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Chapter 1    (final  3.11.08) 

The role of atmospheric gases in global warming 
 

Richard P Tuckett 
 

School of Chemistry, University of Birmingham, Edgbaston, Birmingham  B15 2TT, UK 
 
 

 
1.   INTRODUCTION 

 

If the general public in the developed world is confused about what the greenhouse effect is, what the 

important greenhouse gases are, and whether greenhouse gases really are the predominant cause of the 

recent rise in temperature of the earth’s atmosphere, it is hardly surprising.  Nowadays, statements by one 

scientist are often immediately refuted by another, and both tend to state their claims with almost 

religious fervour.  Furthermore, politicians and the media have not helped.  It is only fourteen years ago 

that the newly-appointed Secretary of State for the Environment in the UK made the cardinal sin of 

confusing the greenhouse effect with ozone depletion by saying they had the same scientific causes.  (In 

retrospect, John Gummer was closer to the truth than he realised, in that one class of chemicals, the 

chlorofluorocarbons, are both the principal cause of ozone depletion and are major greenhouse gases, but 

these two facts are scientifically unrelated.)  Furthermore, to many, even in the respectable parts of the 

media, ‘greenhouse gases’ are two dirty words.  In fact, nothing could be further from the truth, in that 

there has always been a greenhouse effect operative in the earth’s atmosphere.  Without it we would 

inhabit a very cold planet, and not exist in the hospitable temperature of 290−300 K. 

The purpose of this opening chapter of this book is to explain in simple terms what the greenhouse 

effect is, what its origins are, and what the properties of greenhouse gases are.  I will restrict this chapter 

to an explanation of the physical chemistry of greenhouse gases and the greenhouse effect, and not delve 

too much into the politics of ‘what should or should not be done’.  However, one simple message to 

convey at the onset is that the greenhouse effect is not just about concentration levels of carbon dioxide, 

CO2, and it is too simplistic to believe that all our problems will be solved if we can reduce CO2 

concentrations by x % in y years.  Shine [1] has also commented many times that there is much more to 

the greenhouse effect than carbon dioxide levels. 

 

 

2.   ORIGIN OF THE GREENHOUSE EFFECT : ‘PRIMARY’ AND ‘SECONDARY’ EFFECTS 

 

The earth is a planet in dynamic equilibrium, in that it continually absorbs and emits electromagnetic 

radiation.  It receives ultra-violet and visible radiation from the sun, it emits infra-red radiation, and 

energy balance says that ‘energy in’ must equal ‘energy out’ for the temperature of the planet to be 
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constant.  This equality can be used to determine what the average temperature of the planet should be.  

Both the sun and the earth are black-body emitters of electromagnetic radiation.  That is, they are masses 

capable of emitting and absorbing all frequencies (or wavelengths) of electromagnetic radiation 

uniformly.  The distribution curve of emitted energy per unit time per unit area vs. wavelength for a black 

body was worked out by Planck in the first part of the 20th century, and is shown pictorially in Fig. 1.  

Without mathematical detail, two points are relevant.  First, the total energy emitted per unit time 

integrated over all wavelengths is proportional to (T/K)4.  Second, the wavelength of the maximum in the 

emission distribution curve varies inversely with (T/K), i.e. λmax α (T/K)−1.  These are Stefan’s and Wien’s 

Laws, respectively.  Comparing the black-body curves of the sun and the earth, the sun emits UV / visible 

radiation with a peak at ca. 500 nm characteristic of Tsun = 5780 K.  The temperature of the earth is a 

factor of twenty lower, so the earth’s black-body emission curve peaks at a wavelength which is twenty 

times longer or ca. 10 µm.  Thus the earth emits infra-red radiation with a range of wavelengths spanning 

ca. 4−50 µm, with the majority of the emission being in the range 5−25 µm (or 400−2000 cm−1). 

The solar flux energy intercepted per second by the earth’s surface from the sun’s emission can be 

written as Fs(1−A)πRe
2, where Fs is the solar flux constant outside the Earth’s atmosphere (1368 J⋅ s−1⋅ 

m−2), Re is the radius of the Earth (6.38 x 106 m), and A is the earth’s albedo, corresponding to the 

reduction of incoming solar flux by absorption and scattering of radiation by aerosol particles (average 

value 0.28).  The infrared energy emitted per second from the earth’s surface is 4πRe
2sTe

4, where s is 

Stefan’s constant (5.67 x 10−8 J⋅s−1⋅m−2⋅K−4) and 4πRe
2 is the surface area of the earth.  At equilibrium, the 

temperature of the earth, Te, can be written as : 

 

   Te  =  
4/1

4
)1(




 −

s
AFs        (1) 

 

