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_____________________________________________________________________ 
 

Abstract     Data for the rate coefficients and product cations of the reactions of a large number of atomic and 

small molecular cations with monochloroethene, trichloroethene and tetrachloroethene in a selected ion flow 

tube at 298 K are reported.  The recombination energy of the ions range from 6.27 eV (H3O+) through to 

21.56 eV (Ne+).  Collisional rate coefficients are calculated by modified average dipole orientation theory 

and compared with experimental values.  Thermochemistry and mass balance predict the most feasible 

neutral products.  Together with previously reported results for the three isomers of dichloroethene (J. Phys. 

Chem. A., 2006, 110, 5760), the fragment ion branching ratios have been compared with those from threshold 

photoelectron photoion coincidence spectroscopy over the photon energy range 9−22 eV to determine the 

importance or otherwise of long-range charge transfer.  For ions with recombination energy in excess of the 

ionisation energy of the chloroethene, charge transfer is energetically allowed.  The similarity of the 

branching ratios from the two experiments suggest that long-range charge transfer is dominant.  For ions with 

recombination energy less than the ionisation energy, charge transfer is not allowed; chemical reaction can 

only occur following formation of an ion-molecule complex, where steric effects are more significant.  The 

products that are now formed and their percentage yield is a complex interplay between the number and 

position of the chlorine atoms with respect to the C=C bond, where inductive and conjugation effects can be 

important. 

mailto:michael.parkes@ucl.ac.uk
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1.   Introduction 
 
In previous studies our group has examined the photoionisation dynamics of the chloroethene molecules 

C2HxCl4−x (x = 0−2) by threshold photoelectron photoion coincidence spectroscopy,1,2 and the kinetics and 

products of cation-molecule reactions for the three isomers of dichloroethene, C2H2Cl2.3  This paper reports 

results for the reactions of monochloroethene, trichloroethene and tetrachloroethene with twenty-four small 

atomic and molecular cations (H3O+, SF3
+, CF3

+, CF+, NO+, SF5
+, SF2

+, SF+, CF2
+, SF4

+, O2
+, Xe+, H2O+, 

N2O+,OH+, O+, CO2
+, Kr+, CO+, N+, N2

+, Ar+, F+ and Ne+) using a selected ion flow tube (SIFT).  The 

recombination energies (RE) of the cations above span the range 6.27–21.56 eV.  The principal aim of this 

study is to understand the effect of increasing the number of chlorine substituents on the reactivity of the 

chloroethenes.  To this end comparisons will be drawn between the photoionisation results for 

trichloroethene and tetrachloroethene,1 and between the cation-molecule reactions for all six chloroethenes 

studied.  The six chloroethene molecules are monochloroethene, 1,1-dichloroethene, Z-1,2-dichloroethene, E-

1,2-dichloroethene, trichloroethene and tetrachloroethene. 

 

Another reason to examine the reactivity of the chloroethenes is that they are common environmental 

pollutants and highly resistant to biodegradation.4  All three chloroethenes studied in this paper, 

monochloroethene (C2H3Cl), trichloroethene (C2HCl3) and tetrachloroethene (C2Cl4), are industrially 

important.  Monochloroethene is used for the production of the plastic polyvinyl chloride, incomplete 

combustion of chlorocarbons can produce emissions of trichloroethene,5 while tetrachloroethene has been 

used as a dry cleaning agent.  All three molecules are suspected carcinogens. 

  

Most of the previously-studied ion-molecule reactions have described the reaction of the monochloroethene 

parent ion (C2H3Cl+) with neutral monochloroethene and a range of other neutrals such as methanol, 

ammonia and methane.6-8  There have been very few studies of the reactions of neutral monochloroethene 

with other cations.  Two of interest are the SIFT study of C60
n+ with monochloroethene by Ling et al.,9 and 

the reactions of rare gas ions with monochloroethene in an ion-beam mass spectrometer.10  The SIFT study of 

Ling et al. also included results for the reactions of trichloroethene and tetrachloroethene with C60
n+.  Španěl 

and Smith measured the reactions of trichloroethene and tetrachloroethene with H3O+, NO+ and O2
+, using a 

SIFT apparatus adapted for breath analysis.11 
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A secondary aim of this study is to understand the mechanism by which the measured ion-molecule reactions 

occur.  Two limiting mechanisms have been postulated, defined as long-range and short-range electron 

transfer.3,12,13  Briefly, in long-range electron transfer the neutral molecule (BC) exchanges an electron with 

the cation (A+) at a large internuclear distance (~ 5Å), and it is assumed that the cation potential energy 

surface of the neutral molecule is only weakly influenced by the presence of the reacting cation.  To all 

intents and purposes, long-range charge transfer leading to the neutral molecule to donate an electron to the 

reagent ion is energetically the same as resonant photoionisation with the photoelectron being produced with 

zero kinetic energy.   Therefore, the product ion branching ratios from long-range transfer ion-molecule 

reactions and threshold photoelectron photoionisation experiments should be similar. For the generic reaction 

A+ + BC  →  AB+ + C, these two reactions can be summarised as: 

 

A+ + BC  →  A + BC+ (*) ;  BC+ (*)  →  fragments 

hν + BC  →  BC+ (*) + e− ;  BC+ (*)  →  fragments   (I) 

 

Short-range electron transfer occurs when the electron jump happens at a much closer separation of the 

reacting cation and the neutral molecule through the formation of a complex.  The cation of the neutral 

molecule is now formed under the influence of the reacting ion, and this may lead to differences in the 

product ion branching ratios for the bimolecular compared to the photon-induced reaction.  Another 

mechanism can occur following formation of a collision complex, where bond making and bond breaking 

may take place; this is our definition of a chemical reaction.  Note that for electron transfer, daughter ions 

form via fragmentation of the parent cation of the neutral molecule, whereas in the chemical mechanism 

daughter ions are formed in the complex and not with the parent molecular ion as an intermediate.  A more 

detailed discussion of these mechanisms is given elsewhere.12,13  It should be noted that both the limiting 

charge-transfer mechanisms can only take place when the RE of the reagent ion is greater than the ionisation 

energy (IE) of the neutral molecule.  By contrast, a chemical reaction can take place at any RE of the ion.  

The IE values, defined as the experimental onset of ionisation, for the three neutrals studied here are 9.99 eV 

for monochloroethene,14 9.46 eV for trichloroethene, and 9.30 eV for tetrachloroethene.1  Of the cations 

studied, five (H3O+, SF3
+, CF3

+, CF+, NO+) have RE values less than the IE of all three neutrals, while SF5
+ 

has an RE value less than the IE of monochloroethene.  The remaining ions all have RE values greater than 

the IE of the three chloroethenes, so on energetic grounds charge transfer may occur. 

 

2.   Experimental 
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 Rate coefficients and products for the ion-molecule reactions have been measured using a SIFT 

apparatus.  Details of its operation are given in several reviews,15-17 and only a brief description is given here.  

Reagent ions are generated from a suitable precursor gas or gases in a high-pressure electron ionisation 

source.  By transmitting the generated ions through a quadrupole mass filter, the required reactant ion can be 

selected and admitted into the flow tube.  The tube is filled with ca. 0.5 Torr of helium buffer gas moving 

with a high linear velocity, ca. 100 m s-1.  The neutral reagent is injected downstream into the flow tube via 

one of two different inlets.  At the end of the flow tube cations are focused through a 1 mm orifice in a 

Faraday plate into a second quadrupole mass filter and detected by an off-axis channeltron.  The amount of 

injected neutral is varied from zero to a value which depletes the reactant ion signal by ca. 90%.  The loss of 

reagent ion and the increase in product ions are recorded as a function of neutral reagent concentration under 

pseudo-first-order conditions.  The error in the rate coefficient determined from data analysis is estimated to 

be 20%, and the apparatus is limited to measuring reactions with rate coefficients greater than ca. 10-13 cm3 

molecule-1 s-1.  Branching ratios are derived from plots of ion signal vs. neutral concentration, and 

extrapolation to zero flow of the neutral molecule allows for the effects of any secondary reactions. We quote 

an error of 15% in product branching ratios, this error increasing for ratios below 10%. Care is taken to check 

the linearity of the ln(reactant ion signal) vs. neutral concentration rate plot for signs of curvature, since such 

behaviour can indicate the presences of excited reagent ions.  Only the reactions of NO+ showed such 

curvature.  The absence of curvature, however, does not necessarily mean that all ions are in the ground state, 

since both ground and excited states could react with the same rate coefficient. 

