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Abstract 

 

Apatite-type rare earth silicates/germanates have attracted considerable interest recently 

due to their high oxide ion conductivities. Despite evidence in support of a conduction 

mechanism involving interstitial oxide ions, the exact location of the interstitial oxide ion 

sites continues to attract controversy. In this paper we report a neutron diffraction 

structural study for the high oxygen excess compound, La8Y2Ge6O27. The structural 

model indicates that the oxide ions are located between the GeO4 tetrahedra, leading to 

significant localised distortions. These results, coupled with recent modelling studies, 

hence, support the conclusion that oxide ion migration proceeds via these tetrahedra.  
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1. Introduction 

 

The drive to reduce greenhouse gas emissions, and increase energy efficiency, has 

driven considerable research into solid oxide fuel cell systems for stationary power 

applications. This technological interest has fuelled research into new materials for 

use in such devices, and systems that have attracted significant recent interest in this 

respect are the apatite-type silicates/germanates, La9.33+x(Si/GeO4)6O2+3x/2 [1-32]. These 

silicates/germanates have been shown to exhibit high oxide ion conductivities offering 

potential use as electrolytes in SOFCs [13].  In contrast to the traditional fluorite and 

perovskite-type oxide ion conductors, where a conduction mechanism via the 

presence of oxide ion vacancies has long been universally accepted, the conduction 

mechanism of the apatite systems has been more controversial. Initial it was assumed 

that these too were oxide ion vacancy conductors, although there is now an 

established body of evidence in support of a mechanism involving interstitial oxide 

ions: these interstitial oxide ions can be either present as oxygen hyperstoichiometry 

(x>0) or Frenkel defects [4, 9, 10, 12, 13, 20-23, 28]. Despite the current acceptance 

of an interstitial oxide ion conduction mechanism, the location of these interstitial 

oxide ions and their migration pathway is still somewhat controversial [see review 

articles [13] and references therein], which can be related to the complex structural 

features of these apatite systems. 

Apatite materials have general formula, A10(MO4)6X2 (A=alkaline earth, rare earth, 

Pb; M=Si, Ge, P, V; X=O, OH, halides), and there are two ways of describing their 

structure. Traditionally they have been described as comprising of isolated MO4 

tetrahedra arranged so as to form distinct X anion and A cation channels running 

parallel to the c axis. More recently, an alternative description has been proposed, in 

terms of a “microporous” framework (A(1)4(MO4)6) composed of face sharing A(1)O6 
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trigonal meta-prismatic columns, that are corner connected to the MO4 tetrahedra. The 

remaining A(2)6X2 units occupy the “cavities” within this framework (Figure 1) 

[20].  

As mentioned above, the location of the interstitial oxide ion site in the apatite 

silicates/germanates has attracted some controversy, with two models for this 

interstitial site having been proposed: occupancy of a position in the centre of the 

[0,0,z] channels, situated between O(5) oxygen sites, and occupancy of an interstitial 

position lying close to the SiO4/GeO4 structural units [4, 9-13, 16, 20-23, 27, 28]. This 

difficulty in conclusively locating the interstitial site can be attributed to the low 

interstitial oxide ion contents and the considerable local distortions that arise on the 

introduction of an interstitial oxide ion defect. Nevertheless, there is growing support 

for the second of these models, initially proposed by atomistic modelling studies, and 

with a number of supporting experimental reports, including diffraction [10, 16, 20, 

21], Mössbauer [11], NMR and Raman studies [12, 23].   

An additional structural complexity in the case of the lanthanum germanate apatites, 

La9.33+z(GeO4)6O2+3z/2 is the fact that as the La content, and hence oxygen content 

increases there is a change from a hexagonal to a triclinic cell. Thus Leon-Reina et al. 

have reported the preparation of single phase samples of La9.33+z(GeO4)6O2+3z/2  for 

0.19 z 0.42, with samples in the range 0.19 z 0.27 possessing hexagonal symmetry, 

while samples with higher La content, 0.33 z 0.42, exhibit a triclinic cell [6]. More 

recently, Pramana et al. have reported the synthesis of the x=0.67 endmember, which 

is also triclinic [20]. The triclinic apatites have reduced conductivity at low 

temperatures, attributed to enhanced defect trapping in this lower symmetry cell, 

which is a problem in terms of applications. Recently we have shown that Y can be 

selectively doped into the sites within the A(1)4(MO4)6 framework altering the size of 
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this framework, and hence relieving the triclinic distortion [18]. Thus it is possible 

through Y doping to prepare hexagonal samples with high oxygen content, i.e. 

La7.33+xY2(GeO4)6O2+3x/2 (0≤x≤0.67). These samples show enhanced conductivity at 

low temperatures compared with equivalent triclinic samples without Y doping [18]. 

In this paper we report neutron diffraction studies of the sample La8Y2(GeO4)6O3, 

which has a high interstitial oxide ion content, with a view to confirming the location 

of the interstitial oxide ion sites.   