Using the data above yields a value for Te of ca. 256 K.  Mercifully, the average temperature of the earth 

is not a Siberian −17 oC, otherwise life would be a very unpleasant experience for the majority of humans 

on this planet.  The reason why our planet has a hospitable higher average value of ca. 290 K is the 

greenhouse effect.  For thousands of years, absorption of some of the emitted infrared radiation by 

molecules in the earth’s atmosphere (mostly CO2, O3 and H2O) has trapped this radiation from escaping 

out of the earth’s atmosphere (just as a garden greenhouse operates), some is re-radiated back towards the 

earth’s surface, thereby causing an elevation of the temperature of the surface of the earth.  Thus, it is the 

greenhouse effect that has maintained our planet at this average temperature, and for this fact we should 

all be very grateful!  This phenomenon is often called the ‘primary’ greenhouse effect.  It is therefore a 

myth to portray all aspects of the greenhouse effect as bad news, it is the reverse that is true.   
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Evidence for the presence of greenhouse gases absorbing infrared radiation in the atmosphere 

comes from satellite data.  Fig. 2 shows data collected by the Nimbus 4 satellite circum-navigating the 

earth at an altitude outside the earth’s troposphere (0 < altitude, h < 10 km) and stratosphere (10 < h < 50 

km).  The infrared emission spectrum in the range 6−25 µm escaping from earth represents a black-body 

emitter with a temperature of ca. 290 K, with absorptions (i.e. dips) between 12−17 µm, around 9.6 µm, 

and λ < 8 µm.  These wavelengths correspond to infrared absorption bands of CO2, O3 and H2O 

respectively, three atmospheric gases that have contributed to the primary greenhouse effect 

Of course, the argument that the primary greenhouse gases have maintained our planet at a 

constant temperature of ca. 290 K pre-supposes that their concentrations have remained approximately 

constant over very long periods of time.  This has not happened with CO2 and, to a lesser extent, with O3 

over the 260 a (years) since the start of the Industrial Revolution, ca. 1750, and it is changes in the 

concentrations of these and newer greenhouse gases that have caused a ‘secondary’ greenhouse effect to 

occur over this time window, leading to the temperature rises that we are all experiencing today.  That, at 

least, is the main argument of the proponents of the ‘greenhouse gases, mostly CO2, equals global 

warming’ school of thought.  There is no doubt that the concentration of CO2 in our atmosphere has risen 

from ca. 280 parts per million by volume (ppmv) to current levels of ca. 380 ppmv over the last 260 a.   

(1 ppmv is equivalent to a number density of 2.46 x 1013 molecules⋅cm-3 for a pressure of 1 bar and a 

temperature of 298 K.)  It is also not in doubt that the average temperature of our planet has risen by ca. 

0.5−0.8 K over this same time window (Fig. 3).  What has not been proven is that there is a cause-and-

effect correlation between these two facts, the main problem being that there is not sufficient structure or 

resolution with time in either the CO2 concentration or the temperature data.  Even more recent data of the 

last 100 years (Fig. 4), where the correlation seems to be better established, will not convince the sceptic.  

That said, as demonstrated most clearly by the recent IPCC2007 report [2], the consensus of world 

scientists, and certainly physical scientists, is that a strong correlation does exist. 

By contrast, an excellent example in atmospheric science of sufficient resolution being present to 

confirm a correlation between two sets of data occurred in 1989 ; the concentrations of O3 and the ClO 

free radical in the stratosphere were shown to have a strong anti-correlation effect when data were 

collected by an aircraft as a function of latitude in the Antarctic (Fig. 5) [3].  There was not only the 

general observation that a decrease of O3 concentration correlated with an increase in ClO concentration, 

but also the resolution was sufficient to show that at certain latitudes dips in O3 concentration 

corresponded exactly with rises in ClO concentration.  Even the most doubting scientist could accept that 

the decrease in O3 concentration in the Antarctic Spring was related somehow to the increase in ClO 

concentration, and this result led to an understanding over the next 10−15 a of the heterogeneous 

chemistry of chlorine-containing compounds on polar stratospheric clouds.  Unfortunately, such good 

resolution is not present in the data (e.g. Figs. 3 and 4) for the ‘CO2 vs. T’ global warming argument, 

leading to the multitude of theories that are now in the public domain.   
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I accept that it would be very surprising if there was not some relationship between such rapid 

increases in CO2 concentration and the temperature of the planet, nevertheless there are two aspects of 

Fig. 3 that remain unanswered by proponents of such a simple theory.  First, the data suggests that the 

temperature of the earth actually decreased between 1750 and ca. 1920 whilst the CO2 concentration 

increased from 280 to ca. 310 ppm over this time window.  Second, the drop in temperature around 1480 

AD in the ‘little ice age’ is not mirrored by a similar drop in CO2 concentration.  All that said, however, 

the apparent ‘agreement’ between rises of both CO2 levels and Te over the last 50 a is very striking.  The 

most likely explanation surely is that there are a multitude of effects, one of which is the concentrations of 

greenhouse gases in the atmosphere, contributing to the temperature of the planet.  At certain times of 

history, these effects have been ‘in phase’ (as now), at other times they may have been in ‘anti-phase’ and 

working against each other. 

