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Abstract 

Escherichia coli can perform at least two modes of anaerobic hydrogen metabolism and expresses at least 

two types of hydrogenase activity. Respiratory hydrogen oxidation is catalysed by two ‘uptake’ hydrogenase 

isoenzymes, hydrogenases -1 and -2, and fermentative hydrogen production is catalysed by hydrogenase-3.  

Harnessing and enhancing the metabolic capability of Escherichia coli to perform anaerobic mixed-acid 

fermentation is therefore an attractive approach for bio-hydrogen production from sugars.  In this work, the 

effects of genetic modification of the genes encoding the uptake hydrogenases, as well as the importance of 

pre-culture conditions, on hydrogen production and fermentation balance were examined. In suspensions of 

resting cells pre-grown aerobically with formate, deletions in hydrogenase-3 abolished hydrogen production, 

whereas the deletion of both uptake hydrogenases improved hydrogen production by 37 % over the parent 

strain. Under fermentative conditions, respiratory H2 uptake activity was absent in strains lacking 

hydrogenase-2. The effect of a deletion in hycA on H2 production was found to be dependent upon 

environmental conditions, but H2 uptake was not significantly affected by this mutation.  

1. Introduction 

Biological approaches to energy production are growing in importance as fossil-fuel resources verge on the 

limits of economical extraction (Holmes & Jones, 2003) and the environmental cost of carbon emissions 

gain recognition in financial terms (Hopkin, 2004; Klepper & Peterson, 2006). 

Escherichia coli is attractive for biotechnological applications such as biohydrogen production.  In 

contrast to other H2-producing micro-organisms, such as the clostridia, E. coli is fast-growing, non-

sporulating, and well-characterised in physiological and biochemical terms.  Furthermore, metabolic 

engineering using ‘crippled’ strains such as K12 (and its derivatives) provides information relevant to the 

future modification of a wild-type strain, while also mitigating against accidental release.  When turnover 

rate is considered, the H2-producing Hyd-3 of E. coli (a NiFe hydrogenase) is significantly slower than Fe 

hydrogenases (e.g. of clostridia) (Hallenbeck & Benemann, 2002), although the superiority of different 

fermentative bacteria is controversial and a detailed comparison is beyond the scope of this paper. 

Formate is the sole precursor of H2 in E. coli (Ordal & Halvorson, 1939), being cleaved to H2 and 

CO2 by the formate hydrogenlyase complex (FHL) (Stephenson & Stickland, 1932; Sawers, 2005).  Formate 

arises from the mixed acid fermentation of sugars (Fig. 1), with a maximum yield of 2 mol H2/mol glucose 

(Clark, 1989).  In practice, yields are typically ~1 mol H2/mol glucose as several factors may affect the rate 

and yield of H2 production (Stephenson & Stickland, 1932; Bisaillon et al., 2006).  In this study, the role of 

hydrogenases in the formation and uptake of H2 during fermentation of glucose was addressed, with the aim 

to maximise the rate and yield of H2 produced.  

E. coli K-12 has the potential to express four hydrogenases (Hyd-1-4).  With the exception of Hyd-4, 

which has never been biochemically characterised, the E. coli hydrogenases can operate reversibly in vitro 

but possess physiological directionality (Sawers, 1994).  Hyd-3 is encoded by the hyc operon and forms, 

with a formate dehydrogenase (FDHH) and numerous other electron transport proteins, the FHL complex, 

which is responsible for H2 production from formate (Rossman et al., 1991).  The putative FHL-2 complex 
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(homologous to FHL) is hypothesised to carry out energy conservation by formate-dependent proton 

translocation and contains Hyd-4 (hyf operon) (Andrews et al., 1997; Skibinski et al., 2002).  Hyd-2 

(encoded by the hyb operon) functions in anaerobic respiration as an uptake hydrogenase (Ballantine & 

Boxer, 1985; Sawers et al., 1985).  Hyd-1 (encoded by the hya operon) is also an uptake hydrogenase, and 

has been suggested to be expressed under fermentative conditions to recycle the H2 produced from formate 

(Sawers et al., 1985; Sawers & Boxer, 1986).  The physiological role of Hyd-1 is not yet clear and it has 

also been suggested to function in energy conservation under acid stress (King & Przybyla, 1999). 