  

All samples were purchased from Sigma-Aldrich with stated purities of greater than 99 %.  Trichloroethene 

and tetrachloroethene were purified by several freeze-pump-thaw cycles with liquid nitrogen before use. 

 

3.   Theory 
 

For comparison to the experimental rate coefficients, kexp, theoretical rate coefficients, kc, were calculated 

using the corrected version of the modified average dipole orientation (MADO) model of Su and 

Chesnavich.18,19  This calculation requires values for both the polarisability volume and the dipole moment of 

the neutral reactant.  The polarisability volume values for monochloroethene, trichloroethene and 

tetrachloroethene are 6.41, 10.03 and 12.02 x 10-30 m3.  The values for monochloroethene and trichloroethene 

were taken from the CRC handbook,20 the value for tetrachloroethene was estimated using the atomic-hybrid 

method of Miller which is known to give excellent results.21  The dipole moments of monochloroethene and 

trichloroethene are 1.45 and 0.90 D, respectively.20 
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For calculation of enthalpies of reaction, ΔrHº298, enthalpies of formation at 298 K of ions and neutrals were 

required.  The majority were taken from standard sources,14,22 exceptions being the enthalpies of formation 

for CF3
+ (+ 406 kJ mol-1),23 CClF (+ 31 kJ mol-1),24 SF5

+ (+ 29 kJ mol-1),25 SF5 (-915 kJ mol-1),26 SF4 (-768 kJ 

mol-1),27 SF2
+ (+ 693 kJ mol-1),27 SF2 (-295 kJ mol-1),27 SF+ (+ 998 kJ mol-1)27 and NCl (+ 314 kJ mol-1).28  

The values for the parent neutrals were taken from Manion.29  The enthalpies of formation for the parent ions 

formed from trichloroethene and tetrachloroethene were taken from the photoionisation study on these 

molecules,1 as were ΔfHº298 values for C2HCl2+ (1066 kJ mol-1) and C2Cl3
+ (984 kJ mol-1).  The IE of the 

three chloroethenes used are 9.99 eV for monochloroethene, 9.46 eV for trichloroethene and 9.30 eV for 

tetrachloroethene. 

  

Gaussian 03 calculations have been performed on all three molecules at the MP2 level with a 6-311 G + 

(d,p) basis set. The results for trichloroethene and tetrachloroethene have been reported in the paper on their 

photoionisation dynamics.1  Amongst other data, these calculations can give some indication of the orbital 

from which ionisation is taking place. 

 

4.   Results 
 

Tables 1−3 show the results from the SIFT experiment for the reactions of twenty four cations with 

monochloroethene, trichloroethene and tetrachloroethene, respectively.  Column 1 lists the reagent ion and its 

RE value in square brackets. Column 2 lists the experimentally-measured rate coefficient and, in square 

brackets, the rate coefficient determined using the MADO model.  Column 3 lists the ion products detected 

and their respective branching ratio in parenthesis.  Column 4 lists the proposed neutral products, and column 

5 the enthalpy for the proposed reaction.  The proposed neutral products are based on mass balance, chemical 

feasibility and thermochemistry.  For simplicity and ease of comparison with the photoionisation results 

emphasis has been given to products formed from charge transfer rather than chemical reaction.  

 

No rate coefficient for the reaction of SF4
+ with monochloroethene has been measured.  This is because only 

a small signal of SF4
+ could be produced from the ion source in conjunction with a large signal of SF5

+; 

secondary products from the reaction of SF5
+ with monochloroethene formed at 107 and 109 u masked the 

weak SF4
+ signal at 108 u.  For several reactions, branching ratios have not been measured because it was 

impossible to obtain a clean signal of a single reactant ion, leading to complications in calculating the 

branching ratios.  O2 was not used to produce O+ as the filament in the ion source would rapidly burn 
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out, instead N2O was used as a source gas for O+. However, only a small ion signal of O+ could be 

generated from N2O, so no branching ratios have been measured for any reactions of O+.For the reactions of 

H2O+ and OH+, it was impossible to separate the two ions using the current injection quadrupole.  Therefore, 

only observed products are listed in the tables. The one exception is reaction with monochloroethene where 

some allowance could be made for the presence of OH+, and approximate branching ratios are therefore 

given in Table 1.   

 

For simplicity we will divide the twenty four reactant cations into two groups. The first comprise ions with 

RE(ion) > IE(neutral), so charge transfer is energetically allowed.  The second comprise ions with RE(ion) < 

IE(neutral), where charge transfer is no longer allowed. 

 

4.1   RE(ion) > IE(neutral) 

 

4.1.1  Rate coefficients 

The majority of the ions fall in this group, ranging from SF5
+ (RE = 9.78 eV) through to Ne+ (RE = 21.56 

eV).  Although SF5
+ has an RE value which falls just below the IE of monochloroethene, for clarity it will be 

treated in this group of cations.  Comparison of kc to kexp values shows that the majority of the reactions occur 

at, or very near to the collisional rate; for most ions the efficiency, defined as kexp / kc, is in the range 70−100 

%.  For some reactions kexp has been measured as 20–30 % larger than kc, although the ±20 % error 

associated with the rate coefficients can explain much of these discrepancies. 

  

The reactions of SF5
+ are slow and inefficient (~25 %), except for tetrachloroethene which reacts with an 

efficiency of 50 %.  These results are similar to those for the reaction of SF5
+ with the dichloroethene 

isomers.3  SF5
+ has also been found to react slowly with CHCl2F, CHClF2 and CH2ClF,30 as well as with 

octafluorocyclobutane.31  There are two possible explanations for the inefficiency of SF5
+ reactions.  First, 

there could be steric effects associated with the SF5
+ cation.  Second, the RE(SF5

+) only slightly exceeds the 

IE for all three isomers of dichloroethenes, trichloroethene and tetrachloroethene.  This could indicate that 

charge transfer is an inefficient process close to its thermochemical threshold. 

  

For tetrachloroethene, one other reaction, that with SF2
+ (RE = 10.24 eV), is slow with a reaction efficiency 

of only 58 %.  An unfavourable cross-section for long-range charge transfer, indicated by the low signal in 

the C2Cl4 TPES around 10 eV, could explain the low reaction efficiency. 

 

4.1.2  Ion-molecule branching ratios 
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For reactions of monochloroethene, trichloroethene and tetrachloroethene with the nineteen cations having 

RE values ranging from 9.78–21.56 eV, charge transfer is energetically allowed, apart from for the one single 

reaction of SF5
+ with monochloroethene.  For reactions in this energy range, insight into why certain ionic 

products are observed can be obtained by comparison of product branching ratios with those from photon-

induced threshold photoelectron photoion coincidence (TPEPICO) spectroscopy (see Section 1).  Therefore, 

reference will be made to TPEPICO data for the dichloroethenes,2 trichloroethene and tetrachloroethene,1 and 

SIFT results for the dichloroethenes.3  Unfortunately, no TPEPCIO data for monochloroethene is available. 