 

 

3.    THE PHYSICAL CHEMISTRY PROPERTIES OF GREENHOUSE GASES 

 

The fundamental physical property of a greenhouse gas is that it must absorb infrared radiation via one or 

more of its vibrational modes in the infrared range of 5−25 µm.  Furthermore, since the primary 

greenhouse gases of CO2, O3 and H2O absorb in the range 12−17 µm (or 590−830 cm−1), 9.6 µm (1040 

cm−1) and λ < 8 µm (> 1250 cm−1), an effective secondary greenhouse gas is one which absorbs inrared 

radiation strongly outside these ranges of wavelengths (or wavenumbers).  A molecular vibrational mode 

is only infrared active if the motion of the atoms generates a dipole moment.  That is, dµ / dQ  ≠  0, where 

µ is an instantaneous dipole moment and Q a displacement coordinate representing the vibration of 

interest.  It is worth stating the obvious straightaway, that N2 and O2 which constitute 99 % of the earth’s 

atmosphere do not absorb infrared radiation, their sole vibrational mode is infrared inactive, so they play 

no part in the greenhouse effect and global warming.  It is only trace gases in the atmosphere (Table 1) 

such as CO2 (0.038 %), CH4 (0.0002 %), O3 (3 x 10−6 %) and chlorofluorocarbons such as CF2Cl2 (5 x 

10−8 %) which contribute to the greenhouse effect.  Put another way, the earth’s atmosphere is particularly 

fragile if only 1 % of the molecules present can have such a major effect on humans living on the planet.  

Furthermore, the most important molecular trace gas, CO2, absorbs via its ν2 bending vibrational mode at 

667 cm−1 or 15.0 µm, which coincidentally is very close to the peak of the earth’s black-body curve ; the 

spectroscopic properties of CO2 have not been particularly kind to the environment!  Thus, infrared 

spectroscopy of gas-phase molecules, in particular at what wavelengths and how strongly a molecule 

absorbs such radiation, will clearly be important properties to determine how effective a trace pollutant 

will be to the greenhouse effect. 
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The second property of interest is the lifetime of the pollutant in the earth’s atmosphere : the 

longer the lifetime, the greater contribution a greenhouse gas will make to global warming.  The main 

removal processes in the troposphere and stratosphere are reactions with OH free radicals and 

electronically-excited oxygen atoms, O* (1D), and photodissociation in the range 200−300 nm (in the 

stratosphere) or 300−500 nm (in the troposphere).  Thus, the reaction kinetics of pollutant gases with OH 

and O* (1D) and their photochemical properties in the UV / visible will yield important parameters to 

determine their effectiveness as greenhouse gases.  All these data are incorportated into a dimensionless 

number, the global warming potential (GWP) or greenhouse potential (GHP) of a greenhouse gas.  All 

values are calibrated with respect to CO2 whose GWP value is 1.  A molecule with a large GWP is one 

with strong infrared absorption in the windows where the primary greenhouse gases such as CO2 etc. do 

not absorb, long lifetimes, and concentrations rising rapidly due to human presence on the planet.  GWP 

values of some of the most important secondary greenhouse gases are given in the bottom row of Table 2.  

Note that CO2 has the lowest GWP value of the seven greenhouse gases shown.   

Information in the previous two paragraphs is described in qualitative and descriptive terms.  

However, all the data can be quantified, and a mathematical description is now presented.  The term that 

characterises the infrared absorption properties of a greenhouse gas is the radiative efficiency, ao.  It 

measures the strength of the absorption bands of the greenhouse gas, x, integrated over the infrared black-

body region of ca. 400−2000 cm−1.  It is a (per molecule) microscopic property and is usually expressed 

in units of W⋅m−2⋅ppbv−1.  If this value is multiplied by the change in concentration of pollutant over a 

defined time window, usually the 260 a from the start of the Industrial Revolution to the current day, the 

macroscopic radiative forcing in units of W⋅m−2 is obtained.  (Clearly, a pollutant whose concentration 

has not changed over this long time window will have a macroscopic radiative forcing of zero.)  One may 

then compare the radiative forcing of different pollutant molecules over this time window, showing the 

current contribution of different greenhouse gases to the total greenhouse effect.  Thus the IPCC 2007 

report [2] quotes the radiative forcing for CO2 and CH4 in 2005 as 1.66 and 0.48 W⋅m−2, respectively, out 

of a total for long-lived greenhouse gases of 2.63 W⋅m−2.  These two molecules therefore contribute 81% 

in total (63 and 18 %, individually) to the global warming effect.  Effectively, the radiative forcing value 

gives a current-day estimate of how serious a greenhouse gas is to the environment, using concentration 

data from the past. 

