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In this paper, we demonstrate the successful incorporation of phosphate into Ba2In2O5, which 

leads to the conversion from an orthorhombic to a cubic unit cell. The resulting increased  

oxygen vacancy disorder leads to an enhancement in the oxide ion conductivity at low 

temperatures. In addition, in wet atmospheres, significant proton conduction is observed.  

Solid Oxide Fuel Cells (SOFCs) are attracting considerable interest as next generation energy 

conversion devices due to their high efficiencies and accompanying low emissions. For the 

electrolyte in such devices, a material displaying either high oxide ion conductivity or proton 

conductivity at elevated temperatures is required, with the main focus of research in this field 

being materials with the fluorite or perovskite structures
1-3

. One of the most well known 

perovskite-related oxide ion conductors is Ba2In2O5, whose oxide ion conductivity is closely 

linked to its crystal structure
4,5

. At room temperature, it adopts an orthorhombic brownmillerite-

type structure (figure 1) containing ordered oxide ion vacancies, leading to alternating layers of 

InO6 octahedra and InO4 tetrahedra. As a result of this ordering of the oxide ion vacancies, the 

oxide ion conductivity is comparatively low. At a temperature of ≈ 930 °C, there is a phase 

change from orthorhombic to tetragonal resulting in disordering of these oxygen vacancies, and a 

corresponding discontinuous jump in oxide ion conductivity by more than an order of 

magnitude
4,5

. At higher temperature still, above 1040 °C, the cell becomes cubic, as the oxide ion 

vacancies become completely disordered
5
.  

 
 

Like other oxygen deficient perovskite related materials, Ba2In2O5 will also incorporate water into 

the oxide ion vacancies at low temperatures in wet atmospheres, according to equation 1  

 

 VO
●●

 + OO +  H2O ↔ 2 OHO
●
  (1) 

 

This hydration (up to 1 mole H2O per formula unit) leads to the formation of a tetragonal phase, 

and the observation of significant proton conduction.
6,7

  In addition, at low temperatures, a p-type 

contribution to the conductivity is observed in oxidising atmospheres due to oxygen incorporation 

according to equation 2. 

  

VO
●●

 + ½ O2 ↔ OO + 2h
●
  (2) 

  

As a result of the high oxide ion conductivity in the high temperature disordered phase of 

Ba2In2O5, there have been many studies into doping strategies on the In site to stabilise this phase 

to lower temperatures. Isovalent doping studies have shown that the transition temperature can be 

lowered by the incorporation of ions with smaller ionic radii than In.
8
 However, by far the most 

successful strategy, has proved to be doping with higher valent cations, such as Sn,
9
 Ti,

10
 V, Mo 

Figure 1. The 

brownmillerite structure 

adopted by Ba2In2O5, 

showing alternating layers 

of InO6 and InO4 units 



and W 
11

 . Other attempts to stabilise the highly conducting phase to lower temperatures have 

included doping on the Ba site with Sr or La
12,13

. There are, however, concerns regarding the long 

term stabilities of these doped systems, and therefore we have investigated an alternative doping 

strategy. Our approach stems from previous work on the incorporation of oxyanions into 

perovskite-type cuprate superconductors. This work showed that perovskite systems could 

incorporate significant levels of oxyanions (carbonate, nitrate, sulphate, phosphate)
14-19

, and 

moreover such a doping strategy could be used to stabilise phases, which could not be formed 

without doping; e.g. the Sr analogue of the high temperature superconductor, YBa2Cu3O7-x.
 16

   

In this study, we have therefore investigated the possibility of doping phosphate anions onto the 

In site in Ba2In2O5, with the aim of reducing the basicity of the system and hence improving long 

term stability. We here demonstrate the successful incorporation of phosphate, along with a 

corresponding enhancement in the conductivity.  

 

High purity BaCO3, In2O3 and NH4H2PO4 were used to prepare Ba2In2-xPxO5+x (x = 0, 0.1, 0.2, 

0.3) samples. A 3% excess of BaCO3 was employed to overcome Ba loss at elevated 

temperatures.  Without this small Ba excess, low levels of Ba deficient impurity phases, such as 

BaIn2O4 and Ba4In6O13, were observed after sintering, as has been seen in other studies 

synthesising similar Ba containing phases.
20, 21

 The ground powders were first heated to 1000 °C 

for 12h. They were then ball-milled (350 rpm for 1 hour, Fritsch Pulverisette 7 Planetary Mill) 

and reheated to 1000 °C for a further 50h. The products were then pressed as pellets (1.3 cm 

diameter) and sintered at 1300 °C for 10h. The pellets were covered in sample powder and the 

crucible was covered with a lid to limit the amount of Ba loss during the sintering process. The 

phase purity was determined by powder X-ray diffraction (Bruker D8 diffractometer with Cu Kα1 

radiation). In order to provide further evidence for the successful incorporation of phosphate, 

Raman spectroscopy measurements were made using a Renishaw inVia Raman microscope with 

excitation using a Cobolt Samba CW 532 nm DPSS Laser.  

For the conductivity measurements, sintered pellets (>84% theoretical density) were coated with 

Pt paste, and then heated to 750 C for 1 hour to ensure bonding to the pellet. Bulk conductivities 

were then measured by AC impedance measurements (Hewlett Packard 4182A impedance 

analyser) in the range from 0.1 to 10
3 
kHz. Measurements were made in dry N2 to eliminate the p-

type contribution to the conductivity. In addition measurements were made in wet N2 (in which 

the gas was bubbled at room temperature through water) to identify any protonic contribution to 

the conductivity.   