Attempts to negate residual hydrogen uptake activity under fermentative conditions, which detracts 

from the net H2 production, have been successful in a range of H2 producing organisms including 

anoxygenic photosynthetic bacteria (Willison et al., 1984; Toussaint et al., 1991; Jahn et al., 1994; Franchi 

et al., 2004; Kim et al., 2006), cyanobacteria (Happe et al., 2000; Masukawa et al., 2002; Yoshino et al., 

2006), and recently in E. coli (Bisaillon et al., 2006; Penfold et al., 2006).  This approach, which relies on 

physiological uni-directionality of the isoenzymes, would not be appropriate for other fermentative H2-

producers (e.g. clostridia and thermophilic archaea) in which H2 uptake and production are performed by the 

same (reversible) hydrogenases (Hallenbeck, 2005). 

Genetic techniques have been employed previously to improve H2 production by E. coli.  In 

particular, strain HD701 (devoid of HycA, the hyc operon repressor) was capable of upregulating H2 

production more rapidly than the parent strain (MC4100) upon transfer to H2 producing conditions (Sauter et 

al., 1992; Sode et al., 2001; Penfold et al., 2003; Yoshida et al., 2005).  Inactivation of the tat (twin arginine 

transport) export system effected a similar improvement in overall H2 production, comparable to the HycA 

deficiency (Penfold et al., 2006).  However, tat mutations are pleiotropic, causing defects in outer membrane 

biosynthesis and cell division, in addition to preventing the correct assembly of uptake hydrogenases and 

respiratory formate dehydrogenases (Sargent et al., 1998; Stanley et al., 2001).  Therefore, the tat-deficient 

strains were assumed to exhibit the effects of reduced activity of the uptake hydrogenases (Hyd-1 and Hyd-

2) although this was not proven.  It was also assumed by Penfold et al. (2006) that H2 uptake activity was 

not expressed by other isoenzymes.  However, contrary to expectation, the superimposition of the tat 

deficiency phenotype onto the HycA deficiency phenotype did not result in any further increase in H2 

production, raising the possibility of a compensatory H2 oxidation activity by Hyd-3 (Penfold et al., 2006). 

In the current work, the fermentation balances of strains genetically deprived of specific hydrogenase 

activities were analysed.  Evidence is provided that the respiratory hydrogenase-2 contributes to the vast 

majority of H2 recycling activity during fermentative hydrogen production, which supports the suggestion 

that it is the loss of this activity, rather than other pleiotropic effects, that leads to an increased H2 yield 

when the Tat system is inactivated. 

2. Materials and Methods 

2.1 Bacterial strains 

Strain HD701 was provided by Professor A. Böck (Lehrstuhl für Mikrobiologie der Universität, Munich, 

Germany) and was derived from MC4100 (Sauter et al., 1992).  All strains are listed in Table 1. 

 

2.2 H2 production experiments 

E. coli stocks were maintained at –70 °C in 25 % glycerol (1 part overnight culture in nutrient broth, 1 part 

50 % glycerol w/v) and revived on nutrient broth (Oxoid) at (37 °C, 8 h, 250 rpm) before plating on nutrient 

agar (Oxoid).  Plates were stored at 4 °C for up to 1 week before use.  For experiments, colonies were 

picked into 30 ml nutrient broth with added sodium formate (0.1 M) (6 hours, 37 °C, 250 rpm).  Cells were 

harvested from late log phase cultures (4500 g, 10 min) consisting of 500 ml nutrient broth with added 

sodium formate (0.1 M) (0.001 % inoculum, 14-16 hours, 30 °C, 250 rpm).  Cell pellets were washed twice 

in 100 ml phosphate buffered saline (PBS: 1.43 g Na2HPO4, 0.2 g KH2PO4, 0.8 g NaCl, 0.2g KCl per litre, 

pH 7.0) before resuspending in 10 ml PBS to produce a concentrate containing 30-40 mg dry weight/ml.  

Biomass concentration was estimated by reference to a previously determined conversion factor.  An OD600 

of 1 corresponded to a concentration of 0.48 mg dry weight/ml. 
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The cell concentrate was made anaerobic by purging with argon (30 min) before 1-2 ml was 

transferred into ~120 ml anaerobic bottles containing 100 ml test medium (made anaerobic by 3 cycles of 30 

min under vacuum and argon purging) to give an initial cell concentration of 0.5 mg dry weight/ml.  OD600 

was measured at the end of the experiment to estimate biomass growth.  Test medium consisted of 0.1 M 

MES buffer (2-(N-Morpholino)ethanesulfonic acid), pH 6.80 supplemented with 6.96 g/l NaCl (final 

concentration), 0-100 μl 2 M NH4Cl and 0.3 ml trace elements solution given in (Hewitt et al., 2000).  

