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The task of finding tropical eigenvectors and subeigenvec-
tors, that is non-trivial solutions to A ⊗ x = λ ⊗ x and 
A ⊗ x ≤ λ ⊗ x in the max-plus algebra, has been studied 
by many authors since the 1960s. In contrast the task of find-
ing supereigenvectors, that is solutions to A ⊗ x ≥ λ ⊗ x, 
has attracted attention only recently. We present a number of 
properties of supereigenvectors focusing on a complete charac-
terization of the values of λ associated with supereigenvectors 
and in particular finite supereigenvectors. The proof of the 
main statement is constructive and enables us to find a non-
trivial subspace of finite supereigenvectors. We also present an 
overview of key related results on eigenvectors and subeigen-
vectors.

© 2016 The Author. Published by Elsevier Inc. This is an 
open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Tropical linear algebra (also called max-algebra or path algebra) is an analogue of 
linear algebra developed for the pair of operations (⊕,⊗) where

a⊕ b = max(a, b)
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and

a⊗ b = a + b

for a, b ∈ R
def= R ∪{−∞}. This pair is extended to matrices and vectors as in conventional 

linear algebra. That is if A = (aij), B = (bij) and C = (cij) are matrices of compatible 
sizes with entries from R, we write C = A ⊕B if cij = aij ⊕ bij for all i, j and C = A ⊗B

if

cij =
⊕
k

aik ⊗ bkj = max
k

(aik + bkj)

for all i, j. If α ∈ R then α⊗A = (α⊗ aij). For simplicity we will use the convention of 
not writing the symbol ⊗. Thus in what follows the symbol ⊗ will usually not be used 
and unless explicitly stated otherwise, all multiplications indicated are in max-algebra.

The interest in tropical linear algebra was originally motivated by the possibility of 
dealing with a class of non-linear problems in pure and applied mathematics, operational 
research, science and engineering as if they were linear due to the fact that 

(
R,⊕,⊗

)
is a 

commutative and idempotent semifield. Besides the main advantage of using linear rather 
than non-linear techniques, tropical linear algebra enables us to efficiently describe and 
deal with complex sets [6], reveal combinatorial aspects of problems [5] and view a class of 
problems in a new, unconventional way. The first pioneering papers appeared in the 1960s 
[15,16,35], followed by substantial contributions in the 1970s and 1980s such as [17,23,
39,14]. Since 1995 we have seen a remarkable expansion of this research field following 
a number of findings and applications in areas as diverse as algebraic geometry [30] and 
[34], geometry [26], control theory and optimization [2], phylogenetic [33], modelling of 
the cellular protein production [4] and railway scheduling [24]. A number of research 
monographs have been published [2,7,24,28,29]. A chapter on max-algebra appears in a 
handbook of linear algebra [25] and a chapter on idempotent semirings is in a monograph 
on semirings [21].

Tropical linear algebra covers a range of linear-algebraic problems in the max-linear 
setting, such as systems of linear equations and inequalities, linear independence and 
rank, bases and dimension of subspaces, polynomials, characteristic polynomials, matrix 
equations, matrix orbits and periodicity of matrix powers [2,7,17,24]. Among the most 
intensively studied questions was the eigenproblem, that is the question, for a given square 
matrix A to find all values of λ ∈ R and non-trivial vectors x such that A ⊗ x = λ ⊗ x. 
This and related questions have been answered [17,23,20,3,19] with numerically stable 
low-order polynomial algorithms. The same is true about the subeigenproblem that is 
solution to A ⊗ x ≤ λ ⊗ x, which appears to be strongly linked to the eigenproblem (see 
Section 4). In contrast, until recently [12,38,31] almost no attention has been paid to the 
supereigenproblem that is solution to A ⊗x ≥ λ ⊗x, which is trivial for small values of λ
but in general the description of the whole solution set seems to be much more difficult 
than for the eigenproblem [38,31]. This fact triggers in particular the question of finding 
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finite supereigenvectors. It is the main aim of this paper to identify (in Theorem 5.8) 
all values of λ for which a given matrix A has finite supereigenvectors and to find such 
vectors.

In order to provide a complete picture the results on general and finite supereigenvec-
tors are compared with those for eigenvectors and subeigenvectors. Note that a theory 
of finite eigenvectors and subeigenvectors is well developed [17,7]. Note also that in the 
max-times setting, that is for the semifield (R+,max, .) finiteness corresponds to posi-
tivity.

We first give in Sections 2–4 a summary of the concepts and known results in tropical 
linear algebra that will be used in Section 5 to present the results on supereigenvectors.

2. Definitions and notation

Throughout the paper we denote −∞ by ε (the neutral element with respect to ⊕) 
and for convenience we also denote by the same symbol any vector, whose all components 
are −∞, or a matrix whose all entries are −∞. If a ∈ R then the symbol a−1 stands 
for −a. We assume everywhere that n ≥ 1 is an integer and denote N = {1, . . . , n}.