The overall effect in the future of one molecule of pollutant on the earth’s climate is described by 

its GWP (or GHP) value.  It measures the radiative forcing, Ax, of a pulse emission of the greenhouse gas 

over a defined time period, t, usually 100 a, relative to the time-integrated radiative forcing of a pulse 

emission of an equal mass of CO2 : 
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  GWPx(t)  =  
∫
∫
t

CO

t
x

dttA

dttA
 
0 2

 
0 

).(

 ).(
       (2) 

 

The GWP value therefore informs how important one molecule of pollutant x is to global warming via the 

greenhouse effect compared to one molecule of CO2, which is defined to have a GWP value of unity.  It is 

an attempt to project into the future how serious the presence of a long-lived greenhouse gas will be in the 

atmosphere  (Thus, when the media state that CH4 is 25 times as serious as CO2 for global warming, what 

they are saying is that the GWP value of CH4, looking 100 a into the future, is 25 ; one molecule of CH4 

is expected to cause 25 times as much ‘damage’ as one molecule of CO2.)  For most greenhouse gases, 

the radiative forcing following an emission at t = 0, takes a simple exponential form : 

 

  Ax(t)  =  Ao,xexp(−t / τx)       (3) 

 

where τx is the lifetime for removal of species x from the atmosphere.  For CO2, a single-exponential 

decay is not appropriate since the lifetime ranges from 50 to 200 a, and we can write : 

 

  ACO2(t)  =  Ao,CO2 







−+ ∑

i
i ) / exp(  τtbb io      (4) 

 

where the response function, the bracket in the right-hand side of Eq. (4), is derived from more complete 

carbon cycles.  Values for bi (i = 0−4) and τi (i = 1−4) have been given by Shine et al. [4].  It is important 

to note that the radiative forcing, Ao, in Eqs. (2)−(4) has units of W⋅m−2⋅kg−1.  For this reason, it is given a 

different symbol to the microscopic radiative efficiency, ao, with units of W⋅m−2⋅ppbv−1.  Conversion 

between the two units is simple [4].  The time integral of the large bracket on the right-hand side of Eq. 

(4), defined KCO2, has dimensions of time, and takes values of 13.4 and 45.7 a for a time period of 20 and 

100 a, respectively, the values of t for which GWP values are most often quoted.  Within the 

approximation that the greenhouse gas, x, follows a single-exponential time decay in the atmosphere, it is 

then possible to parameterise Eq. (2) to give an exact analytical expression for the GWP of x over a time 

period t : 

 

  


















 −
−=

xCO

x

COo

xo

x

CO

CO

x t
Ka

a
MW

MW
tGWP

tGWP
τ

τ
exp  1...    

)(
)(

22,

,2

2
   (5) 
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In this simple form, the GWP only incorporates values for the radiative efficiency of greenhouse gases x 

and CO2, ao,x and ao,CO2 ; the molecular weights of x and CO2 ; the lifetime of x in the atmosphere¸τx ; the 

time period into the future over which the effect of the pollutant is determined ; and the constant KCO2  

which can easily be determined for any value of t.  Thus the GWP value scales with both the lifetime and 

the microscopic radiative forcing of the greenhouse gas, but it remains a microscopic property of one 

molecule of the pollutant.  The recent rate of increase in concentration of a pollutant (e.g. the rise in 

concentration per annum over the last decade), one of the factors of most concern to policymakers, does 

not contribute directly to the GWP value.  This and other factors [4] have caused criticism of the use of 

GWPs in policy formulation.  

Data for seven greenhouse gases are shown in Table 2.  CO2 and O3 constitute naturally-occurring 

greenhouse gases whose concentration levels ideally would have remained constant at pre-industrial 

revolution levels.  Although H2O vapour is the most abundant greenhouse gas in the atmosphere, it is 

neither long-lived nor well mixed : concentrations range from 0−3 % (i.e. 0−30,000 ppmv) over the 

planet, and the average lifetime is only a few days.  Its average global concentration has not changed 

significantly in the last 260 a, and it therefore has zero radiative forcing.  CH4 and N2O constitute 

naturally-occurring greenhouse gases with larger ao values than that of CO2.  The CH4 concentration, 

although small, has increased by ca. 150% since pre-industrial times.  After CO2, it is the second most 

important greenhouse gas, and its current total radiative forcing is ca. 29% that of CO2.  N2O 

concentration has increased only by ca. 16 % over this same time period.  It has the fourth highest total 

radiative forcing of all the naturally-occurring greenhouse gases, following CO2, CH4 and O3.  