 

When the RE of the reagent ion is greater than the IE of the neutral molecule, several clear patterns emerge in 

the ion-molecule branching ratios of all the chloroethenes.  Once the RE of the ion just exceeds the IE of the 

neutral, only the parent ion is formed via charge transfer.  After an energy gap of approximately 2−3 eV the 

first daughter ion caused by fragmentation of the parent ion is formed.  This product is always due to loss of 

one chlorine atom.  This daughter ion is formed with a large percentage yield until, after another gap of 

several eV, a smaller fragment ion is formed involving the loss of two chlorine atoms, or in the case of 

monochloroethene one chlorine and one hydrogen atom.  These are the dominant channels.  Other weaker 

channels may occur which involve loss of hydrogen atoms, either with or without the simultaneous loss of 

chlorine atoms.  In the next three paragraphs, we highlight reactions of particular interest for the three 

chloroethenes studied in this paper.  Then, we highlight trends observed for all the chloroethenes, C2HxCl4−x, 

including our earlier study of the isomers of dichloroethene.3 

  

Two reactions which are interesting to compare for the three titled chloroethenes are those with Kr+ (RE = 

14.00 eV) and CO+ (RE = 14.01 eV).  The RE of these two ions only differs by 0.01 eV, so any difference 

between the product branching ratios must be due to differences in reaction mechanism rather than 

energetics.  For monochloroethene, the main difference is that for Kr+ an additional (weak) channel due to 

loss of a hydrogen atom from the parent ion is observed.  By comparison, for trichloroethene and 

tetrachloroethene no apparent difference is observed between Kr+ or CO+.  It is possibly due to the presence 

of some excited Kr+ (2P1/2) ions in the flow tube with an extra available energy of 0.67 eV, leading to a new 

fragmentation pathway for monochloroethene. However, the anomaly suggests that monochloroethene may 

also be reacting with Kr+ and CO+ via different mechanisms. 

  

Another interesting ion is N+ (RE = 14.53 eV).  Examination of the branching ratios for reaction of the 

three titled chloroethenes with N+ shows that more parent ion is observed than would be expected for 

ions with comparable RE values. In comparison to the photoionisation results, the product ion 

branching ratios resulting from the reactions on N+ are more consistent with that for a reagent ion 
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with a recombination energy of approximately 12 eV.  If we assume that long-range transfer is 

occurring, then this would suggest that following electron transfer the majority of the neutral N atoms 

are formed in an electronically excited state.13  It is of note that the 2D0 excited state of atomic nitrogen 

is 2.4 eV above the ground state, which is comparable to the shift in energy needed to produce 

branching ratios consistent with those observed. This proposed decrease in the available 

recombination energy of N+ explains the branching ratios determined in many reactions involving N+, 

including our recent studies on the isomers of dichloroethene.3,13,31 

  

The reactions of Xe+ and Ar+ with monochloroethene have previously been studied in a two-stage ion-beam 

mass spectrometer by Izod and Tedder.10  For the Xe+ reaction, our branching ratios agree within 

experimental error, except no C2H2
+ is formed in the ion-beam equipment.  For the Ar+ reaction, the 

branching ratios are in good agreement for formation of both C2H3
+ and C2H2

+, however the only other ion 

formed in the ion-beam study is C2H3Cl+.  None of the other three ions seen in our SIFT study, C2H2Cl+, 

C2HCl+and HCl+, are detected.  The differences are undoubtedly due to the different reaction conditions 

between the two experiments.  Finally, the reactions of trichloroethene and tetrachloroethene with O2
+ have 

been studied by Španĕl and Smith.11  This work was performed in a SIFT apparatus in which only relative 

rate coefficients were recorded.  In both cases O2
+ reacted to form the parent ion with 100 % yield, in 

excellent agreement with our results.  The rate coefficients are in reasonable agreement between the two 

experiments. 

  

For the reactions of the ions studied in this energy range, four stand out as showing remarkable trends 

between all six chloroethenes which are listed in the Introduction.  The first is SF5
+.  The reaction of 

monochloroethene and SF5
+ cannot occur by charge transfer, so it must proceed via a chemical reaction in 

which bonds break and form.  Two ionic products, SF3
+ and C2H3ClF+, are observed and, as expected, neither 

is due to charge transfer.  The production of SF3
+ is interesting as neutral fluorine atoms have transferred 

from SF5
+ rather than a charged species, leaving a fragment of the reagent ion as the product cation; in 

general, the reagent ion is either incorporated into the product ion or it is left without any charge.  F+-transfer 

leads to the formation of the other observed product ion, C2H3ClF+.  For all three dichloroethenes F+-transfer 

to form C2H2Cl2F+ is the major channel, with minor channels only forming the parent ion and C2H2Cl+.3  For 

these reactions the loss of a chloride ion can only be due to a chemical reaction to form SF5Cl as a neutral 

partner, since there is not enough energy for charge transfer to be followed by unimolecular dissociation of 

C2H2Cl2+.  This suggests that, because the RE of SF5
+ is only just above the IE of the dichloroethenes, the 

cross-section for long-range charge transfer is low.  Thus, the neutrals and SF5
+ will probably approach to a 

small separation and form an ion-molecule complex.  It is in this complex that the chemical reactions take 
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place which produce C2H2Cl2F+ and C2H2Cl+.  The formation of the parent ion, C2H2Cl2+, can take place in 

two ways; either via a short-range mechanism inside the complex where it is competing with the chemical 

reaction, or at a large separation of ion and neutral.  We suggest that long-range charge transfer is inefficient, 

and a complex is more likely to be formed due to the low rate coefficient of this reaction.  It should be noted 

that, due to uncertainties in thermochemistry it is possible that only vibrationally-excited SF5
+ can react via 

charge transfer.  It cannot therefore be discounted that the parent ion forms only from the reaction with 

excited SF5
+, and that a chemical reaction is the mechanism whereby ground-state SF5

+ can react.  For 

trichloroethene, the major channel for reaction with SF5
+ is now formation of parent ion, C2HCl3

+, with the 

only other product due to F+-transfer, C2HCl3F+.  The reaction is also slightly more efficient than for the 

dichloroethenes.  When tetrachloroethene is the reactant neutral, only non-dissociative charge transfer takes 

place and the reaction is 60 % efficient.  This large change in product yields across the series C2HxCl4−x is 

most likely due to the decrease in IE of the neutral molecule with increasing chlorine substitution, leading to 

an increase in the long-range charge transfer cross-section for this reaction.  Chemical reaction can still 

compete for trichloroethene, but for tetrachloroethene long-range charge transfer is so efficient that it 

dominates over the chemical channel. 

 

The reactions of SF2
+ (RE = 10.24 eV) and SF+ (RE = 10.31 eV) also show trends across the six 

chloroethenes.  For all neutral molecules charge transfer is energetically allowed, so parent ions can be 

formed.  With monochloroethene, the parent ion is the major product for both reactions, but several other 

products also form.  For reaction with SF2
+, the other product is C2H3SF2

+ which can only be formed by a 

chemical reaction.  For reaction with SF+, the other products are C2HSF+, C2SF+ and C2H3
+.  All three form 

from a chemical reaction, and there is not enough energy to form a parent ion which would fragment to 

C2H3
+ + Cl.  For the other five neutral molecules, reaction with SF2

+ only forms parent ions, whilst the 

reactions of the dichloroethenes with SF+ yield several non-charge transfer products.3  For the 1,2 isomers of 

dichloroethene two other ions, C2H2ClSF+ and C2HClSF+, are formed in small yields, along with the parent 

ion.  For the 1,1 isomer, in addition C2H2Cl+ and CHCl2
+ are formed as products.  Apart from the parent ion, 

all these products must form via a chemical reaction.  For trichloroethene and tetrachloroethene, only the 

parent ion is formed with SF+.  As the number of chlorine atoms in C2HxCl4−x increases, this pattern of 

increasing parent ion production via charge transfer at the expense of product ions formed via a chemical 

reaction is exactly as observed with the reactions of SF5
+.  The pattern can be explained in a similar way.  For 

monochloroethene and dichloroethene, the RE of SF2
+ and SF+ is not much greater than the IE of the 

neutrals.  So, although charge transfer is energetically favourable, it may be inefficient and not all reactant 

pairs of ion and neutral react via charge transfer.  It is likely that only charge transfer occurs for the 

dichloroethenes reacting with SF2
+ because no chemical reactions are energetically open.  For trichloroethene 
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and tetrachloroethene, however, the RE of the ions far exceeds the IE of the neutrals; long-range charge 

transfer is now efficient and no ion-molecule complexes are formed.  

