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Concomitant Mutations in the P450 Oxidoreductase
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Endocrinology, and Diabetology (M.S.-C.), The Children’s Memorial Health Institute, 04-730 Warsaw,
Poland; Department of Paediatrics (J.D.D., I.A.H.), Addenbrooke’s Hospital, University of Cambridge,
Cambridge DB2 2OO, United Kingdom

Context: Undervirilization in males, i.e. 46,XY disordered sex development (46,XY DSD), is commonly
caused by either lack of androgen action due to mutant androgen receptor (AR) or deficient androgen
synthesis, e.g. due to mutations in 17�-hydroxylase (CYP17A1). Like all other microsomal cytochrome
P450 (CYP) enzymes, CYP17A1 requires electron transfer from P450 oxidoreductase (POR).

Objective: The objective of the study was to analyze the clinical and biochemical phenotype in a
46,XY individual carrying concomitant POR and AR mutations and to dissect their impact on phe-
notypic expression.

Methods: We characterized the clinical and biochemical phenotype, genetic identification, and
functional analysis of POR missense mutation by yeast micrososomal coexpression assays for
CYP17A1, CYP21A2 and CYP19A1 activities.

Results: The patient presented neonatally with 46,XY DSD and was diagnosed as partial androgen
insensitivity syndrome carrying a disease causing AR mutation (p.Q798E). She was raised as a girl
and gonadectomized at the age of 4 yr. At 9 yr progressive clitoral enlargement prompted reas-
sessment. Urinary steroid analysis was indicative of POR deficiency, but surprisingly androgen
production was normal. Genetic analysis identified compound heterozygous POR mutations
(p.601fsX12/p.Y607C). In vitro analysis confirmed p.Y607C as a pathogenic mutation with differ-
ential inhibition of steroidogenic CYP enzymes.

Conclusion: Both mutant AR and POR are likely to contribute to the neonatal presentation with
46,XY DSD. Virilization at the time of adrenarche appears to suggest an age-dependent, dimin-
ishing disruptive effect of both mutant proteins. This case further highlights the importance to
assess both gonadal and adrenal function in patients with 46,XY DSD. (J Clin Endocrinol Metab 95:
3418–3427, 2010)
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Abbreviations: AIS, Androgen insensitivity syndrome; An, androsterone; AR, androgen recep-
tor; CYB5, cytochrome b5; CYP, cytochrome P450; DHEA, dehydroepiandrosterone; DHEAS,
dehydroepiandrosterone sulfate; DSD, disordered sexual development; Et, etiocholanolone;
GC/MS,gaschromatography/massspectrometry;hCG,humanchorionicgonadotropin;17HP,
17-hydroxypregnanolone; Km, Michaelis-Menten constant; NADPH, nicotinamide adenine
dinucleotide phosphate; 17OHP, 17-hydroxyprogesterone; ORD, POR deficiency; PAIS, partial
AIS; PD,pregnanediol; POR,P450oxidoreductase; PT,pregnanetriol; 5-PT,pregnenetriol; THA,
tetrahydro-11-dehydrocorticosterone; THB, tetrahydrocorticosterone; THE, tetrahydrocorti-
sone; THF, tetrahydrocortisol; Vmax, maximal velocity; WT, wild type.
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Disordered sexual development (DSD) in genetic
males (46,XY DSD) can be due to a number of

distinct mutations compromising different stages of sex
determination and differentiation (1, 2). The most com-
mon cause of 46,XY DSD is androgen insensitivity syn-
drome (AIS) due to inactivating mutations of the an-
drogen receptor (AR) gene, which has an incidence of
1:20,000 life births (2). More than 300 mutations are
listed in the AR database (http://androgendb. mcgill.ca)
leading to different degrees of androgen resistance from
azoospermia to complete androgen insensitivity syn-
drome. Missense and nonsense mutations in specific
regions of the AR gene have distinct effects on AR func-
tion and can affect ligand binding, transactivation or
N-terminal/C-terminal interaction of the molecule (3–
5). However, the in vitro assessment of AR function may
not always match the observed clinical phenotype in
patients with AIS, with variable degrees of underviril-
ization in different individuals carrying the same dis-
tinct AR mutation (2).