Unless otherwise stated the final concentration of NH4Cl was 1 mM. 

Anaerobic bottles were connected to a gas collection apparatus (Macler et al., 1979) and allowed to 

equilibrate (30 °C, reciprocal shaking at 130 rpm, 5 min) before the fermentation was initiated by the 

addition of 1 ml degassed 2 M glucose (to 20 mM).  The volume of H2 evolved was measured over a 

solution of 2 M NaOH containing universal indicator (Sigma, UK) for ~45 hours.  A previous study 

confirmed that H2 and CO2 are the only gases evolved by E. coli (Penfold et al., 2003).  The presence of H2 

in the evolved gas was confirmed using a combustible gas meter (GMI, UK) and the removal of CO2 (to 

<0.5 % v/v) was confirmed using a ThermoQuest gas chromatograph (TraceGC2000) fitted with a 

Shincarbon ST column (100/120 mesh, length: 2 m, ID: 2 mm, Shimazu, Japan).  The GC operating 

conditions were split 60:1, 40 °C + 15 °C/min for 10 min, and the injection volume was 1 ml.  

 

2.3 Chemical analyses 

Samples (2 ml) were filtered (0.2 μm supor membrane) and filtrates were stored at -20 °C before analysis.  

Organic acids were measured by anion HPLC using a Dionex 600-series system as described previously 

(Redwood & Macaskie, 2006).  Glucose was assayed using the colorimetric dinitrosalicylic acid assay 

(Chaplin, 1986) and ethanol was determined colorimetrically by monitoring the enzymatic reduction of 

NAD (A340) using alcohol dehydrogenase (Sigma A-6338, assay concentration: 2.64 U/ml) after pre-removal 

of aldehyde by aldehyde dehydrogenase (Sigma A-7011, assay concentration: 16.18 U/l).   

2.4 Analysis of fermentation balance 

All products were measured as described above, with the exception of CO2 which was calculated (as 

described below).  Unknown quantities of fermentation balance were estimated according to equations 1-4, 

substituting values for products formed (e.g. mol product/mol glucose) from Table 1.  As described 

previously (Sode et al., 1999), equations 1-3 are derived from the metabolic pathway of mixed acid 

fermentation (Fig. 1). 

H2 uptake was estimated as the imbalance between the theoretical formate decomposed (acetate + 

ethanol – formate) and the measured H2 (H2formed) (equation 1), i.e. the difference between the expected H2 

and that found by measurement: 
 

formed
HformateethanolacetateuptakeH 22      (1) 

Succinate formation requires the incorporation of CO2 (Fig.1), which in a gas-scrubbed medium 

devoid of added carbonate would be derived from the decomposition of formate (HCOOH = CO2 + H2).  

Therefore, the net production of CO2 (CO2est) was estimated by subtracting the succinate formed from the 

theoretical formate decomposed (equation 2). 

 

succinateformateethanolacetateestCO2      (2) 

 

The carbon balance (C. bal.) was obtained by summing the carbon fractions of the products of 

fermentation.  The carbon allocation to biomass formation was determined from the observed increase in 

OD600 and conversion to dry weight using 53.1 % as the carbon fraction of E. coli biomass (Harris & 

Adams, 1979; Pramanik & Keasling, 1997).  Therefore, a factor of 0.044 was applied for the conversion 

from g biomass/mol glucose to mol carbon/mol glucose (equation 3). 

100
6

044.0..42.2.3
(%).. 2 biomassCOformsuccethanolacetlact

balC        (3) 
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All experiments were replicated on at least 3 occasions (as stated) using independent cultures.  Results are 

expressed as mean ± standard error of the mean. 