 

 

2. Experimental 

Single phase La8Y2(GeO4)6O3 was prepared via a Pechini-type sol gel route. 

Stoichiometric amounts of La(NO3)3.6H2O, Y(NO3)3.6H2O and GeO2 were dissolved 

by heating in water. Once dissolved, citric acid and ethylene glycol were added (1.7 

moles per mole of La+Y), and the mixture evaporated on a hot plate until a clear gel 

was obtained. The gel was then transferred to a furnace and heated at 2 C/min to 

800 C before holding at this temperature for 12 hours, followed by regrinding and 

reheating to 1100 C for a further 12 hours. 

Time of flight powder neutron diffraction data were collected at room temperature on 

the POLARIS diffractometer at the ISIS pulsed spallation source, Rutherford 

Appleton Laboratory, UK. Data sets from two banks of detectors were used for the 

refinement; the first was the data from the backscattering (BS) detector bank (average 

2θ≈145
◦
) and the second was the data from the 90° detector bank. Structure 

refinement was then performed using the GSAS suite of Rietveld refinement software 

[33].  

 



 6   

3. Results and Discussion 

Space group P63/m, which is typical for apatite systems, was employed, with Y 

located on the La1 site in agreement with prior X-ray diffraction studies [18]. The 

initial structural refinement considered the non-electroneutral cell La8Y2(GeO4)6O2 

containing no interstitial oxide ions, which led to a generally poor fit to the data. 

Fourier maps showed the presence of unfitted nuclear density between two GeO4 

units, at a position close to (0,0.5,0). In addition, the Fourier maps suggested 

significant disorder within the oxide-ion sites of the GeO4 tetrahedra (O1-O3), and the 

channel oxide ion site (O4). In particular, there was evidence for split sites for the O1 

and O3 oxide ions of the GeO4 tetrahedra, while for the channel oxide ion site, O4, a 

large spread of nuclear density along z was observed, indicative of static disorder. In 

order to account for these features, the structural model was refined to include the 

interstitial site, and split O1, O3, and O4 sites.  In order to maintain a stable 

refinement, the thermal displacement parameters of the split O1 (O1a/O1b) and O3 

(O3a/O3b) sites were constrained as equal, while the occupancies were linked such 

that the total occupancy (O1a+O1b, O3a+O3b) =1.0; for the O4 site, the oxide ion 

was simply allowed to move off –site along z giving a site with half occupancy. Due 

to the high correlation between the site occupancy factor and the thermal 

displacement parameter for the interstitial site, the occupancy was fixed at that 

expected for the sample stoichiometry. Inclusion of the interstitial oxide-ion sites and 

split O1, O3, and O4 sites led to a substantial improvement in fit, with good 

agreement between observed and calculated profiles (figure 2). The final structural 

model is given in table 1, with selected bond distances in table 2. 

The final refined structural model demonstrates the occupancy of interstitial sites (O5) 

between 2 GeO4 units. The refined position gives sensible Ge-O distances (table 2), 
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and is in agreement with recent modelling predictions, and structural studies by 

Pramana et al. for the triclinic apatite La10(GeO4)6O3 [20, 21]. In addition to the 

presence of the interstitial oxide-ion site, there was a need to split the O1 and O3 sites 

of the GeO4 tetrahedra to achieve a good fit to the data, with all the split sites again 

giving sensible bond distances in support of their inclusion.   

These observations of the need for split sites emphasise the difficulty in identifying 

the interstitial oxide-ion sites in these apatite materials through neutron diffraction 

studies, which essentially give only an average structure. There are two potential 

origins for the observation of the need to employ split oxide ion sites:  

1. Local structural distortions around the interstitial oxide ion. 

2. Local distortion around the Y dopant (due to the significantly smaller size of Y 

compared to La).  

In understanding these local distortions, computer modelling studies can provide 

important detail [17,22]. Our prior computer modelling studies on the oxygen 

stoichiometric La9.33(GeO4)6O2 system have shown that the introduction of an 

interstitial oxide ion effectively creates a “Ge2O9” unit, leading to significant local 

structural distortions around these Ge atoms [22]. Furthermore, a displacement of the 

O4 channel oxide ion site is also observed in agreement with the need to allow this 

oxide ion to move off the ideal site.  

It is interesting to note that for both the O1 and O3 sites, the ratio of the two split sites 

is approximately 2:1, which would be consistent with that expected if we consider the 

formula as La8Y2(GeO4)4(Ge2O9)O2, and so would add credence to the notion that the 

occupancy of an interstitial oxide site is the main cause for the need to employ split 

O1 and O3 sites.  Overall the results clearly show that, in any structural model of 

apatite-type systems, the effect of interstitial oxide-ions on the neighbouring atoms 
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needs to be considered. It therefore explains the difficulty in obtaining reliable 

structural refinements of these apatite systems, and also accounts for the high thermal 

displacement parameters of the oxide-ions associated with the tetrahedra observed in 

structural studies of other apatite-type oxide ion conductors [4, 10, 17, 19, 28]. 