Dichlorofluoromethane, CF2Cl2, is one of the most common of chlorofluorocarbons.  These are man-

made chemicals that have grown in concentration from zero in pre-industrial times to a current total 

concentration of 0.9 ppbv (1 ppbv is equivalent to 1 part per 109 (billion) by volume, or a number density 

of 2.46 x 1010 molecules⋅cm−3 at 1 bar pressure and a temperature of 298 K).  Their concentration is now 

decreasing due to the 1987 Montreal and later International Protocols, introduced to halt stratospheric 

ozone destruction and (ironically) nothing to do with global warming!  SF6 and SF5CF3 are two long-lived 

halocarbons with currently very low concentration levels, but with high annual percentage increases and 

exceptionally long lifetimes in the atmosphere.  They have very high ao and GWP values, essentially 

because of their large number of strong infrared-active vibrational modes and their long lifetimes. 

It is noted that CO2 and CH4 have the lowest GWP values of all greenhouse gases.  Why, then, is 

there such concern about levels of CO2 in the atmosphere, and with the possible exception of CH4 no 

other greenhouse gas is hardly ever mentioned in the media ?  The answer is that the overall contribution 

of a pollutant to the greenhouse effect, present and future, involves a convolution of its concentration 

with the GWP value.  Thus CO2 and CH4 currently contribute most to the greenhouse effect (third bottom 

row of Table 2) simply due to their high change in atmospheric concentration since the Industrial 

Revolution ; note, however, that the ao and GWP values of both gases are relatively low.  Indeed, the ν2 
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bending mode of CO2 at 15.0 µm, which is the vibrational mode most responsible for greenhouse activity 

in CO2, is close to saturation.  By contrast, SF5CF3 is a perfluorocarbon molecule with the highest 

microscopic radiative forcing of any known greenhouse gas (earning it the title ‘super’ greenhouse gas 

[5,6]), even higher than that of SF6.  SF6 is an anthropogenic chemical used extensively as a dielectric 

insulator in high-voltage industrial applications, and the variations of concentration levels of SF6 and 

SF5CF3 with time in the last 50 a have tracked each other very closely [7].  The GWP of these two 

molecules is very high, SF6 being slightly higher because its atmospheric lifetime, ca. 3200 a [8], is about 

four times greater than that of SF5CF3.  However, the contribution of these two molecules to the overall 

greenhouse effect is still very small because their atmospheric concentrations, despite rising rapidly at the 

rate of ca. 6−7 % per annum, are still very low, at the level of parts per 1012 (trillion) by volume ; 1 pptv 

is equivalent to a number density of 2.46 x 107 molecules⋅cm−3 at 1 bar and 298 K). 

In conclusion, the macroscopic properties of greenhouse gases, such as their method of 

production, their concentration and their annual rate of increase or decrease, are mainly controlled by 

environmental and sociological factors, such as industrial and agricultural methods, and ultimately 

population levels on the planet.  The microscopic properties of these compounds, however, are controlled 

by factors that undergraduates world-wide learn about in science degree courses :  infrared spectroscopy, 

reaction kinetics and photochemistry.  Data from such lab-based studies determine values for two of the 

most important parameters for determining the effectiveness of a greenhouse gas : the microscopic 

radiative efficiency, ao, and the atmospheric lifetime, τ. 

 

 

4.   THE LIFETIME OF A GREENHOUSE GAS IN THE EARTH’S ATMOSPHERE 

 

The microscopic radiative efficiency of a greenhouse gas is determined by measuring absolute absorption 

coefficients for infrared-active vibrations in the range ca. 400−2000 cm−1 and integrating over this region 

of the electromagnetic spectrum.  Its meaning is unambiguous.  The lifetime, however, is a term that can 

mean different things to different scientists, according to their discipline.  It is therefore pertinent to 

describe exactly what is meant by the lifetime of a greenhouse gas (penultimate row of Table 2), and how 

these values are determined.   

To a physical chemist, the lifetime generally means the inverse of the pseudo-first-order rate 

constant of the dominant chemical or photolytic process that removes the pollutant from the atmosphere.  

Using CH4 as an example, it is removed in the troposphere via oxidation by the OH free radical, OH + 

CH4 → H2O + CH3.  The rate coefficient for this reaction at 298 K is 6.4 x 10−15 cm3⋅molecule−1⋅s−1 [9], so 

the lifetime is approximately equal to (k298[OH])−1.  Assuming the tropospheric OH concentration to be 

0.05 pptv or 1.2 x 106 molecules⋅cm−3 [2], the lifetime of CH4 is calculated to be ca. 4 a.  This is within a 

factor of three of the accepted value of 12 a (Table 2).  The difference arises because CH4 is not emitted 
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uniformly from the earth’s surface, a finite time is needed to transport CH4 via convection and diffusion 

into the troposphere, and oxidation occurs at different altitudes in the troposphere where the OH 

concentration varies from its average value of 1.2 x 106 molecules⋅cm−3.  We can regard this as an 

example of a two-step kinetic process,  

 

A   →   B   →   C     (6)  

 

with first-order rate constants k1 and k2.  The first step, A → B, represents the transport of the pollutant 

into the atmosphere, whilst the second step, B → C, represents the chemical or photolytic process (e.g. 

reaction with an OH radical in the troposphere) that removes the pollutant from the atmosphere.  In 

general, the overall rate of the process (whose inverse is called the lifetime) will be a function of both k1 

and k2, but its value will be dominated by the slower of the two steps.  Thus, in calculating the lifetime of 

CH4 simply by determining (k298[OH])−1, we are assuming that the first step, transport into the region of 

the atmosphere where chemical reactions occurs, is infinitely fast compared to the removal process. 