3. Results 

3.1 Effects of pre-growth conditions on H2 production in E. coli MC4100 and HD701 

For all tests on H2 production, cultures were pre-grown before cells were harvested, washed and transferred 

to 100 ml reactors.  The ability of resting cells to produce H2 was independent of the availability of NH4
+
-

nitrogen (0-10 mM NH4Cl) during the test reaction (1 mM was used subsequently), but it was dependent 

upon the presence or absence of oxygen and sodium formate during pre-growth.  As expected, cells pre-

grown anaerobically produced H2, whereas aerobically pre-grown cells failed to produce H2 even after 

prolonged incubation (24 h), attributable to the lack of expression of the genes encoding the FHL complex 

responsible for H2 production (Gest, 1954; Sauter et al., 1992).  Interestingly, the aerobic expression of the 

genes encoding FHL was induced by the addition of sodium formate (0.1 M) to the pre-growth medium.  A 

significant difference was not observed (t-test, P>5 %) when the initial rate and total volume of H2 

production were compared, among cells pre-cultured with formate either anaerobically or aerobically.  From 

a biotechnological point of view, therefore, this represents a significant advantage since the relative ease of 

biomass production and greater biomass yield/ml of aerobic pre-growth would certainly be more 

economically favourable for a scaled-up system.  In previous studies H2 was produced by aerobically grown 

formate-supplemented Bact. coli (Escherich) (Stephenson & Stickland, 1932) and significant hyc operon 

expression was measured during aerobic growth with sodium formate in E. coli MC4100 (Rossman et al., 

1991).  In the present study the addition of sodium formate during aerobic growth caused a 10 % reduction 

in biomass yield relative to growth in unsupplemented broth, but upon the establishment of fermentative 

conditions (after washing to remove formate), strain MC4100 produced H2 immediately and with an equal 

initial rate, endpoint and yield to the anaerobically-grown controls (see above).  Thus, the aerobic-formate 

condition represents the preferred method for the preparation of an E. coli culture having high H2-production 

activity. 

 

3.2 Effects of Hyd-3 and HycA deletions on H2 production and uptake 

All strains expressing an active FHL complex (‘Hyd-3
+
’) produced H2 for approximately 45 h, during which 

at least 98 % of glucose (~2 mmol) was consumed and the pH decreased from 6.80 to 5.93 ± 0.06.  The rates 

of H2 production were identical in strains HD701 (HycA
-
), and MC4100 (parent) (Fig. 2A), confirming that 

pre-growth (of the parent strain) in the presence of formate overcame the requirement for use of an FHL up-

regulated strain.  This would also rule out a pleiotropic effect of the HycA deficiency in a possible co-up-

regulation of H2 uptake, or, indeed any uptake hydrogenase activity of Hyd-3 (see below).  Strains FTD147, 

FTD150 and HD705 (all devoid of Hyd-3), did not produce H2 indicating that the remaining hydrogenases 

Hyd-1, Hyd-2 and Hyd-4 were not capable of H2 production under these conditions.  H2 uptake by these 

strains was not investigated as it was shown previously that strain FTD89, which contains active Hyd-3 but 

no Hyd-1 or -2, and from which FTD147 and FTD150 were both derived, has no detectable in vivo 

fumarate-dependent H2 uptake activity (Dubini et al., 2002).  This activity would not be restored upon the 

addition of further genetic modifications to produce strains FTD147 and FTD150.  Similarly, strain HD705 

(having Hyd-1 and Hyd-2 but no Hyd-3) possesses in vivo fumarate-dependent H2 uptake activity similar to 

the parent strain (Sargent et al., 1999). 

 

3.3 Effects of Hyd-1 and Hyd-2 deletions on H2 production and uptake 

Strains FTD67 and FTD89 (which both lack Hyd-2) exhibited high rates of H2 production, and were easily 

distinguishable from the parent strain from the outset, whereas a strain lacking Hyd-1 activity (FTD22) 

showed no significant change in H2 production (Fig. 2B).  The yields of H2 from glucose (Table 1) mirrored 

this trend, both Hyd-2 deficient strains having significantly higher yields than the parent strain (P < 0.001), 

whereas no significant difference was found between the Hyd-1 deficient strain and the parent strain (P = 

0.15), or between the Hyd-2 deficient strain FTD67 and the -1 and -2 double deficient strain FTD89 (P = 

0.35). 
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The extent of H2 recycling was calculated from the products formed (Table 1).  For the parent strain 

(MC4100) hydrogen uptake activity resulted in a 31 % reduction in H2 yield. Analysis of the activity of 

other, potentially competing, metabolic pathways shows very little variation in the proportions of lactate, 

succinate and (H2formed + H2 uptake), indicating that the increased H2 yield resulted from the removal of H2 

uptake, rather than from secondary effects on the activity of competing pathways.   