With regard to the oxide-ion conducting characteristics of La8Y2(GeO4)6O3, the 

location of the interstitial site is important. The refinement shows the presence of 

interstitial oxide ions between 2 GeO4 units in adjacent channels, similar to positions 

observed in the conduction pathway along the c direction proposed by the modelling 

studies (figure 3) [22]. The neutron diffraction studies therefore add support to the 

modelling studies on La9.33(GeO4)6O2 regarding both the interstitial site location, and 

conduction pathways. These studies predicted that conduction of the interstitial sites 

occurs along the c direction by a complex fan-like mechanism down the centre of the 

GeO4 units (figure 3), while conduction perpendicular to c can occur by the breaking 

and reforming of the “Ge2O9” units, which can allow the transfer of an oxide ion from 

one channel to the next [22]. 

4. Conclusions 

In summary, structural studies of the hexagonal oxygen hyperstoichiometric apatite 

germanate  system, La8Y2(GeO4)6O3 have confirmed modelling predictions [22] and 

neutron diffraction studies of the related triclinic La10(GeO4)6O3 [20], that the  

interstitial oxide ion is associated with the GeO4 units. Overall the results show that 

the A(1)4(MO4)6 framework is crucial for the accommodation of interstitial oxide ions 

and hence their conduction in these apatite-type germanates.  
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Table 1. Final refined structural parameters for La8Y2(GeO4)6O3  

Atom Site x y z Fractional 

occupancy 

100x 

U/Å
2 

Y1/La1 4f 1/3 2/3  0.0012(4) 0.5/0.5 1.82(4) 

La2 6h 0.2362(2) -0.0044(2) 1/4 1.0 1.52(3) 

Ge 6h 0.4068(2) 0.3843(2) 1/4 1.0 1.46(3) 

O1a 6h 0.3187(3) 0.4961(3) 1/4 0.654(4) 1.29(7) 

O1b 6h 0.4386(6) 0.5764(8) 1/4 0.346(4) 1.29(7) 

O2 6h 0.6110(3) 0.4659(3) 1/4 1.0 * 

O3a 12i 0.2827(5) 0.2316(5) 0.1003(6) 0.354(3) 2.95(5) 

O3b 12i 0.3643(4) 0.2592(3) 0.0546(3) 0.646(3) 2.95(5) 

O4 4e 0 0 0.203(2) 0.5 * 

O5 12i 0.070(2) 0.473(2) -0.043(3) 0.0833 3.1(5) 

 

*
Anisotropic thermal displacement parameters 

 U11 U22 U33 U12 U13 U23 

O2 1.3(1) 1.4(1) 8.9(2) 0.8(1) 0 0 

O4 2.3(2) 2.3(2) 9.8(10) 1.2(1) 0 0 

 

Hexagonal, P63/m; a =b = 9.9148(1), c= 7.1561(1) Å 

Rp=0.0321, Rwp=0.0194, 
2
=2.826 
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  Table 2. Selected interatomic distances for La8Y2(GeO4)6O3. 

Bond Bond Distance/ 

Å 

 

Bond Bond Distance/ 

Å 

 

La1/Y1-O1a 

[x3] 

2.410(3)  La2-O1a 2.870(3) 

La1/Y1-O1b 

[x3] 

2.449(5)  La2-O1b  2.768(6) 

La1/Y1-O2 

[x3] 

2.447(3)  La2-O2 2.558(3) 

La1/Y1-O3b 

[x3] 

2.736(3)  La2-O3a [x2] 2.399(5)  

Ge-O1a 1.720(3) La2-O3a [x2] 3.003(5)  

Ge-O1b 1.768(7) La2-O3a [x2] 2.545(4)  

Ge-O2 1.765(3) La2-O3b [x2] 2.660(3)  

Ge-O3a 1.758(4) La2-O3b [x2] 2.455(3)  

Ge-O3b 1.774(3) La2-O4 [x2] 2.387(2)  

Ge-O5 1.60(2) La2-O5 [x2] 2.94(2)  
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Figure Legends 

Figure 1. The Apatite structure A10(MO4)6X2, in terms of an A(1)4(MO4)6 framework 

composed of face sharing A(1)O6 trigonal meta-prismatic columns, that are corner 

connected to the MO4 tetrahedra. The remaining A(2)6X2 units occupy the “cavities”. 

Figure 2. Observed, calculated, and difference neutron diffraction profiles for 

La8Y2(GeO4)6O3 

Figure 3. Oxide-ion conduction pathway along the c direction proposed from 

computer modelling studies of La9.33(GeO4)6O2 [22], with the interstitial oxide ion 

positions for La8Y2(GeO4)6O3 from neutron diffraction superimposed on top to show 

a similar location. 
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Figure 1 
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Figure 2.  
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Figure 3.  

 

 

 

 

 

 

 

 