Upstream of AR action, androgen synthesis may be
affected and result in 46,XY DSD (6). Five enzymes and
six catalytic reactions are required for the conversion of
cholesterol to the most potent androgen, 5�-dihy-
drotestosterone. Mutations in the genes required for
these conversions (CYP11A1, CYP17A1, HSD17B3,
HSD3B2, and SRD5A2) represent distinct causes of
46,XY DSD, manifesting with a broad phenotypic spec-
trum (1, 7). The identification of inactivating mutations
in the P450 oxidoreductase gene (POR) (8, 9) has dem-
onstrated that sex steroid synthesis may also be dis-
rupted by mutations in cofactor enzymes. POR transfers
electrons from nicotinamide adenine dinucleotide phos-
phate (NADPH) to all microsomal cytochrome P450
(CYP) enzymes, including key enzymes of glucocorti-
coid andsexsteroidsynthesis,21-hydroxylase (CYP21A2),
17�-hydroxylase/17,20-lyase (CYP17A1), and aro-
matase (CYP19A1). Intriguingly, affected individuals
of both sexes may present with DSD. Whereas loss of
17�-hydroxylase and particularly 17,20-lyase activity
in POR deficiency (ORD) readily explains the under-
virilization in male newborns, it remains more myste-
rious why female patients present with 46,XX DSD.
This may be explained by the presence of an alternative
pathway to androgens, circumventing the classic an-
drogen pathway via dehydroepiandrosterone (DHEA)
(8), which has been previously identified in the tammar
wallaby pouch young (10).

Here we present an individual with 46,XY DSD and
concomitant, disease-causing mutations in the AR and
POR genes, both fully established causes of underviriliza-
tion in their own right.

Subjects and Methods

Case reports
The patient was born at term after an uneventful pregnancy

as the first child of nonconsanguineous parents of Polish origin
[birth weight 2850 g (�1.3 SD score), length 52 cm (0.89 SD

score), Apgar score 5/8]. The postnatal adaptation went well and
no neonatal complication occurred. However, at birth, the at-
tending pediatrician noticed ambiguous genitalia. The external
genitalia looked predominantly female, but the clitoris was en-
larged and a common urogenital sinus and blind ending vaginal
pouch were present. The gonads were palpable within the in-
guinal canal. No other abnormalities or malformations were
noted. The karyotype was 46, XY.

At the age of 14 d, a slightly elevated serum 17-hydroxypro-
gesterone (17OHP) was measured (Table 1). Circulating andro-
gens and androgen precursors were low and testosterone showed
a poor response to human chorionic gonadotropin (hCG) stim-
ulation, whereas the gonadotrophin response to LHRH stimu-
lation was normal (Table 1). Urinary steroid profiling by gas
chromatography/mass spectrometry (GC/MS) at the age of 14 d
showed undetectable androsterone, normal levels of fetal adre-
nal zone steroids, normal cortisol and 17OHP metabolite excre-
tion, and no evidence of 5�-reductase deficiency.

The initial presentation with 46,XY DSD had prompted ge-
netic analysis of the AR gene, which revealed the hemizygous
mutation p.Q798E. Despite the finding of low circulating an-
drogens, the diagnosis of partial AIS (PAIS) was made. The pa-
tient was assigned female gender and underwent bilateral re-
moval of the inguinal gonads at the age of 4 yr; histopathological
examination identified the removed tissue as immature testis.

Follow-up was inconsistent due to poor clinic attendance.
However, at the age of 9 yr, the patient presented with progres-
sive clitoral enlargement over the preceding 18 months. At ex-
amination, no other external signs of puberty were noticed (Tan-
ner stages PH1, B1, A1); clitoral length was 3 cm. Except for the
bilateral gonadectomy, no genital reconstruction surgery had
been performed yet, largely due to parental doubts about the
gender identification of her daughter (male hobbies and roles,
aggressive behavior). Psychological assessment including thor-
ough evaluation of her gender preference was offered but de-
clined by the parents. Her growth chart showed normal linear
growth along the 50th percentile, and the bone age was signif-
icantly delayed (�3 yr).