 

This trend is confirmed for the reaction of monochloroethene with CF2
+ (RE = 11.44 eV).  For all the other 

chloroethenes this ion only reacts via charge transfer, but for monochloroethene, although the parent ion is 

dominant, two other ‘chemical’ products are also formed, C3H3F2
+ and CHFCl+.  The final ion in this energy 

range which does not just react by charge transfer is the reaction of H2O+ (RE = 12.62 eV) with 

monochloroethene, a small percentage of protonated monochloroethene, C2H3ClH+, is formed. However, it 

should be noted that there was some OH+ present with approximately 30 % of the intensity of the 

H2O+ signal.  

 

4.1.3  Comparison of SIFT and TPEPICO branching ratios 

Figures 1 (a)–(f) show, as discrete data points, the branching ratios from the product cations of the ion-

molecule reactions recorded on the SIFT with all six chloroethenes over the RE range 9.7–21.6 eV.  It should 

be noted that for monochloroethene only a single Cl atom can be lost, so the blue circles represent loss of one 

Cl atom and one H atom, not loss of two Cl/H atoms.  In Figure 1 (b)–(e) the branching ratios from the 

photon-induced TPEPICO data using continuously-tunable vacuum-UV radiation for the three 

dichloroethenes and trichloroethene are also plotted as continuous lines.1,2  The TPEPICO branching ratios 

for tetrachloroethene are not produced here as the data quality was too poor.1  No TPEPCIO study has been 

performed on monochloroethene, however there are some photoionisation and mass-analysed threshold 

ionisation studies from which comparisons can be drawn,32,33 and a recent theoretical study of the 

photodissociation of C2HCl3
+.34 

  

Figures 1 (b)−(e) show that the agreement between the SIFT and TPEPICO branching ratios is, in general, 

good, and overall trends are mirrored in the two sets of data; we note that in the range 9.7–12.0 eV there is no 

disagreement at all for trichloroethene.  That is, after onset the parent ion is formed, followed by 

fragmentation by chlorine-atom loss at higher energies.  From 12–15 eV the agreement between branching 

ratios is not quite as good, but except for N+ (RE = 14.53 eV) the overall trends are the same for the two sets 

of data.  For N+ the yield of parent ions is around 50 % in all six chloroethenes.  As mentioned previously, N+ 

is often an anomalous ion, seeming to act as a softly-ionising species compared to photons of this energy.  

For F+ (RE = 17.42 eV) and Ne+ (RE = 21. 56 eV) the agreement between the SIFT and TPEPICO branching 

ratios is fairly good.  It should be noted that for Ne+ other ions are formed which are not seen in the 

TPEPICO data.  The broad agreement between the experiments for Ne+ suggests that the charge transfer 

mechanism is largely of a long-range nature with some interaction leading to production of CCl+ as well.  In 
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general, all the ion-molecule reactions where the RE(ion) > 13 eV produce a greater percentage of parent ion 

than with photoionisation at the comparable photon energy. 

  

Although data for the TPEPICO branching ratios of monochloroethene and tetrachloroethene are not 

available, some comparisons can be made.  The trends in product formation from the ion-molecule reactions 

agree well with the photoionisation data.1,32  This suggests that the majority of the ion-molecule reactions 

studied in this energy range for monochloroethene and tetrachloroethene react via long-range type charge 

transfer. The first appearance of C2Cl3
+ in the SIFT experiments with C2Cl4 occurs with ions whose RE is 

around 12 eV.  This observation seems to confirm that the true value of AE298(C2Cl3+) is 11.40 eV, and not 

the lower value of 9.48 eV apparently observed from the TPEPICO data.  More details are given in Ref. 1. 

  

For several reactions, products seen in the SIFT experiment are very different from those observed anywhere 

in TPEPICO experiments.  In the case of C2HCl3 they are C2HCl3F+ from the SF5
+ reaction, CHCl2

+ from the 

N2
+ and Ar+ reactions, and CCl+ from the Ne+ reaction.  In the case of C2Cl4 they are CCl2

+ and CCl3+ from 

N2
+ and Ar+ reactions, and CCl+, CCl2+ and C2Cl+ from Ne+ reaction.  Apart from production of C2HCl3F+, 

the other ionic products can all be formed via charge transfer.  It is likely that the reactions are mainly long 

range in nature with either some short-range character to the transfer, or the short-range transfer occurs in 

competition. 

 

4.2   RE(ion) < IE(neutral) 

 

In this section, we consider the reactions of the five ions whose RE values range from 6.27–9.11 eV with 

monochloroethene, trichloroethene and tetrachloroethene.  These RE values are all below the IE values of the 

three neutrals, making charge transfer forbidden on energetic grounds.  The ions are H3O+ (RE = 6.27 eV), 

SF3
+ (RE = 8.32 eV), CF3

+ (RE = 9.04 eV), CF+ (RE = 9.11 eV) and NO+ (RE = 9.26 eV).  

  

4.2.1  Rate coefficients 

Two of the ions, SF3
+ and NO+, do not react with any of the chloroethenes.  For NO+ there was indication of 

some reaction, but it was very slow and there was a large amount of curvature in the plot of ln(NO+ signal) 

vs. neutral concentration from which the rate coefficient is derived.  This suggests that all the reaction was 

due to vibrationally- or electronically-excited NO+ ions.  The reaction of NO+ with trichloroethene and 

tetrachloroethene has previously been studied by Španĕl and Smith,11 where they reported an adduct being 

the only product. 
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Unlike the reactions were RE(ion) > IE(neutral), the measured rate coefficients here show a large variation in 

the efficiency of reaction.  Such reactions can only occur following formation of a collision complex, and the 

breaking and making of chemical bonds.  These chemical reactions only occur when the ion and neutral are 

in close contact.  Thus steric effects, i.e. the orientation of the ion and neutral molecule relative to each other, 

can make significant changes to reaction efficiencies.  Also, there could be exit-channel barriers and 

energetic constraints for some product channels.  The most prominent example is for the reactions of H3O+ 

(RE = 6.27 eV).  With monochloroethene and trichloroethene the experimental rate coefficient is essentially 

the same as the collisional value, however for tetrachloroethene the reaction is only 50 % efficient.  A 

comparison with the isomers of dichloroethene highlights this result;3 for 1,1-dichloroethene the rate 

coefficient is essentially collisional but for the two 1,2-dichloroethene isomers the reactions are only ca. 15 

% efficient.  Such differences must be due to the structures of the molecules, the relative positions of the 

chlorine atoms, and the energetics of the protonated products. 

  

The reactions of all three chloroethenes studied in this paper with CF+ are fairly efficient.  With CF3
+, the 

efficiency shows more variation across the chloroethenes, ranging from 70 % for monochloroethene through 

to 100 % for trichloroethene and tetrachloroethene. 

