 

 

Jones, E., Scholes, S. C., Burgess, I. C., Ash, H. E., Unsworth, A., 2009. Compliant layer bearings in 

artificial joints. Part 2: simulator and fatigue testing to assess the durability of the interface between an 

elastomeric layer and a rigid substrate. Proceedings of the Institution of Mechanical Engineers Part H-

Journal of Engineering in Medicine 223, 1-12. 

 

Kurtz, S. M., 2006. Total disc arthroplasty. In:  Kurtz, S. M., Edidin, A. A., (Eds.), Spine Technology 

Handbook. Elsever Academic Press, Amsterdam, pp. 313-351.  

 

Lee, J. L., Billi, F., Sangiorgio, S. N., McGarry, W, Krueger, D. J., Miller, P. T., McKellop, H., 

Ebramzadeh, E., 2008. Wear of an experimental metal-on-metal artificial disc for the lumbar spine. 

Spine 33, 597-606. 

 



   

13 
 

Ma, S. M., Kabo, J. M., Amstuz, H. C., 1983. Frictional torque in surface and conventional hip 

replacement. Journal of Bone and Joint Surgery 65, 366-370. 

 

Marcolongo, M. S., Cannella, M., Massey, C. J.,2006. Nucleus replacement of the intervertebral disc. 

In:  Kurtz, S. M., Edidin, A. A., (Hds.), Spine Technology Handbook. Elsever Academic Press, 

Amsterdam, pp. 281-291.  

 

Mattei, L., Di Puccio, F., Piccigallo, B., Ciulli, E., 2011. Lubrication and wear modelling of artificial hip 

joints: A review. Tribology International 44, 532-549. 

 

Scholes, S. C., Unsworth, A., 2000. Comparison of friction and lubrication of different hip prostheses. 

Proceedings of the Institution of Mechanical Engineers Part H-Journal of Engineering in Medicine 

214, 49-57. 

 

Scholes, S. C., Unsworth, A., 2006. The effects of proteins on the friction and lubrication of artificial 

joints. Proceedings of the Institution of Mechanical Engineers Part H-Journal of Engineering in 

Medicine 220, 687-693.  

 

Scholes, S. C., Unsworth, A., Goldsmith A. A. J., 2000a. A frictional study of total hip joint 

replacements. Physics in Medicine and Biology 45, 3721–3735. 

 

Scholes, S. C., Unsworth, A., Hall, R. M., Scott, R., 2000b. The effects of material combination and 

lubricant on the friction of total hip prostheses. Wear 241, 209-213.  

 

Scott, R. A., Schroeder, D.W., 1997. The effect of radial mismatch on the wear of metal on metal hip 

prostotal theses: a hip simulator study. 43rd Annual Meeting of the Orthopaedic Research Society, 

San Francisco, California, USA, 764. 

 



   

14 
 

Shaheen, A., Shepherd, D. E. T., 2007. Lubrication regimes in lumbar total disc arthroplasty. 

Proceedings of the Institution of Mechanical Engineers Part H-Journal of Engineering in Medicine 

221, 621-627. 

 

Simon, S. R., Rose, R. M., Radin, E. L., 1975. “Stiction-friction” of total hip prostheses and its 

relationship to loosening. Journal of Bone and Joint Surgery (American) 57, 226-230. 

 

Smith, S. L., Dowson, D., Goldsmith, A. A. J., 2001. The lubrication of metal-on-metal total hip joints: 

a slide down the Stribeck curve. Proceedings of the Institution of Mechanical Engineers Part J- 

Journal of Engineering Tribology 215, 483-493 

 

Streicher, R. M., Semlitsch, M., Schön, R., Weber, H., Rieker, C., 1996. Metal-on-metal articulation for 

artificial hip joints: laboratory study and clinical results. Proceedings of the Institution of Mechanical 

Engineers Part H-Journal of Engineering in Medicine 210, 223-232 

 

Unsworth, A., 1978. The effects of lubrication in hip joint prostheses. Physics in Medicine and Biology 

23, 253-268. 

 

Wang, W-Z, Jin, Z. M., Dowson, D., Hu, Y. Z., 2008. A study of the effect of model geometry and 

lubricant rheology upon the elastohydrodynamic lubrication performance of metal-on-metal hip joints. 

Proceedings of the Institution of Mechanical Engineers Part J- Journal of Engineering Tribology 222, 

493-501.  

 

  



   

15 
 

Figure Captions 

 

Figure 1. a) The generic ball (right) and socket (left) model with 10 mm ball radius , b)  the side view 

of four TDAs with radii of 10, 12, 14 and 16 mm and identical core diameter of 18 mm 

 

Figure 2. Specimen mounted in the Bose Spine Simulator  

 

Figure 3. Mean frictional torque plotted against frequency for the sample with a ball radius of 10 mm, 

in flexion, under the loads of 50 (), 600 (), 1200 () and 2000 N (). Error bars represent 

standard deviations; when error bars are not shown they are smaller than the symbols used to 

represent the data points 

 

Figure 4. Mean frictional torque plotted against load for flexion at a frequency of 1 Hz, for implants 

with ball radii of 10 () (R² = 0.99, p = 0.004), 12 () (R² = 0.98, p = 0.012), 14 () (R² = 0.98, p = 

0.009) and 16 mm () (R² = 0.99, p= 0.006). Error bars represent standard deviations; when error 

bars are not shown they are smaller than the symbols used to represent the data points. Linear 

regression lines are fitted through the data points 

 

Figure 5. Mean frictional torque against radius for a frequency of 1 Hz in flexion motion, under the 

loads of 50 () (R² = 0.95, p = 0.028), 600 () (R² = 0.98, p = 0.011), 1200 () (R² = 0.95, p = 0.025) 

and 2000 N () (R² = 0.99, p = 0.006). Error bars represent standard deviations; when error bars are 

not shown they are smaller than the symbols used to represent the data points. Linear regression 

lines are fitted through the data points 

 

Figure 6. Stribeck curves for sample with a ball radius of a) 10 mm and b) 16 mm, under loads of 600 

(), 1200 () and 2000 N (), operated in flexion. A third order polynomial has been fitted to the 

points 
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Figure 2. 
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Figure 3.   
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Figure 4.   
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Figure 5.  
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Figure 6.  
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