Hormonal assessment again revealed mildly elevated serum
17OHP. However, DHEA sulfate (DHEAS) levels were raised
slightly above the age-specific reference ranges of both girls and
boys (Table 1). Serum testosterone was below sensitivity of the
used RIA (Table 1). Urinary steroid profiling with GC/MS was
performed and showed a profile suggestive of combined inhibi-
tion of 21-hydroxylase and 17�-hydroxylase activities and thus
indicative for ORD (for detailed analysis see Results). A short
cosyntropin test revealed a normal baseline cortisol but an im-
paired cortisol response to ACTH stimulation (Table 1). Subse-
quently hydrocortisone replacement therapy for intercurrent
stress, illness, and surgery was recommended, and the patient
and parents were educated accordingly.

Urinary steroid metabolite analysis
Analysis of urinary steroid metabolite excretion was per-

formed as described previously by a quantitative GC/MS selected
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ion-monitoring method (11). In brief, steroids were enzymatically
released from conjugation and, after extraction, chemically deri-
vatized before GC/MS selected ion-monitoring analysis. Steroids
quantified included corticosterone metabolites [tetrahydrocortico-
sterone (THB), 5�THB, tetrahydro-11-dehydrocorticosterone
(THA), tetrahydro-deoxycorticosterone (TH-DOC)], the pro-
gesterone metabolite pregnanediol, 17-hydroxyprogesterone metabo-
lites[pregnanetriol(PT),17-hydroxypregnanolone(17HP)],the17HP
metabolite pregnenetriol (5-PT), the 21-desoxycortisol metabolite
pregnanetriolone, cortisol metabolites [tetrahydrocortisol (THF),
5�THF, and tetrahydrocortisone (THE)], and androgen metabolites
[androsterone (An) and etiocholanolone (Et), DHEA, and 16-hy-
droxy-DHEA (16-OH DHEA)].

After quantification of steroid metabolites by GC/MS, we
calculated the following substrate to product ratios to determine
the approximate in vivo net activity of specific steroidogenic
enzymes: corticosterone over cortisol metabolites (17�-hydrox-
ylase; (THA�THB�5�THB)/(THF�5�THF�THE)], 17-hy-
droxyprogesterone over androgen metabolites [17,20-lyase;
(17HP�PT)/(An�Et)], 17OHP over cortisol metabolites [21-
hydroxylase (100 � pregnanetriolone/(THF�5�THF�THE)],
and the ratio of progesterone over cortisol metabolites [com-
bined 21-hydroxylase and 17-hydroxylase activities, i.e. specific
for ORD; PD/(THF�5�THF�THE)]. These diagnostic ratios
were compared with ratios obtained from urine analysis in a
normal age-matched female reference cohort (n � 10).

Genetic analysis
DNA sequencing analysis was carried out with approval of

the local research ethics committee after obtaining informed con-
sent from patients and their parents. Direct sequencing of the
coding region of the P450 oxidoreductase gene including 15

exons and exon-intron junctions (8) and exon 8 of the androgen
receptor gene (3, 12) was performed as previously described.
Sequencing results were analyzed using Lasergene software
(DNASTAR Inc., Madison, WI), and mutation numbering was
carried out referring to the appropriate National Center for Bio-
technology Information (Bethesda, MD) reference sequences
[P450 oxidoreductase, NG_008930.1 (genomic; A of the ATG
translation initiation codon is �1 bp) and NP_000932 (protein);
the coding sequence variant of the AR was numbered according to
M20132.1 (where A of the ATG translation initiation codon is
�363 bp]; the protein mutation was numbered relative to
AAA51729.1.