 

4.2.2  Branching ratios 

4.2.2.1  Reactions of H3O+ 

H3O+ reacts with monochloroethene, trichloroethene and tetrachloroethene by proton transfer to form the 

protonated parent ion.  This is in agreement with the results of Španĕl and Smith.11  For tetrachloroethene a 

small percentage yield of C2Cl3+ was also detected by Španĕl and Smith, but we did not observe this product.  

As all three chloroethenes react with H3O+ by proton transfer, their proton affinity (PA) must be larger than 

that of H2O, 691 kJ mol-1.35  Upper limits for ∆fHº298 values for protonated monochloroethene, 

trichloroethene and tetrachloroethene are determined to be 815, 815 and 809 kJ mol-1, respectively, assuming 

that ∆rHº298 ≤ 0 for all three reactions.  Interestingly, when H3O+ reacts with the isomers of dichloroethene, 

not only is protonated parent ion detected but for the 1,2-dichloroethenes two extra products are seen.3  They 

are C2HClOH2
+ with HCl formed as the neutral partner, and the adduct C2H2Cl2·H3O+.  These results show 

the importance of the position and number of chlorine atoms to the reactivity of the chloroethenes.  

Combining the rate coefficients and branching ratios gives insight into the H3O+ reaction mechanism.  It 

appears that monochloroethene and trichloroethene have no barrier to protonation as they react rapidly to 

form only one product.  For tetrachloroethene, the reaction is fairly slow.  We conclude that the presence of 

four bulky Cl atoms blocks access of H3O+ to the reaction site, or reaction leads to an unfavourable structure 

of C2Cl4H+. 
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4.2.2.2  Reactions of CF3
+ 

The reactions of CF3
+ produces a range of different products formed from three reactions.  Examples are 

shown below : 

    CF3
+ + C2H3Cl  →  C2H3

+ + CF3Cl               (II) 

    CF3
+ + C2HCl3  →  CF2Cl+ + C2HCl2F   (III) 

    CF3
+ + C2Cl4  →  CFCl2+ + C2F2Cl2    (IV) 

 

Reactions of type II−IV are seen for the reactions with trichloroethene and tetrachloroethene, but reactions II 

and IV are only seen for monochloroethene.  Reaction II is a simple Cl− transfer driven by formation of the 

stable CF3Cl neutral molecule.  Reactions III and IV involve rearrangement of the halogen atoms to form 

new halogenated ethenes.  The reaction efficiencies are 69 % for monochloroethene and 100 % for 

trichloroethene.  Tetrachloroethene reacts with a rate coefficient which is larger than the collisional value, but 

the difference falls within the normal experimental error. 

  

In our previous study of reactions of CF3
+ with the isomers of dichloroethene, it was found that to explain 

reactions in which the C=C bond was completely broken it was necessary for the neutral product to be a 

halogenated ethene;3 formation of a new C=C π-bond in the product helps compensate for the energy 

required to break the original C=C π-bond.  Therefore, we have assumed that new halogenated ethenes must 

be formed in reactions III and IV of this study, and furthermore no other reaction products could be found 

that were chemically reasonable.  So, for the reaction of monochloroethene with CF3
+ to form CHFCl+, 

analogous to reaction IV, the product is C2F2H2 and the enthalpy of reaction is −2 kJ mol-1.  For 

trichloroethene and tetrachloroethene, the enthalpies of formation of the fluorochloroethenes formed from 

reactions III and IV are not known.  Assuming that the products must contain a C=C bond and that the 

enthalpy of reaction is negative, lower limits are set on the enthalpy of formation for these 

fluorochloroethenes: ∆fHo
298 (C2HClF2) ≥ 315 kJ mol-1, ∆fHo

298 (C2HCl2F) ≥ 168 kJ mol-1, ∆fHo
298 (C2F2Cl2) 

≥ 321 kJ mol-1 and ∆fHo
298 (C2FCl3) ≥ 174 kJ mol-1.  

 

To explain these results, attempts have been made to suggest reaction mechanisms. The starting point for all 

mechanisms is to assume that CF3
+ attacks electrophilically at the π orbitals of the double bond, as postulated 

in the reactions of chloroethenes with neutral free radicals.36,37  Figure 2 shows this proposed first step for 

monochloroethene.  Insertion forms the trigonal-bridged intermediate cation shown in step 2.  The CF3
+ can 

then move from one side or another to form the two resonance structures shown.  It is assumed that this 
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insertion step occurs for all the reactions.  Figure 3 shows the proposed mechanism for formation of C2H3
+ 

from monochloroethene, reaction II.  Any of the other reactions in which Cl− transfer to CF3
+ takes place 

should follow the same, or a similar mechanism.  Firstly, CF3
+ adds to the C=C bond.  This is followed by 

the migration of the Cl to the CF3 group.  The next step is cleavage of the C−CF3 bond.  These two steps may 

be either sequential or concerted.  We assume that the chlorine transfer, and subsequent loss, takes place 

when the CF3 group is attached to the same carbon atom as the chlorine atom.  The C2H3
+ product is formed 

by rearrangement of the initially-formed cation carbene after the loss of CClF3. 

 

Both reactions III and IV are more complicated than reaction II.  Although the simplest mechanism would be 

exchange of chlorine and fluorine atoms between the CF3 group and the adjacent carbon atom, this simple 

mechanism is unlikely, due to the position of the positive charge following insertion of the CF3
+ group.  

Because of these complications no reaction schemes are given.  However, it is proposed that the reaction 

must involve exchange of chlorine and fluorine atoms between the two carbon atoms on the ethene group.  

Ab initio calculations are ongoing to attempt to understand these complicated reactions 

 

In the absence of values for any energy barriers, which channels are open and which are closed undoubtedly 

depends on the structure of the chloroethenes and the energetics of the reactions.  It is interesting to note that 

as the number of chlorine atoms increases, reaction III, loss of CF2Cl+, dominates.  One possible explanation 

is that, the more Cl atoms are present, the likelihood that a chlorine atom can transfer back to the CF2
+ group 

of the intermediate increases.  It could also be that transfer of chlorine atoms in the trigonal-bridging 

intermediate is more favourable.  For example, in tetrachloroethene it is unfavourable to have the positive 

charge next to two chlorine atoms, so by transferring a chlorine across the double bond the positive charge is 

moved so that it is only next to one chlorine and a CF3 group, relieving the unfavourable interaction.  It is 

clear that the relative branching ratios for the competing reactions depend on a complex interplay between 

inductive effects and conjugation due to the chlorine atoms on the stability of the cation intermediates.  It is 

hoped that theoretical calculations on the reaction pathways, coupled with experiments on isotopically-

labelled samples, will help elucidate the dynamics of these reactions. 

 

4.2.2.3  Reactions of CF+  

Monochloroethene, trichloroethene and tetrachloroethene all react with CF+ with similar ionic products 

detected as from CF3
+, but now the reactions are nearly all 100 % efficient.  Monochloroethene reacts to form 

the same two ionic products, CHFCl+ and C2H3
+, with similar percentage yields as with CF3

+.  It is therefore 

assumed that the reaction mechanisms are the same as for CF3
+ but with different neutral partners, i.e. 

ethynes rather than ethenes are formed.  Trichloroethene reacts to form three ionic ions.  CFCl2
+ is also 
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observed for reaction with CF3
+, but the other two products, CHCl2

+ and CHClF+, are new.  Neither C2HCl2+ 

or CF2Cl+ are detected for the reactions of CF+ with trichloroethene.  Tetrachloroethene reacts with CF+ to 

form only CFCl2
+.  Due to similarities in the products formed from CF+ and CF3

+, it is assumed that their 

reaction mechanisms will probably be similar, although we note that there is no reason to suppose that the 

mechanisms will necessarily be the same for production of the same product ions. 