The exceptionally long-lived greenhouse gases in Tables 1 and 2 (e.g. SF6, CF4, SF5CF3) behave 

in the opposite sense.  Now, the slow, rate-determining process is the first step, i.e. transport of the 

greenhouse gas from the surface of the earth into the region of the atmosphere where chemical removal 

occurs.  The chemical or photolytic processes that ultimately remove SF6 etc. will have very little 

influence on the lifetime, i.e. k1 « k2 in Eq. (6).  These molecules do not react with OH or O* (1D) to any 

significant extent, and are not photolysed by visible or UV radiation in the troposphere or stratosphere.  

They therefore rise higher into the mesosphere (h > 60 km) where the dominant processes that can 

remove pollutants are electron attachment and vacuum-UV photodissociation at the Lyman-α wavelength 

of 121.6 nm [6].  We can define a chemical lifetime, τchemical, for such species as : 

 

τchemical  =  [ke[e−] + σ121.6J121.6Φ121.6]−1     (7)  

 

ke is the electron attachment rate coefficient, σ121.6 is the absorption cross-section at this wavelength, [e−] 

is the average number density of electrons in the mesosphere, J121.6 is the mesospheric solar flux and 

Φ121.6 the quantum yield for dissociation at 121.6 nm.  Often, the photolysis term is much smaller than the 

electron-attachment term, and the second term of the squared bracket in Eq. (7) is ignored.  It is important 

to appreciate that the value of τchemical is a function of position, particularly altitude, in the atmosphere.  In 

the troposphere, τchemical will be infinite because both the concentration of electrons and J121.6 are 

effectively zero, but in the mesosphere τchemical will be much less.  However, multiplication of ke for SF6 

etc. by a typical electron density in the mesosphere, ca. 104 cm−3 [10], yields a chemical lifetime which is 
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far too small and bears no relation to the true atmospheric lifetime, simply because most of the SF6 etc. 

does not reside in the mesosphere.   

One may therefore ask where the quoted lifetimes for SF6, CF4 and SF5CF3 of 3200, 50000 and 

800 a, respectively, come from [8,11].  The lifetimes of such long-lived greenhouse gas can only be 

obtained from globally-averaged loss frequencies.  The psuedo-first-order destruction rate coefficient for 

each region of the atmosphere is weighted according to the number of molecules of compound in that 

region, 

 

   <k>global  =  
∑
∑

i
ii

i
iii

nV

nVk

      (8) 

 

where i is a region, ki is the pseudo-first-order removal rate coefficient for region i, Vi is the volume of 

region i, and ni is the number density of the greenhouse gas under study in region i.  The lifetime is then 

the inverse of <k>global.  The averaging process thus needs input from a 2− or 3−dimensional model of the 

atmosphere in order to supply values for ni.  This is essentially a meterological, and not a chemical 

problem.  It may explain why meterologists and physical chemists sometimes have different 

interpretations of what the lifetime of a greenhouse gas actually means.   

Many such studies have been made for SF6 [8,12,13], and differences in the kinetic model (ki) and 

the atmospheric distributions (ni) from different climate or transport models account for the variety of 

atmospheric lifetimes that have been reported.  The importance of both these factors has also been 

explored by Hall and Waugh [14].  Their results show that because the fraction of the total number of SF6 

molecules in the mesosphere is very small, the global atmospheric lifetime given by Eq. (8) is very much 

longer than the mesospheric, chemical lifetime given by Eq. (7).  Thus, they quote that if the mesospheric 

loss frequency is 9 x 10−8 s−1, corresponding to a local lifetime of 129 d (days), then the global lifetime 

ranges between 1425 and 1975 a, according to which climate or transport model is used.   

 

 

5.   GENERAL COMMENTS ON LONG-LIVED GREENHOUSE GASES 

In 1994, Ravishankara and Lovejoy wrote that that the release of any long-lived species into the 

atmosphere should be viewed with great concern [15].  They noted that the chlorofluorocarbons (CFCs), 

with relatively ‘short’ lifetimes of ca. 100 a, have had a disastrous effect over a relatively short period of 

time, ca. 30−50 a, on the ozone layer in the stratosphere that protects humans from harmful UV radiation.  