In vitro enzymatic activity assays
The cDNA of the POR missense mutant p.Y607C POR, gen-

erated by site-directed mutagenesis, was cloned into the yeast
expression vector pDE2 and used for microsomal coexpression
assays in comparison with wild-type (WT) POR as previously
described (13). In brief, yeast microsomes coexpressing WT or
mutant p.Y607C POR and WT human CYP17A1, CYP21A2,
and CYP19A1, respectively, were incubated with 0.5–5 �M pro-
gesterone or 17-hydroxypregnenolone for 17�-hydroxylase and
17,20-lyase activities of CYP17A1, 0.5–5 �M progesterone for
21-hydroxylase (CYP21A2) activity, and 50–500 nM andro-
stenedione for aromatase (CYP19A1) assays. Steroids were
added to the final reaction volume of 200 �l in 4 �l ethanol also
containing 10,000 cpm [H3] steroid substrate (all 55.4 Ci/mol).
Purified recombinant cytochrome b5 (CYB5; Invitrogen, Paisley,
UK) was added in a final concentration of 10 pM to the 17,20-
lyase assays. All reactions were initiated by the addition of 200
nM NADPH and subsequently incubated at 37 C. Steroids were
extracted with dichloromethane and separated by thin-layer

Table 1. Hormonal assessment in the patient at 1–2 months and at 9 yr

1–2 months 9 yr
17OHP (nmol/liter)

At baseline 9.38 (1.8–7.5)a 37.9 (�6)
60 min after ACTH 250 �g/m2 iv — 47.2

Cortisol (nmol/liter)
At baseline — 391 (150–450)
60 min after ACTH 250 �g/m2 iv — 494 (�550)

DHEAS (�mol/liter) 0.23 (f: 0.04–1.32)b

(m: 0.04–1.96)
2.49 (f: 0.23–2.37)

(m: 0.42–2.13)
Androstenedione (nmol/liter)

At baseline 0.41 (f: 0.7–1.9)
(m: 1.3–4.25)

0.73 (f: 0.3–1.2)
(m: 0.2–2.8)

4 days after hCG 2000 IU/m2 2.15 —
Testosterone (nmol/liter)

At baseline �0.20 (f: 0.17–0.40)
(m: 1.4–8.2)

�0.17 (f: 0.17–0.30)
(m: 0.15–0.65)

4 days after hCG 2000 IU/m2 2.15 —
ACTH (pg/ml) — 50.9 (10–60)
LH (U/liter)

At baseline 0.4 (0.1–4) —
60 min after LHRH 75 �g/m2 iv 3.7 (2–5 fold of baseline) —

FSH (U/liter)
At baseline 2.0 (0.1–4) —
60 min after LHRH 75 �g/m2 iv 6.7 (2–3 fold of baseline) —

Bilateral gonadectomy had been carried out at the age of 4 yr. —, Not measured.
a Age-specific normal reference range.
b Age-specific reference ranges for androgens are listed for both girls (f) and boys (m).
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chromatography on PE SIL G/UV silica gel plates (Whatman,
Maidstone, UK) in a 3:1 chloroform to ethyl acetate solvent
system (for aromatase assays 12:1 dichloromethane/acetone),
and quantified by thin-layer chromatography scanner analysis
(Bioscan 2000 image analyzer; Lablogic, Sheffield, UK). The
data represent the results of three independent experiments car-
ried out in triplicate and are expressed as mean � SEM.

Microsomal protein quantification was performed using the
Bradford method (Bio-Rad, Hemel-Hempstead, UK), and the
expression of similar amounts of protein was confirmed by West-
ern blotting as previously described (13), using antibodies to
human POR (Abcam, Cambridge, UK), human CYP17A1 (Santa
Cruz Inc., Heidelberg, Germany), human CYP19A1 (Abcam),
and CYP21A2 (Abcam).

Kinetic parameters were assessed by nonlinear regression, using
theMichaelis-MentenequationtodeterminetheMichaelis-Menten
constant (Km) and maximal velocity (Vmax). Catalytic efficiency
was defined as the ratio Vmax to Km and expressed as percentage of
WT activity. Calculation of enzyme kinetic parameters and subse-
quent statistical analysis was performed using curve-fitting soft-
ware (Enzfitter 2.0.9.1; Biosoft, Cambridge, UK).