  

Since CHCl2
+ is formed from the reaction of CF+ with trichloroethene but not with CF3

+, there may be a 

barrier to formation of this product from the latter reaction.  Any barrier is unlikely to be high because there 

is only 0.07 eV extra energy available with CF+.  The reactions with CF+ also allow a new channel, formation 

of CHClF+, to open for the reactions with trichloroethene, a channel which has previously been seen only for 

the reaction of CF3
+ with monochloroethene.  Whilst this suggests that CHClF+ forms as a product from 

reaction IV, it is also possible that a different mechanism is taking place for CF+.  One possible way to test 

whether there is a barrier to reaction or whether it is chemical-specific is to perform experiments in which the 

collision energy of the ion-neutral system is varied, for example by changing the temperature.  Another 

method would be to use a guided ion beam of CF+ or CF3
+.  If there is a barrier to formation of products, then 

as the energy of the ion beam is increased the product channels should ‘switch on’ at their threshold for 

formation; if there is no barrier but the effect is due to chemical differences between CF+ and CF3
+, then no 

such onsets should occur.  It is noted that simple Cl−-transfer channel is not observed at all for 

trichloroethene and tetrachloroethene, even though it is energetically allowed if CFCl is the neutral partner.  

The reasons for this are unclear. 

 

5.  Conclusions 
 

The reactions of monochloroethene, trichloroethene and tetrachloroethene with a range of cations with 

recombination energies in the range 6.27–21.56 eV have been studied. The majority of the reactions have not 

been studied before.  For the nineteen ions with recombinations energies which exceed the ionisation energy 

of the chloroethenes, comparisons have been made with photoionisation studies to attempt to understand the 

nature of the charge transfer that takes place.  Owing to the good agreement between the product ion 

branching ratios from ion-molecule and photon-molecule reactions, it appears that the majority of charge 

transfer reactions take place via a long-range mechanism.  For the few exceptions, chemical reaction or short-

range charge transfer mechanisms are postulated. 
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The reactions of the three titled molecules with five cations (H3O+, SF3
+, CF3

+, CF+ and NO+) whose 

recombination energies are below the ionisation energies of the chloroethenes have been studied.  Only 

H3O+, CF3
+ and CF+ react.  Data from the reactions with H3O+ have allowed an upper limit to be placed on 

the proton affinity of monochloroethene, trichloroethene and tetrachloroethene.  The reactions with CF3
+ has 

shown several different reaction pathways.  Many of these pathways involve breaking of the C=C double 

bond in the chloroethene and formation of a new double bond.  Similar channels have also been seen for 

reactions with CF+.  It seems that a complex interplay between the number and position of the chlorine atoms 

with respect to the C=C double bond dictates which product channels are formed and their relative yields.  

The stability of the intermediate cations formed in the reaction pathways are clearly important.  Future work 

will perform ab initio calculations on this series of reactions to attempt to elucidate more detailed pathways. 
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Table 1 :   Rate coefficients at 298 K, product cations and branching ratios, and suggested neutral products 
for reactions of gas-phase cations with recombination energy (RE) in the range 6.27–21.56 eV with 
monochloroethene, C2H3Cl.  The calculated enthalpy of reaction at 298 K is shown in the fifth column.a  The 
dashed line indicates the position of the IE of monochloroethene, 9.99 eV, relative to the RE of the cations. 
 
 
 

Reagent ion 
(RE b / eV) 

Rate coefficient /  
10-9 cm3 molecule-1 

s-1 

Product ions (%) Proposed 
neutral 

products 

∆rHº298 /  
kJ mol-1 

     
H3O+ 
(6.27) 

2.2 
[2.5] 

C2H3ClH+ (100) H2O −815 + ∆fHº298[C2H3ClH+] 

     
SF3

+ 
(8.32) 

No Reaction c 
[1.5] 

- - - 

     
CF3

+ 
(9.04) 

1.1 
[1.6] 

CHFCl+ (35) 
C2H3

+ (65) 
C2F2H2 
CF3Cl 

−2 
−36 

     
CF+ 

(9.11) 
2.0 

[2.1] 
CHFCl+ (27) 
C2H3

+ (73) 
C2H2 
CFCl 

−186 
−25 

     
NO+ 

(9.26) 
No Reaction 

[2.0] 
- - - 

     
SF5

+ 
(9.78) 

0.4 
[1.4] 

SF3
+ (50) 

C2H3ClF+ (50) 
C2H2FCl + HF 

SF4 
38 + ∆fHº298[C2H2FCl] 

−819 +∆fHº298[C2H3ClF+] 
 

     
SF2

+ 
(10.24) 

1.6 
[1.6] 

C2H3SF2
+ (6) 

C2H3Cl+ (94) 
Cl 
SF2 

−594 + ∆fHº298[C2H3SF2
+] 

−25 
     

SF+ 
(10.31) 

1.8 
[1.8] 

C2HSF+ (13) 
C2SF+ (22) 

C2H3Cl+ (40) 
C2H3

+ (25) 

H2 + Cl 
H2 + HCl 

SF 
SFCl 

−899 + ∆fHº298[C2HSF+]   
−1113 + ∆fHº298[C2SF+]  

−31 
80 + ∆fHº298[SFCl] 

     
CF2

+ 
(11.44) 

1.8 
[1.8] 

C3H3F2
+ (5) 

CHFCl+ (25) 
 

C2H3Cl+ (70) 

Cl 
CF + CH2 

C2FH 
CF2 

−823 + ∆fHº298[C3H3F2
+]  

−3 
−75 

−140 
     

O2
+ 

(12.07) 
2.0 

[2.0] 
C2H3Cl+ (100) O2 −161 

     
Xe+ 

(12.13) 
1.4 

[1.4] 
C2H3Cl+ (78) 
C2H3

+ (21) 
C2H2

+ (1) 

Xe 
Xe + Cl 

Xe + HCl 

−206 
+29 
+42 

     
H2O+ 

(12.62) 
2.4 

[2.5] 
C2H3ClH+ (9) d 

C2H3Cl+ (73) 
C2H3

+ (17) 

OH 
H2O 

H2O + Cl 

−958 + ∆fHº298[C2H3ClH+]  
−253 
−18 
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N2O+ 

(12.89) 
1.7 

[1.8] 
C2H3Cl+ (56) 
C2H3

+ (44) 
N2O 

N2O + Cl 
−280 
−159 

     
OH+ 

(13.25) 
2.5 

[2.6] 
C2H3Cl+ (-) d 

C2H3
+ (-) 

C2H2
+ (-) 

OH 
OH + Cl 

OH + HCl 

−383 
−55 
−42 

     
O+ 

(13.62) 
2.1 

[2.6] 
Not Recorded  e - - 

     
CO2

+ 
(13.76) 

2.0 
[1.8] 

C2H3Cl+ (7) 
C2H3

+ (90) 
C2H2

+ (3) 

CO2 
CO2 + Cl 

CO2 + HCl 

−365 
−129 
−116 

     
Kr+ 

(14.00 (& 
14.67))  

1.5 
[1.6] 

C2H3Cl+ (1) 
C2H2Cl+ (1) 
C2H3

+ (91) 
C2H2

+ (7) 

Kr 
Kr + H 
Kr + Cl 

Kr + HCl 

−387 
−114 
−152 
−138 

     
CO+ 

(14.01) 
2.1 

[2.1] 
C2H3Cl+ (2) 
C2H3

+ (92) 
C2H2

+ (6) 

CO 
CO + Cl 

CO + HCl 

−388 
−152 
−139 

     
N+ 

(14.53) 
2.5 

[2.7] 
C2H3Cl+ (57) 
C2H3

+ (41) 
C2H2

+ (2) 

N 
N + Cl 

N + HCl 

−438 
−203 
−190 

     
N2

+ 
(15.58) 

2.0 
[2.1] 