In order to gather information regarding the effect of phosphate doping on water incorporation, 

powder samples were heated to 800 
○
C in wet N2, and then slow cooled ( 0.4 

○
C/min) to room 

temperature to allow sample hydration. The water content of the hydrated samples were then 

analysed using thermogravimetric analysis (Netsch STA 449 F1 Jupiter Thermal Analyser). 

Samples were heated at 10 
○
C/min to 1000 

○
C in N2. 

 

X-ray diffraction data confirmed the successful synthesis of single phase samples of Ba2In2-

xPxO5+x in the range 0≤x≤0.3. X-ray diffraction patterns for x=0, 0.1, 0.3, are shown in figure 2.  

 



 
Figure 2. . X-ray diffraction patterns for Ba2In2-xPxO5+x, (a) x=0, (b) x= 0.1, (c) x=0.3. 

 

These XRD data showed a change from orthorhombic – tetragonal – cubic as the phosphate 

content increased. Moreover, the cell volume was shown to decrease with increasing phosphate 

content, in line with the smaller size of P
5+

 versus In
3+

 (figure 3).  

 

 
Figure 3. Variation of equivalent cell volume with phosphate content for Ba2In2-xPxO5+x. 

 

Two factors could be accounting for the change in cell symmetry 

1. The effect of the smaller size of PO4
3-

 compared to InO4
5-

, which disrupts the oxygen vacancy 

ordering. 

2. The higher charge of P compared to In leading to an increase in the oxide ion content. A 

similar stabilisation of the cubic cell is seen on Sn doping for In, which also leads to an increase 

in oxygen content
8
. 

Further evidence for the successful incorporation of phosphate was provided by Raman 

spectroscopy studies, which showed a reduction in the intensity of the In-O bands, and the 

emergence of  bands due to phosphate (figure 4).  

 



 
Figure 4. Raman spectra for Ba2In2-xPxO5+x, (a) x=0, (b) x= 0.1, (c) x=0.3, showing the emergence 

of peaks due to the presence of phosphate. 

 

Following the demonstration of the successful incorporation of phosphate, the effect of this 

doping strategy on the conductivity was examined. Figure 5 shows the conductivity data for the 

x=0.0, 0.1, and 0.3 samples. As can be seen from these data, the low temperature conductivity is 

significantly enhanced on increasing phosphate doping. This can explained by the disordering of 

the oxygen sublattice. At higher temperatures, the conductivity for x=0.1 is, however, higher than 

that for x=0.3. This increase in conductivity at higher temperatures for x=0.1, can be related to 

the elevated temperature introducing disordering of the oxide ion vacancies in this phase, 

supported by preliminary high temperature X-ray diffraction studies. The fact that in the 

disordered region the conductivity for x=0.1 is greater than x=0.3 would suggest a small degree 

of vacancy defect trapping on phosphate doping. Evidence for this can also be provided by 

comparing conductivities at 790
○
C for samples with varying phosphate content (figure 6). 

 

 
Figure 5. Conductivity data in dry N2 for Ba2In2-xPxO5+x, x=0 (filled circles), x=0.1 (filled 

triangles), x=0.3 (filled squares). Conductivity data in wet N2 for x=0.3 also shown (open 

squares) 

 



 
Figure 6. Variation in σ790 (filled circles) and σ400 (filled squares) in dry N2 with phosphate 

content, x, in Ba2In2-xPxO5+x. Data show an enhancement in the low temperature conductivity with 

increasing phosphate content, while at high temperatures there is an initial enhancement, followed 

by a small conductivity decrease for higher phosphate contents.  

 

In addition to the high oxide ion conductivity, there was also evidence for significant proton 

conductivity in wet atmospheres, as illustrated by an enhancement in the conductivity (figure 5, 

400C=7.7 x 10
-4

 Scm
-1

 in wet N2). This proton conductivity originates from water incorporation 

into the oxide ion vacancies according to equation 1. The degree of water uptake in these samples 

was investigated by thermogravimetric analysis. These experiments indicated that as phosphate is 

doped into the sample, the maximum water content achievable decreases (e.g. water content 

decreases from 1 mole to 0.4 mole per formula unit from x=0 to x=0.3) This can be partly 

explained by the increase in starting oxide ion content, meaning there are less oxide ion vacancies 

to fill. However, the decrease in water content is higher than might have been expected given the 

starting oxide ion content, e.g. for Ba2In1.7P0.3O5.3, a water content of 0.7 H2O, to fill all the vacant 

oxide ion sites, might have been predicted. The observation of a lower water content (0.4 H2O) 

can be explained by the tetrahedral coordination of P (in the phosphate ion), which hence 

precludes the filling of the other two vacant sites in the perovskite B site coordination sphere 

around it.   

Further detailed studies are required to investigate the structural influence of the phosphate in 

more detail. Preliminary structural refinement for X-ray diffraction data of the highest P content 

sample (x=0.3) provides confirmation of P incorporation, with In and P contents of 1.68(4) and 

0.32(4) respectively, in agreement with those expected. Further neutron diffraction studies are, 

however, planned to investigate the structural features in more detail. In addition, further studies 

are planned to investigate the long term stability of these phosphate doped phases.  

 

In summary, we have demonstrated that phosphate can be doped into Ba2In2O5, leading to the 

introduction of disorder on the oxygen sublattice, and hence an increase in oxide ion conductivity, 

as well as significant proton conductivity in wet atmospheres. The work shows the potential for 

oxyanion doping as a novel strategy to enhance the oxide ion/proton conductivity of fuel cell 

electrolytes. Further preliminary studies have shown that sulphate doping is similarly successful 

in this respect.  
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