However, following implementation of international treaties (e.g. Montreal, 1987) it is now expected that 

the ozone layer will recover within 50−100 a [16].  At present, there are no known undesired chemical 
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effects of low concentrations of perfluorocarbons such as CF4 and SF6 in the atmosphere.  However, their 

rapidly-increasing concentrations (ca. 7 % per annum for SF6) and their exceptionally long lifetimes 

(thousands, not hundreds of years) means that life on earth may not be able to adapt to any changes these 

gases may cause in the future.  They suggested that all such long-lived molecules should be considered 

guilty, unless proven otherwise.  If SF6 is perceived potentially to be the major problem of this family of 

molecules, inert, dielectric gases with lower GWP values could be used as substitutes for SF6 in industrial 

applications ; ring-based perfluorocarbons, such as cyclic-C4F8 and cyclic-C5F8 are possibilities [17].  

However, the simplest, possibly naïve, suggestion is that humans should not put up into the atmosphere 

any more pollutants than are absolutely necessary.  The worldwide debate just starting, probably 50 a too 

late, is what constitutes ‘absolutely necessary’. 

 
 
6.    CONCLUSION 

 

In this chapter, I have only sought to explain the physical properties of greenhouse gases, and what are 

the factors that determine their effectiveness as pollutant gases that can cause global warming.  I have not 

attempted to describe the natural or anthropogenic sources of these greenhouse gases, and why their 

concentrations have increased since the pre-Industrial era ; this will be covered by other chapters in this 

book.   

CO2 and CH4 currently contribute ca. 81 % of the total radiative forcing of long-lived greenhouse 

gases (Table 2), but it is too simplistic to say that control of CO2 levels will be the complete solution, as is 

often implied by politicians and the media.  It is certainly true that concentration levels of CO2 in the 

earth’s atmosphere are a very serious cause for concern, and many countries are now putting in place 

targets and policies to reduce them.  It is my personal belief that CO2 levels in the atmosphere correlate 

strongly with lifestyle of many of the population, and with serious effort, especially in the developed 

world, huge reductions are possible.  The challenge will be to effect policies to reduce significantly the 

concentration of CO2 without seriously decreasing the standard of living of the population and negating 

all the benefits that technology has brought us in the last 50−100 a.  I give two examples for possible 

policy change.  First, I query whether the huge expansion in air travel within any one country at the 

expense of slower methods of transports (e.g. trains) is really worth all the social and economic benefits 

that are claimed.  The price to be paid, of course, is hugely-enhanced CO2 emissions.  Second, I query 

whether the benefits of 24 hour shopping 7 days a week are really worth the extra CO2 emissions that 

result from keeping shops open continuously.  Would our standard of living drop significantly if shops 

opened for much fewer hours ?  Most of Switzerland closes at 4 pm on a Saturday for the rest of the 

weekend, yet this country is very close to the top of all international league tables for wealth creation, 

standard of living and levels of well-being / happiness. 
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CH4 levels, however, in my opinion pose just as serious a threat to our planet as CO2 simply 

because they will be much harder to reduce.  Whilst it is surprising and remains unclear why the total 

radiative forcing of methane, 0.48 W⋅m-2, has remained unchanged over the last decade [2], a major 

component of methane emissions correlates strongly with the number of animal lifestock which itself is 

dependent on the population of the planet.  Controlling, let alone reducing world-wide population levels 

over the short period of time that is apparently available to ‘save the planet’ (ca. 20-40 a) [18] is a major 

task.  Surely this could and should be the major policy directive of the United Nations over the next few 

decades.  
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Table 1     
Main constituents of ground-level clean air in the earth’s atmosphere 
 
 
 
 Molecule       Mole Fraction  ppmv a (2008)  ppmv (1748) 
    _______________________________________________________________________________ 
 
     N2   0.78 or 78 %           780 900      780 900 
     O2   0.21 or 21 %           209 400      209 400 
 
     H2O   0.03 (100% humidity, 298 K)     30 000      31 000 
     H2O   0.01 (50% humidity, 298 K)     10 000      16 000 
 
     Ar   0.01 or 1 %       9 300      9 300 
 
     CO2   3.8 x 10−4 or 0.038 %      379       280 
 
     Ne   1.8 x 10−5 or 0.002 %      18       18 
 
     CH4   1.77 x 10−6 or 0.0002 %     1.77       0.72 
 
     N2O   3.2 x 10−7 or 0.00003 %     0.32       0.27 
 
     O3 

b   3.4 x 10−8 or 0.000003 %     0.034      0.025 
 
     All CFCs c  8.7 x 10−10 or 8.7 x 10−8 %     0.0009      0 
 
     All HCFCs d 1.9 x 10−10 or 1.9 x 10−8 %     0.0002      0 
 
     All PFCs e  8.3 x 10−11 or 8.3 x 10−9 %     0.00008      0 
 
     All HFCs f  6.1 x 10−11 or 6.1 x 10−9 %     0.00006      0 
    _____________________________________________________________________________ 
 
 
 
a parts per million by volume.  1 ppmv is equivalent to a number density of  
 2.46 x 1013 molecules⋅cm−3 for a pressure of 1 bar and a temperature of 298 K. 
b The concentration level of O3 is very difficult to determine because it is poorly mixed 
 in the troposphere.  It shows large variation with both region and altitude. 
c chlorofluorocarbons (e.g. CF2Cl2) 
d hydrochlorofluorocarbons (e.g. CHClF2) 
e perfluorocarbons (e.g. CF4, C2F6, SF5CF3, SF6) 
f hydrofluorocarbons (e.g. CH3CF3) 
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Table 2.     
Examples of greenhouse gases, and their contribution to global warming [2,19]. 
 