C2H3Cl+ (2) 
C2H2Cl+ (8) 
C2H3

+ (76) 
C2H2

+ (14) 

N2 
N2 + H 
N2 + Cl 

N2 + HCl 

−539 
−266 
−304 
−291 

     
Ar+ 

(15.76) 
1.7 

[1.9] 
C2H3Cl+ (1) 

C2H2Cl+ (10) 
C2HCl+ (3) 
HCl+ (4) 

C2H3
+ (68) 

C2H2
+ (13) 

Ar 
Ar + H 
Ar + H2 

Ar + C2H2 
Ar + Cl 

Ar + HCl 

−557 
−284 
−306 
−179 
−322 
−309 

     
F+ 

(17.42) 
2.1 

[2.5] 
C2H3Cl+ (5) 

C2H2Cl+ (13) 
C2H3

+ (72) 
C2H2

+ (10) 

F 
F + H 
F + Cl 

F + H + Cl 
F + HCl 

−717 
−444 
−481 
−37 

−468 
     

Ne+ 
(21.56) 

2.1 
[2.4] 

C2H3Cl+ (5) 
C2H2Cl+ (1) 
C2HCl+ (4) 

 
Cl+ (8) 

C2H3
+ (4) 

C2H2
+ (74) 

Ne 
Ne + H 

Ne + H + H 
Ne + H2 

Ne + C2H3 
Ne + Cl 

Ne + H + Cl 

−1116 
−843 
−429 
−865 
−432 
−881 
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C2H+ (4) 

Ne + HCl 
Ne + H + HCl 
Ne + H2 + Cl 

−478 
−868 
−379 
−384 

     
 
 
a The majority of the enthalpies of formation at 298 K for ion and neutral species are taken from standard sources.22,35 
 
b     Recombination energy (RE) of reactant ion. For molecular ions, the RE given is the adiabatic value. 
 

c     No reaction means the rate coefficient is less than ca. 10-13 cm3 molecule-1 s-1. 
 
d We were unable to inject H2O+ without  OH+ contamination the OH+ signal was 30 % of the H2O+ signal. Hence the 

values for the H2O+ branching ratios are approximate.   
  

e O+ was produced via collision induced dissociation from N2O+, the signal was too small to allow measurement of 
branching ratios. 
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Table 2 :   Rate coefficients at 298 K, product cations and branching ratios, and suggested neutral products 
for reactions of gas-phase cations with recombination energy (RE) in the range 6.27–21.56 eV with 
trichloroethene, C2HCl3.  The calculated enthalpy of reaction at 298 K is shown in the fifth column.a  The 
dashed line indicates the position of the IE of trichloroethene, 9.46 eV, relative to the RE of the cations. 
 

Reagent ion 
(RE b / eV) 

Rate coefficient /  
10-9 cm3 molecule-1 

s-1 

Product ions 
(%) 

Proposed 
neutral 

products 

∆rHº298 /  
kJ mol-1 

     
H3O+ 
(6.27) 

2.1 
[2.2] 

C2HCl3H+ (100) H2O −815 + ∆fHº298[C2HCl3H+] 

     
SF3

+ 
(8.32) 

- 
[1.2] 

- - - 

     
CF3

+ 
(9.04) 

1.3 
[1.3] 

CFCl2
+ (24) 

C2HCl2
+ (54) 

CF2Cl+ (22) 

C2HClF2 
CF3Cl 

C2HCl2F 

315 + ∆fHº298[C2HClF2] 
−33 

168 + ∆fHº298[C2HCl2F] 
     

CF+ 
(9.11) 

1.8 
[1.8] 

CFCl2
+ (39) 

CHCl2
+ (23) 
 

CHFCl+ (37) 

C2HCl 
CF + CCl 

C2FCl 
C2Cl2 

−200 
−251 

−230 + ∆fHº298[C2FCl] 
−164 

     
NO+ 

(9.26) 
No Reaction c 

[1.8] 
 

- - - 

     
SF5

+ 
(9.78) 

0.4 
[1.1] 

C2HCl3F+ (16) 
C2HCl3

+ (84) 
SF4 
SF5 

−780 + ΔfHº298[C2HCl3F+] 
−33 

     
SF2

+ 
(10.24) 

1.4 
[1.5] 

C2HCl3
+ (100) SF2 −77 

     
SF+ 

(10.31) 
1.2 

[1.3] 
C2HCl3

+ (100) SF −995 

     
CF2

+ 
(11.44) 

1.9 
[1.5]? 

C2HCl3
+ (100) CF2 −193 

     
SF4

+ 
(11.99) 

1.5 
[1.1]? 

C2HCl3
+ (100) SF4 −247 

     
O2

+ 
(12.07) 

1.8 
[1.7] 

C2HCl3
+(100) O2 −253 

     
Xe+ 

(12.13) 
1.1 

[1.1] 
C2HCl3

+ (82) 
C2HCl2

+ (18) 
Xe 

Xe + Cl 
−259 
+34 

     
H2O+ 

(12.62) 
2.2 

[2.2] 
C2HCl3

+ (-) d 

C2HCl2
+ (-) 

H2O 
H2O + Cl 

−306 
−12 

     
N2O+ 2.0 C2HCl3

+ (49) N2O −333 
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(12.89) [1.5] C2HCl2
+ (51) N2O + Cl 

N2 + OCl 
−39 

−142 
     

OH+ 
(13.25) 

2.3 
[2.2] 

C2HCl3
+ (-) d 

C2HCl2
+ (-) 

OH 
OH + Cl 
O + HCl 

HOCl 

−343 
−50 
−53 

−285 
     

O+ 
(13.62) 

2.3 
[2.3] 

C2HCl3
+ (-) e 

C2HCl2
+ (-) 

O 
O + Cl 

OCl 

−403 
−109 
−379 

     
CO2

+ 
(13.76) 

1.7 
[1.5] 

C2HCl3
+ (21) 

C2HCl2
+ (79) 

CO2 
CO2 + Cl 

−417 
−124 

     
Kr+ 

(14.00 (& 14.67))  
1.3 

[1.2] 
C2HCl3

+ (5) 
C2HCl2

+ (95) 
Kr 

Kr + Cl 
−440 
−146 

     
CO+ 

(14.01) 
1.5 

[1.8] 
C2HCl3

+ (11) 
C2HCl2

+ (89) 
CO 

CO + Cl 
COCl 

−440 
−147 
−221 

     
N+ 

(14.53) 
3.3 

[2.5] 
C2HCl3

+ (44) 
C2HCl2

+ (43) 
 

C2HCl+ (13) 

N 
N + Cl 

NCl 
N + Cl2 

NCl + Cl 

−491 
−198 
−478 
−148 
−186 

     
N2

+ 
(15.58) 

1.3 
[1.8] 

C2HCl3
+ (3) 

C2HCl2
+ (88) 

CHCl2
+ (9) 

N2 
N2 + Cl 

N2 + CCl 

−592 
−299 
−96 
−4 

     
Ar+ 

(15.76) 
1.5 

[1.6] 
C2HCl3

+ (6) 
C2HCl2

+ (90) 
CHCl2

+ (4) 

Ar 
Ar + Cl 

Ar + CCl 

−610 
−317 
−114 

     
F+ 

(17.42) 
2.3 

[2.2] 
C2HCl3

+ (17) 
C2HCl2

+ (18) 
 

C2HCl+ (65) 

F 
F + Cl 

FCl 
F + Cl2 

FCl + Cl 

−770 
−476 
−727 
−427 
−435 

     
Ne+ 

(21.56) 
2.3 

[2.1] 
C2Cl2

+ (13) 
C2HCl+ (78) 

CCl+ (9) 

Ne + HCl 
Ne + Cl2 

Ne + CHCl2 

−1936 
−826 

−1452 
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a The majority of the enthalpies of formation at 298 K for ion and neutral species are taken from standard sources.22,35 
 
b     Recombination energy (RE) of reactant ion. For molecular ions, the RE given is the adiabatic value. 
 

c     No reaction means the rate coefficient is less than ca. 10-13 cm3 molecule-1 s-1. 
 
d We were unable to inject H2O+ without  OH+ contamination the OH+ signal was 30 % of the H2O+ signal. Hence the 

values for the H2O+ branching ratios are approximate.   
  

e O+ was produced via collision induced dissociation from N2O+, the signal was too small to allow measurement of 
branching ratios. 
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Table 3 :   Rate coefficients at 298 K, product cations and branching ratios, and suggested neutral products 
for reactions of gas-phase cations with recombination energy (RE) in the range 6.27–21.56 eV with 
tetrachloroethene, C2Cl4.  The calculated enthalpy of reaction at 298 K is shown in the fifth column.a  The 
dashed line indicates the position of the IE of trichloroethene, 9.30 eV, relative to the RE of the cations. 
 