However, a secondary effect on the fermentation balance was observed.  The ratio of acetate/ethanol 

was significantly higher in strains FTD67 and FTD89 (devoid of Hyd-2) than in the parent strain (t-test, P<5 

%, df=7).  This can be attributed to the involvement of H2 uptake in redox balance, whereby the oxidation of 

H2 would increase the required disposal of reductant by the normal mechanism: the reduction of acetyl-CoA 

to ethanol.  The increased ratio of acetate/ethanol would hypothetically result in an increased yield of ATP 

and hence growth, although the observed increases in growth for strains FTD67 and FTD89 (compared to 

the parent strain) was not statistically significant (t-test, P>5 %). 

4. Discussion 

In this study, the HycA deficient strain (HD701) and the parent strain (MC4100) produced H2 with equal 

rate and yield if formate was present in the pre-growth medium.  This is interesting in light of previous 

observations that HycA deficient strains of E. coli showed increased FHL expression and increased rate of 

H2 production in comparison to parent strains (Sauter et al., 1992; Sode et al., 2001; Penfold et al., 2003; 

Yoshida et al., 2005).  The HycA repressor is thought to control the expression of the hyc operon (encoding 

FHL complex structural components) by competing with formate for binding sites on the FhlA activator 

(Skibinski et al., 2002).  All data support the hypothesis that the absence of the HycA repressor results in a 

decreased threshold concentration of formate required to de-repress the expression of the FHL complex.  

The aerobic culture in a high sodium formate background (this study) is likely to have induced the 

expression to the maximum level, overcoming the effects of a deficiency in HycA, and permitting the rapid 

culture of cells possessing high H2 production activity.  Formate was shown previously to de-repress the hyc 

operon under aerobic conditions (Rossman et al., 1991).  Although the use of sodium formate would 

represent an additional cost upon scale-up, the excess would contribute to H2 production, and the quantity 

necessary to produce a pre-adapted culture (expressing FHL activity) may be significantly less than that 

used here (0.1 M), as a previous study used only 0.03 M (Rossman et al., 1991). 

Increased H2 production by E. coli in the absence of uptake hydrogenase activity has been observed 

by several authors (Sode et al., 1999; Bisaillon et al., 2006; Penfold et al., 2006) but a compensatory uptake 

function of the residual hydrogenases has not been previously excluded.  In the light of the analysis of 

fermentation balance (Table 1), the improvement can be attributed predominantly to the inactivity of 

hydrogenase-2.  The calculation of H2 uptake was based on the imbalance between estimates of formate 

decomposed (ethanol + acetate - formate) and H2formed (equation 1).  As no oxidants were present, this 

imbalance cannot be attributed to the consumption of formate by respiratory formate dehydrogenases and  

the absence of H2 uptake in the specific absence of Hyd-2 precludes any significant H2 uptake activity by the 

remaining enzymes. 

The H2 yield reached only 52 % of the theoretical maximum (2 mol H2/mol glucose).  This was 

attributed to the formation of significant quantities of lactate and succinate, the quantities of which were not 

affected by deficiencies in Hyd-1 and Hyd-2.  Therefore, the increased H2 yield was due to decreased H2 

uptake and not to the decreased activity of lactate and succinate formation.  The flow of carbon to these 

products, rather than through pyruvate formate-lyase (PFL) resulting in H2 production, represented (on 

average) a loss of 37.9 % of potential H2.  Lactate and succinate formation can be controlled using strains 

defective in the fermentative lactate dehydrogenase and fumarate reductase, respectively (Mat-Jan et al., 

1989; Sode et al., 1999; Sode et al., 2001), and lactate formation can also be decreased through the control 

of pH and substrate supply (M.D. Redwood and L.E. Macaskie, unpublished).   