 
Greenhouse Gas CO2 O3 CH4 N2O CF2Cl2 

[all CFCs] 
SF6 SF5CF3 

Concentration (2008) / ppmv 
 
 

379 0.034 a 

 
 

1.77 
 
 

0.32 
 
 

0.0005 
[0.0009] 

 

5.6 x 10−6 1.2 x 10−7 
 

∆Concentration (1748−2008)  
    / ppmv 

99 0.009 a 1.05 0.05 0.0005 
[0.0009] 

5.6 x 10−6 1.2 x 10−7 

Radiative efficiency, ao  
    / W⋅m-2⋅ppbv-1 

1.68 x 10−5 3.33 x 10−2 4.59 x 
10−4 

3.41 x 10−3 0.32 
[0.18−0.32] 

0.52 0.60 

Total radiative forcing b  
    / W⋅m-2 

1.66 ca. 0.30 c 0.48 0.16 0.17 
[0.27] 

2.9 x 10−3 7.2 x 10−5 

Contribution from long-lived 
greenhouse gases excluding 
ozone to overall greenhouse 
effect / % d 

63 
(57) 

 
(10) 

18 
(16) 

6 
(5) 

6  [10] 
(6  [9]) 

 

0.1 
(0.1) 

0.003 
(0.003) 

Lifetime, τ e / a ca. 50−200 f ca. days 
− weeks g 

12 120 100 
[45−1700] 

3200 800 

Global warming potential 
    (100 a projection) 

1 − h 25 298 10900 
[6130−14400] 

22800 17700 

 
 
a Reference [19]. 
b    Due to change in concentration of long-lived greenhouse gas from the pre-Industrial era to the present time.   
c An estimated positive radiative forcing of 0.35 W⋅m−2 in the troposphere is partially cancelled  

by a negative forcing of 0.05 W⋅m−2 in the stratosphere [2]. 
d Assumes the latest value for the total radiative forcing of 2.63 ± 0.26 W⋅m−2 [2]. 

The values in brackets show the percentage contributions when the estimate radiative forcing for ozone  
is included in the value for the total radiative forcing. 

e     Assumes a single-exponential decay for removal of greenhouse gas from the atmosphere. 
f CO2 does not show a single-exponential decay [4]. 
g O3 is poorly mixed in the troposphere, so a single value for the lifetime is difficult to estimate.  It is removed by the reaction  

OH + O3  →  HO2 + O2.  Its concentration shows large variations both with region and altitude.  
h GWP values are generally not applied to short-lived pollutants in the atmosphere, due to serious inhomogeneous changes in 
 their concentration. 
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FIGURE CAPTIONS 

 

Figure 1 :    Black-body emission curves from the sun (T ∼ 5780 K) and the earth (T ∼ 290 K), showing 

the operation of Wien’s Law that λmax  α  (1/T).  The two graphs are not to scale.  

 

 

Figure 2 :    Infrared emission spectrum escaping to space as observed by the Nimbus 4 satellite outside 

the earth’s atmosphere.  Absorptions due to CO2 between 12−17 µm , O3 (around 9.6 µm) and H2O (λ < 8 

µm)  are shown.  (With permission from R.E. Dickinson and W.C. Clark (eds), Carbon dioxide review 

(1982) OUP.) 

 

 

Figure 3 :    The average temperature of the earth and the concentration level of CO2 in the earth’s 

atmosphere during the last 1000 years.  (With permission from 

www.env.gov.bc.ca/air/climate/indicat/images/appendnhtemp.gif and 

www.env.gov.bc.ca/air/climate/indicat/images/appendCO2.gif) 

 

 

 

Figure 4 :    The average temperature of the earth and the concentration level of CO2 in the earth’s 

atmosphere during the ‘recent’ history of the last 100 years.  (With permission from the web sites shown 

in the figure.)   

 

 

Figure 5 :    Clear anti-correlation between the concentrations of ozone, O3, and the chlorine monoxide 

radical, ClO⋅, in the stratosphere above the Antarctic during their Spring season of 1987.  (With 

permission from Anderson et al.,  J. Geophys. Res. D., (1989) 94, 11465 ) 

 

 

 

 

 

 

  

http://www.env.gov.bc.ca/air/climate/indicat/images/appendnhtemp.gif
http://www.env.gov.bc.ca/air/climate/indicat/images/appendCO2.gif
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