Reagent ion 
(RE b / eV) 

Rate coefficient /  
10-9 cm3 molecule-1 

s-1 

Product ions 
(%) 

Proposed neutral 
products 

∆rHº298 /  
kJ mol-1 

     
H3O+ 
(6.27) 

1.1 
[2.0] 

C2Cl4H+ (100) H2O −809 + ∆fHº298[C2Cl4H+] 

     
SF3

+ 

(8.32) 
- 

[1.1] 
- - - 

     
CF3

+ 
(9.04) 

1.9 
[1.2] 

C2Cl3
+ (9) 

CFCl2
+ (16) 

CF2Cl+ (75) 

CF3Cl 
C2F2Cl2 
C2FCl3 

−108 
321 + ∆fHº298[C2F2Cl2] 
174 + ∆fHº298[C2FCl3] 

     
CF+ 

(9.11) 
1.8 

[1.6] 
CFCl2

+ (100) C2Cl2  −197 

     
NO+ 

(9.26) 
 

No Reaction c - - - 

     
SF5

+ 
(9.78) 

0.6 
[1.0] 

C2Cl4
+ (100) SF5 −44 

     
SF2

+ 
(10.24) 

0.7 
[1.3] 

C2Cl4
+ (100) SF2 −89 

     
SF+ 

(10.31) 
1.2 

[1.2] 
C2Cl4

+ (100) SF −96 

     
CF2

+ 
(11.44) 

1.5 
[1.3] 

C2Cl4
+ (100) CF2 −204 

     
SF4

+ 
(11.99) 

1.0 
[1.0] 

C2Cl4
+ (100)? SF4 −258 

     
O2

+ 
(12.07) 

1.3 
[1.6] 

C2Cl4
+ (100) O2 −265 

     
Xe+ 

(12.13) 
0.9 

[0.9] 
C2Cl4

+ (55) 
C2Cl3

+ (45) 
Xe 

Xe + Cl 
−271 
−41 

     
H2O+ 

(12.62) 
1.6 

[2.0] 
C2Cl4

+ (-) d 

C2Cl3
+ (-) 

H2O 
H2O + Cl 

−317 
−87 

     
N2O+ 

(12.89) 
1.7 

[1.4] 
C2Cl4

+ (22) 
C2Cl3

+ (78) 
N2O 

N2O + Cl 
−344 
−114 

     
OH+ 1.7 C2Cl4

+ (-) d OH −342 
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(13.25) [2.1] C2Cl3
+ (-) OH + Cl −131 

     
O+ 

(13.62) 
2.0 

[2.1] 
C2Cl4

+ (-) e 
C2Cl3

+ (-) 
O 

O + Cl 
−414 
−184 

     
CO2

+ 
(13.76) 

1.4 
[1.4] 

C2Cl4
+ (18) 

C2Cl3
+ (82) 

CO2 
CO2 + Cl 

−435 
−206 

     
Kr+ 

(14.00 (& 14.67))  
1.1 

[1.1] 
C2Cl4

+ (4) 
C2Cl3

+ (96) 
Kr 

Kr + Cl 
−451 
−221 

     
CO+ 

(14.01) 
1.8 

[1.7] 
C2Cl4

+ (7) 
C2Cl3

+ (93) 
CO 

CO + Cl 
−452 
−222 

     
N+ 

(14.53) 
2.3 

[2.3] 
C2Cl4

+ (43) 
C2Cl3

+ (57) 
N 

N + Cl 
−503 
−273 

     
N2

+ 
(15.58) 

1.7 
[1.7] 

C2Cl4
+ (7) 

C2Cl3
+ (67) 

CCl3
+ (3) 
 

C2Cl2
+ (17) 
 

CCl2
+ (5) 

N2 
N2 + Cl 

N2 + CCl 
NCN + Cl 
N2 + Cl2 

N2 + Cl + Cl 
N2 + CCl2 

−603 
−373 
−115 
−23 

−314 
−71 
−77 

     
Ar+ 

(15.76) 
1.4 

[1.4] 
C2Cl4

+ (3) 
C2Cl3

+ (42) 
CCl3

+ (3) 
C2Cl2

+ (44) 
 

CCl2
+ (8) 

Ar 
Ar + Cl 

Ar + CCl 
Ar + Cl2 

Ar + Cl + Cl 
Ar + CCl2 

−621 
−391 
−133 
−332 
−89 
−95 

     
F+ 

(17.42) 
1.4 

[2.0] 
C2Cl2

+ (100) F + Cl2 
F + Cl + Cl 

FCl + Cl 

−492 
−249 
−500 

     
Ne+ 

(21.56) 
2.0 

[1.9] 
C2Cl3

+ (1) 
C2Cl2

+ (54) 
 

CCl2
+ (10) 

C2Cl+ (10) 
CCl+ (25) 

Ne + Cl 
Ne + Cl2 

Ne + Cl + Cl 
Ne + CCl2 

Ne + Cl2 + Cl 
Ne + CCl3 

Ne + CCl2 + Cl 

−950 
−891 
−648 
−654 

−1935 + ∆fHº298[C2Cl+] 
−733 
−453 

     
        
 
 
 
 
a The majority of the enthalpies of formation at 298 K for ion and neutral species are taken from standard sources.22,35 
 
b     Recombination energy (RE) of reactant ion. For molecular ions, the RE given is the adiabatic value. 
 

c     No reaction means the rate coefficient is less than ca. 10-13 cm3 molecule-1 s-1. 
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d We were unable to inject H2O+ without  OH+ contamination the OH+ signal was 30 % of the H2O+ signal. Hence the 

values for the H2O+ branching ratios are approximate.   
  

e O+ was produced via collision induced dissociation from N2O+, the signal was too small to allow measurement of 
branching ratios. 
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Figure Captions 

 
 
 
Figure 1 :    Comparison of the ionic products from ion-molecule studies of six chloroethenes ((a)−(f)) with 

TPEPICO photoionisation branching ratios ((b)−(e)) over the range 9−22 eV.  The optical resolution in the 

TPEPICO experiments is 0.3 nm.  The resolution of the time-of-flight mass analyser in the coincidence 

apparatus is not sufficient to differentiate unambiguously the loss of one Cl atom from loss of an HCl 

molecule (or loss of two Cl atoms from loss of H and 2Cl).  To make comparisons with branching ratios from 

the SIFT data, therefore, the sum of the branching ratios of appropriate ions in the SIFT experiment is 

plotted. 

 

 

Figure 2  :    Inital insertion step of CF3
+ into a chloroethene double bond. 

 

 

Figure 3  :     Proposed scheme for the reaction of monochloroethene with CF3
+, reaction II.  The double 

arrow implies there are many steps to form the products. 
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Figure 1 
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Figure 2 
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