Results

In vivo steroidogenesis as assessed by urinary
steroid profiling

GC/MS analysis of urinary steroid metabolite excretion
in our patient at the age of 9 yr revealed a pattern indicative
of ORD, with diagnostic ratios demonstrating combined
21-hydroxylase, 17�-hydroxylase, and 17,20-lyase inhi-
bition (Fig. 1, A–D). 21-Hydroxylation as the ratio of the
21-deoxycortisol metabolite pregnanetriolone over corti-

sol metabolites was significantly compromised compared
with age-specific controls (Fig. 1A). Similarly, 17�-hy-
droxylation reflected by the ratio of corticosterone over
cortisol metabolites was significantly impaired (Fig. 1B).
17,20-Lyase activity, as assessed by the ratio of 17OHP
metabolites over active androgen metabolites was also
compromised (Fig. 1C). Combined inhibition of 17�-hy-
droxylation and 21-hydroxylation, the hallmark bio-
chemical finding in ORD, was reflected in our patient by
a markedly increased ratio of progesterone over cortisol
metabolites (Fig. 1D).

Twenty-four-hour urinary androsterone and etiochol-
anolone, the main metabolites of androstenedione, testos-
terone, and dihydrotestosterone, were within the age-spe-
cific mid-normal range (Fig. 1E). The excretion of the
17HP metabolite 5-PT and also DHEA were increased
(Fig. 1E), indicative of up-regulation of adrenal androgen
production. The corticosterone metabolites THB,
5�THB, and THA were increased, and the excretion of
free cortisol was decreased, reflecting 17�-hydroxylase
and 21-hydroxylase inhibition, respectively.

Sequencing analysis
Sequencing of the coding region of the POR gene re-

vealed compound heterozygosity for two POR mutations
(Fig. 2A). We identified a deletion of guanine in exon 13
(g.32062delG) resulting in a stop codon and subsequent
premature truncation of the POR protein 12 amino acids
after the frameshift (p.E601fsX12). Second, we found a

FIG. 1. In vivo steroidogenic enzyme activity in the patient at the age of 9 yr as determined by diagnostic substrate to product ratios (A–D) and
total excretion (E) of 24-h urinary steroid metabolites measured by GC/MS and shown in comparison with an age-matched reference cohort (n �
10). Box plots represent interquartile ranges (25th to 75th percentile), whiskers the fifth and 95th percentile, respectively, of the normal reference
cohort; the patient’s results are represented by a closed circle. For steroid abbreviations and definition of steroid substrate/product ratios, please
see Subjects and Methods.
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missense mutation in exon 14 (g.32171A�G) changing
tyrosine at amino acid position 607 to cysteine (p.Y607C).
Segregation analysis demonstrated that the p.Y607C mu-
tation is located on the maternal allele, whereas the frame-
shift mutation is of paternal origin (Fig. 2B).

We confirmed the presence of a missense mutation in
the AR gene by direct sequencing, a glutamine to glutamic
acid change (c.2754C�G), resulting in a missense muta-
tion in position 798 within exon 6 of the AR protein
(p.Q798E) (Fig 3C). This mutation was found in the pa-
tient and the mother.

In vitro assessment of steroidogenic activities
We assessed the impact of the maternal p.Y607C POR

mutation on steroidogenic microsomal CYP enzymes us-
ing yeast microsomal coexpression of WT or mutant POR
with CYP17A1, CYP21A2 or CYP19A1.

p.Y607C POR decreased catalytic efficiencies of all
three enzymes compared with WT protein (Fig. 3 and Ta-

ble 2). However, a differential pattern of inhibition was
observed. 17�-Hydroxylase activity of CYP17A1 showed
significant inhibition with a residual catalytic efficiency of
56% compared with WT (Fig. 3A and Table 2). CYP17A1
17,20-lyase activity was also significantly compromised
when looking at the classic pathway, with only 43% re-
sidual activity for the conversion of 17-hydroxypreg-
nenolone to DHEA, whereas assessment of 17,20-lyase
activity within the proposed alternative pathway demon-
strated moderate impairment only, with 66% residual ac-
tivity for the conversion of 5�-pregnanediolone to andro-
sterone (Fig. 3A and Table 2).