During anaerobic fermentation under conditions studied here, E. coli exhibits no significant 

hydrogenase uptake activity by any factors other than hydrogenase-2.  The deletion of the genes encoding 

respiratory hydrogenase 1 had no significant effect on H2 production, whereas the yield was improved by 

more than one third through the deletion of uptake hydrogenase-2.  For the industrial application of this 
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work to bio-H2 production the Hyd-1 and -2 deficient strain (FTD89) would be most advantageous.  Further 

modifications to this strain to control lactate and succinate formation could result in yields close to 2 mol 

H2/mol glucose.  
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Table 1  Bacterial strains and fermentation balances 

Strain ID Genotype 
Hyd-a Products formed (mol/mol glucose) Growthd 

(g/mol glucose) 

Carbon 

balance (%)e 

Strain 

source 1 2 3 H2formed Formate Acetate Ethanol Lactate Succinate CO2estb H2 uptakec 

MC4100 Parental strain + + + 
0.764 

(0.030) 

0.149 

(0.011) 

0.499 

(0.036) 

0.649 

(0.012) 

0.318 

(0.012) 

0.494 

(0.008) 

0.504 

(0.026) 

0.236 

(0.045) 

2.61 

(1.947) 

100 

(1.53) 
f 

HD701 hycA + + + 
0.737 

(0.023) 

0.132 

(0.013) 

0.363 

(0.036) 

0.667 

(0.015) 

0.359 

(0.009) 

0.470 

(0.009) 

0.422 

(0.035) 

0.162 

(0.025) 

2.57 

(0.281) 

95 

(2.54) 
f 

FTD147 hyaB, hybC, hycE - - - 0 ND ND ND ND ND ND ND ND ND 
g 

FTD150 hyaB, hybC, hycE, hyfB-R - - - 0 ND ND ND ND ND ND ND ND ND 
g 

HD705 hycE + + - 0 ND ND ND ND ND ND ND ND ND 
f 

FTD22 hyaB - + + 
0.800 

(0.012) 

0.181 

(0.032) 

0.528 

(0.052) 

0.695 

(0.025) 

0.312 

(0.013) 

0.452 

(0.036) 

0.590 

(0.070) 

0.242 

(0.062) 

3.01 

(1.040) 

102 

(3.97) 
h 

FTD67 hybC + - + 
1.024 

(0.040) 

0.214 

(0.026) 

0.686 

(0.016) 

0.539 

(0.005) 

0.383 

(0.030) 

0.432 

(0.024) 

0.674 

(0.061) 

-0.001 

(0.021) 

2.52 

(0.926) 

104 

(1.99) 
i 

FTD89 hyaB, hybC - - + 
1.043 

(0.025) 

0.176 

(0.012) 

0.640 

(0.057) 

0.583 

(0.028) 

0.372 

(0.029) 

0.436 

(0.021) 

0.611 

(0.069) 

0.004 

(0.094) 

3.62 

(1.419) 

104 

(5.14) 
h 

a
 + present, - defective; 

b 
equation 2; 

c
 equation 1; 

d
 g bacterial dry weight; 

e
 equation 3, 

f
 (Sauter et al., 1992); 

g
 (Sargent, F - unpublished), 

h
 (Sargent et 

al., 1999); 
i
 (Dubini et al., 2002)

 

Values are the means of at least 4 replicates (  S.E.M.).  

ND, Strains FTD147, FTD150 and HD705 produced no detectable H2 and were not studied further. 
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Fig. 1. Metabolic scheme for mixed acid fermentation.  The solid lines represent pathways contributing to 

H2 production.  The broken lines represent pathways competing with H2 production.  The ideal products are 

boxed.  Ideally the values of lactate formation, succinate formation and H2 uptake would be zero, and hence 

there would be no recycling of produced CO2 in the carboxylation of PEP. 

 

 
 

 

 

Fig. 2. H2 production by E. coli strains deficient in HycA (A), and uptake hydrogenases (B).  Bars represent 

standard errors. 
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Supplementary figure (not published) 

Figure 3 was removed from the publication at the request of the editor and it is included here for clarity. 

 

The figure illustrates that the sum of H2 formed and H2 uptake was reasonably constant, whereas Hyd-2 

activity affected the distribution of potential H2 between these two fates, whereas the effects on other aspects 

of fermentation balance were relatively minor. 

 

 
 

Figure 3.  Fates of potential H2 in Escherichia coli strains deficient in HycA (A) and uptake 

hydrogenases (B).  

 

In accordance with the scheme of mixed acid fermentation (Fig. 1), one mole of lactate, succinate, formate 

or ‘H2 uptake’ represents one mole of potential H2 production, whereas acetate and ethanol are produced 

concomitantly with H2.  Data are the normalised means of at least four replicate experiments.  Means and 

standard errors (pre-normalisation) are given in Table 1.  For each strain the sums of potential H2 and 

measured H2 were not significantly different from 2 mol H2/mol glucose and did not vary significantly 

between strains. 