In contrast to the pronounced inhibition of 17�-hy-
droxylase activity, the POR mutant p.Y607C had only a
minor effect on 21-hydroxylation, with 79% residual ac-
tivity (Fig. 3B and Table 2). CYP19A1 aromatase activity
was markedly decreased when coexpressed with p.Y607C
POR with 56% residual activity compared with WT POR

FIG. 2. Results of genetic analysis. A, Electropherogram depicting the compound heterozygous POR mutations in our patient. The deletion of the
guanine in exon 13 (g.32,062delG) and the missense mutation in exon 14 (32,171 A�G) of the POR gene are marked by black arrows. The
structure of the POR protein and the approximate location of the mutations are indicated in the schematic representation of the POR protein
including its three functional domains, which bind the three partners of the electron transfer chain, FMN (flavin mononucleotide), FAD (flavin
adenine dinucleotide), and NADPH. B, Pedigree of the index family with segregation analysis of the two identified POR mutations. C,
Electropherogram depicting the missense mutation in exon 6 of the AR gene (c.2754C�G) marked with a black arrow. The translational effect is
indicated in the schematic graph representing the AR protein including its functional domains TAD (transactivation domain), DBD (DNA binding
domain), and LBD (ligand binding domain). hAR, Human AR.
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(Fig. 3C and Table 2). Western blotting determined equal
amounts of POR and CYP enzyme protein in all used mi-
crosome preparations (Fig. 3, A–C).

Discussion

To our knowledge, this is the first report of combined
ORD and AIS. At birth, our patient presented with severe

46,XY DSD prompting female gender assignment and bi-
lateral gonadectomy following the diagnosis of AIS. How-
ever, at the age of 9 yr, i.e. around the time of adrenarche,
progressive clitoral enlargement and near-normal andro-
gen levels were detected.

The identified AR mutation, p.Q798E, has been pre-
viously associated with the clinical phenotype of PAIS (3,
12, 14–16). Interestingly, the same mutation was also

FIG. 3. Kinetic analysis of steroidogenic enzyme activities. Lineweaver-Burk plots of steroidogenic activities as assessed by incubation of yeast
microsomes coexpressing human WT or mutant p.Y607C POR with human CYP17A1 (A), CYP21A2 (B), or CYP19A1 (C) with either 0.5–5 �M

progesterone (for 17�-hydroxylase and 21-hydroxylase activities), 0.5–5 �M 17hydroxypregnenolone (for 17,20-lyase activity in the classic
pathway), 0.5–5 �M 5-pregnanediolone (for 17,20-lyase activity in the alternative pathway), or 50–500 nM androstenedione (for aromatase
activity). Representative Western blots demonstrate equal expression of POR and the respective CYP enzyme in the microsomal preparations used.
AT, Androsterone; DOC, 11-deoxycortiocosterone; E1, estrone; A, androstenedione; 17Preg, 17-hydroxypregnenolone; 5pdiol, 5alpha-pregnanediolone;
Prog, progesterone.
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identified in three patients with azoospermia but no evi-
dence of 46,XY DSD (17–19). This phenotypic variability
currently remains unexplained. The p.Q798E mutation is
located in the middle of the AR ligand binding domain,
residing in the loop between helix 7–8. Two in vitro stud-
ies failed to demonstrate impaired AR ligand binding for
p.Q798E (3, 17). Furthermore, there was no significant
impairment of N-/C-terminal interaction, found to be an
explanation for the phenotype in some patients with PAIS
(5). This is remarkable as mutations in the AR ligand bind-
ing domain usually have significant functional impact. Lu-
ciferase reporter assays for p.Q798E AR function have
shown reduced promoter transactivation in vitro (3, 5, 15,
17). Of note, its transactivation is restored back to WT
activity with increasing androgen concentrations (5, 17),
suggesting that increased availability of androgens could
enhance mutant p.Q798E AR action. However, in the pre-
viously identified four individuals with p.Q798E no pro-
gressive virilization at time of adrenarche or puberty has
been reported.

Whereas patients with AIS due to AR mutations usually
have high normal or increased androgen levels, our patient
presented neonatally with very low circulating androgens.
This suggests an androgen biosynthesis defect. Indeed, this
was supported by the results of urinary steroid metabolite
analysis at the age of 9 yr, which were indicative of ORD.
This diagnosis was confirmed by direct sequencing, re-
vealing compound heterozygous mutations. The novel
POR frameshift mutation p.E601fsX12 is highly likely to
abolish function as previous studies have shown that a
premature stop codon result in loss of activity in the
p.R616X POR mutant (20, 21). This indicates that early
truncation of POR mRNA may result either in nonsense
mediated RNA decay or that the integrity of the C termi-
nus of the POR protein is crucial for electron transfer. The

missense mutation p.Y607C POR has been previously
identified when screening a large cohort of healthy Amer-
icans (22). However, this is the first time that this mutation
has been found in a clinically affected ORD patient and
hence has been confirmed as disease causing. Our coexpres-
sion assays with p.Y607C POR demonstrated only a mild
impairment of 21-hydroxylase activity but significant inhi-
bition of 17�-hydroxylase. Combined inhibition of both ac-
tivities is consistent with the biochemical finding of normal
baseline cortisol but impaired cortisol response to cosyn-
tropin. Furthermore, preferential inhibition of 17�-hydrox-
ylase over 21-hydroxylase explains the observation of min-
eralocorticoid metabolite accumulation in our patient, as
previously described for p.A287P POR (13).

However, one of the most striking features in our pa-
tient is the reemergence of androgen production at the age
of 9 yr, resulting in progressive clitoral hypertrophy, a
phenomenon not yet in patients with ORD (8, 9, 23). This
suggests that the disruptive effect of mutant POR on
17,20-lyase activity, resulting in low or nondetectable an-
drogens during the neonatal period, had been partially
overcome at time of adrenarche. In vitro assays suggested
compromised 17,20-lyase activity due to p.Y607C for
both the classic and alternative pathway, although to a
lesser degree for the latter. However, clinical biochemical
assessment certainly suggested androgen production via
the classic pathway, with high-normal circulating concen-
trations of DHEAS and androstenedione, and urinary an-
drogen metabolite specific for the alternative androgen
pathway, e.g. 5�-17HP, were not found to be elevated in
our patient.

It is obvious that the observed increase in androgen
production was of adrenal origin because the patient had
undergone bilateral gonadectomy 5 yr earlier. It has been
previously reported that adrenarche and gonadarche are

TABLE 2. Kinetic analysis of the POR mutant p.Y607C according to yeast microsomal coexpression assays of either
WT or mutant POR with human CYP17A1, CYP21A2, and CYP19A1

CYP17A1 CYP21A2 CYP19A1

17�-
Hydroxylase

Prog 3 17OHP

17,20-Lyase
(classic)

17Preg 3 DHEA

17,20-Lyase
(alternative)

5pdiolone 3 An
21-Hydroxylase

Prog 3 DOC
Aromatase

A 3 E1
Vmax (pmol/�g � min)

WT 0.24 � 0.02 0.22 � 0.00 0.27 � 0.01 0.30 � 0.02 0.014 � 0.001
p.Y607C 0.21 � 0.02 0.13 � 0.01 0.16 � 0.00 0.27 � 0.02 0.010 � 0.001

Km (�M)
WT 0.26 � 0.10 0.71 � 0.04 0.85 � 0.14 0.24 � 0.08 180 � 44
p.Y607C 0.41 � 0.13 0.95 � 0.11 0.75 � 0.06 0.27 � 0.10 262 � 54

Catalytic efficiency Vmax/Km (% WT)
p.Y607C 56 � 3 44 � 4 66 � 3 79 � 2 56 � 3

All assays were carried out in three independent triplicate experiments; results are presented as means � SEM. For CYP17A1, both 17�-hdyroxylase and
17,20-lyase activities within the classic and alternative androgen pathway were determined. Prog, Progesterone; 17Preg, 17-hydroxypregnenolone;
5pdiolone, 5-pregnanediolone; DOC, 11-deoxycortiocosterone; A, androstenedione; E1, estrone.
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distinct events and happen independently of each other
(24, 25), and our patient certainly illustrates this. Adren-
arche is generally characterized by a marked increase of
circulating DHEA and DHEAS levels between 6 and 8 yr
of age, associated with pubertal hair growth, i.e. pubarche
(26, 27). At the time of adrenarche, there is a physiological
increase in the expression of the cofactor enzyme CYB5
within the adrenal zona reticularis, the major site of ad-
renal androgen production (28, 29). CYB5 expression is
low in preadrenarchal adrenals but steadily increases after
5 yr of age to reach a plateau at the age of 13 yr (27). CYB5
serves as an allosteric facilitator for the interaction of POR
and CYP17A1, stabilizing their interaction by forming a
CYP-POR-CYB5 complex (30). There is currently no in-
formation on the exact interaction site of CYB5 with POR.
Based on three-dimensional modeling, p.Y607C can be
predicted to disrupt the binding of NADPH to the POR
NADPH-binding domain (22, 31). However, if one as-
sumes that the hydrophobic surface area near p.Y607C
could potentially be the interaction area with CYB5, it is
conceivable that increasing concentrations of CYB5 at
time of adrenarche could partially overcome the effect of
the mutant. All microsomal assays in this study were car-
ried in the presence of excess CYB5 concentrations, and
consequently, it is likely that the disruptive effect of
p.Y607C POR on 17,20-lyase activity would certainly be
more significant in a milieu of relative CYB5 deficiency,
i.e. before adrenarche. Intriguingly, it was recently dem-
onstrated in the domestic ferret that the majority of gon-
adectomy-induced androgen-producing adrenal tumors
express CYB5, which is physiologically not present in nor-
mal ferret adrenals (32). Gonadectomy-induced adrenal
tumorigenesis has also been described in certain mouse
strains and increased LH stimulation and altered activin/
inhibin signaling have been implicated in the pathogenesis
(33–35). In humans, increased androgen production after
gonadectomy has not been reported, but if such a cross
talk between the gonadal and adrenal axes also exists, it
may contribute to the virilization observed in our patient.

Thus, we could speculate that the increase in both an-
drogen production and action at the time of puberty is
explained by a two-step model. First, the emerging CYB5
expression in the adrenal zona reticularis may ameliorate
the disruptive effect of p.Y607C POR, resulting in an in-
crease in 17,20-lyase activity and adrenal androgen pro-
duction during adrenarche. Second, increasing levels of
androgens could then potentially enhance the transacti-
vation capacity of the AR mutant p.Q798E, as previously
observed in vitro (5, 17). This subsequently results in im-
proved androgen action and the observed clitoral enlarge-
ment, which would represent phallic catch-up growth due
to increased androgen sensitivity in an individual with a

male genetic background, as observed previously in some
46,XY individuals with idiopathic micropenis (36). Of
note, virilization at puberty and the subsequent change of
gender identity is not uncommon in 46,XY DSD individ-
uals with HSD17B3 or SRD5A2 deficiencies who where
raised as girls (37–39). However, the mechanism in these
conditions is different because testicular-derived andro-
gens accumulate before the enzyme block (androstenedi-
one in HSD17B3 and testosterone in SRD2A2) and are
likely to be converted by other isoenzymes (38). The ob-
served biological response to a relatively sudden increase
in androgen levels in HSD17B3 and SRD5A2 deficiency
patients reflects the susceptibility of individuals with a
male karyotype to develop phenotypic virilization, similar
to our case.

In conclusion, our patient illustrates the close interac-
tion of factors involved in the regulation of androgen syn-
thesis and androgen action, respectively. Furthermore,
our case highlights that patients presenting with DSD also
require thorough work-up of the adrenal axis and vice
versa (40) to ensure that these patients are not exposed to
the unrecognized risk of life-threatening adrenal crisis,
which fortunately did not occur in our case until the con-
clusive diagnosis of adrenal insufficiency was established,
9 yr after the initial presentation with 46,XY DSD.
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