A vector or matrix are called finite if all their entries are real numbers. A square 
matrix is called diagonal if all its diagonal entries are real numbers and off-diagonal 
entries are ε. A diagonal matrix with all diagonal entries equal to 0 is called the unit 
matrix and denoted I. Obviously, AI = IA = A whenever A and I are of compatible 
sizes.

If A is a square matrix then the iterated product AA . . .A in which the symbol A
appears k-times will be denoted by Ak. By definition A0 = I.

It is easily proved that if A, B and C are of compatible sizes then:

A ≥ B =⇒ AC ≥ BC and CA ≥ CB. (1)

Tropical linear algebra often benefits from close links between matrices and digraphs. 
A digraph is an ordered pair D = (V, E) where V is a nonempty finite set (of nodes) and 
E ⊆ V × V (the set of arcs).

Let D = (V, E) be a digraph. A sequence π = (v1, . . . , vp) of nodes in D is called a 
path (in D) if p = 1 or p > 1 and (vi, vi+1) ∈ E for all i = 1, . . . , p −1. The number p −1
is called the length of π and will be denoted by l (π). If u is the starting node and v is 
the endnode of π then we say that π is a u − v path. If there is a u − v path in D then 
v is said to be reachable from u, notation u −→ v. Thus u −→ u for any u ∈ V .

A path (v1, . . . , vp) is called a cycle if v1 = vp and p > 1 and it is called an elementary 
cycle if, moreover, vi �= vj for i, j = 1, . . . , p − 1, i �= j. If there is no cycle in D then D
is called acyclic.

A digraph D is called strongly connected if u −→ v for all nodes u, v in D. A subdi-
graph D′ of D is called a strongly connected component of D if it is a maximal strongly 
connected subdigraph of D, that is, D′ is a strongly connected subdigraph of D and if D′
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is a subdigraph of a strongly connected subdigraph D′′ of D then D′ = D′′. Note that a 
digraph consisting of one node and no arc is strongly connected and acyclic; however, if 
a strongly connected digraph has at least two nodes then it obviously cannot be acyclic.

If D = (N, E) is a digraph and K ⊆ N then D[K] denotes the induced subgraph of D, 
that is

D[K] = (K,E ∩ (K ×K)).

A weighted digraph is D = (V,E,w), where (V,E) is a digraph and w is a real 
function on E. All definitions for digraphs are naturally extended to weighted digraphs. 
If π = (v1, . . . , vp) is a path in (V,E,w) then the weight of π is w(π) = w (v1, v2) +
w (v2, v3) + . . . + w (vp−1, vp) if p > 1 and ε if p = 1.

Given A = (aij) ∈ R
n×n the symbol DA will denote the weighted digraph (N,E,w)

where E = {(i, j) ; aij > ε} and w (i, j) = aij for all (i, j) ∈ E. The digraph DA is said to 
be associated with the matrix A. If π = (i1, . . . , ip) is a path in DA then we denote w(π)
by w(π, A) and it now follows from the definitions that w(π, A) = ai1i2+ai2i3+. . .+aip−1ip

if p > 1 and ε if p = 1.
If DA is strongly connected then A is called irreducible and reducible otherwise.
Given A ∈ R

n×n, the symbol λ(A) will stand for the maximum cycle mean of A, 
that is:

λ(A) = max
σ

μ(σ,A), (2)

where the maximization is taken over all elementary cycles in DA, and

μ(σ,A) = w(σ,A)
l (σ) (3)

denotes the mean of a cycle σ. With the convention max ∅ = ε the value λ (A) always 
exists since the number of elementary cycles is finite. However, it is easy to show [7] that 
λ (A) remains the same if the word “elementary” is removed from the definition. It can 
be computed in O

(
n3) time [27], see also [7]. Observe that λ (A) = ε if and only if DA

is acyclic.
Let A ∈ R

n×n and λ ∈ R. A cycle σ in DA is called λ-critical if μ(σ, A) = λ. We denote 
by Nc (A, λ) the set of λ-critical nodes, that is nodes on λ-critical cycles. The λ-critical 
digraph of A is the digraph CA with the set of nodes N ; the set of arcs, notation Ec (A), 
is the set of arcs of all λ-critical cycles. If i, j ∈ Nc (A, λ) belong to the same λ-critical
cycle then i and j are called λ-equivalent and we write i ∼λ j. Clearly, ∼λ constitutes 
a relation of equivalence on Nc (A, λ). The letter λ or prefix λ- will be omitted when 
λ = λ (A).

A matrix A ∈ R
n×n is called definite if λ(A) = 0 [13,17]. Thus a matrix is definite if 

and only if all cycles in DA are nonpositive and at least one has weight zero. It is easy to 
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check that λ(αA) = αλ(A) for any α ∈ R. Hence (λ(A))−1
A is definite whenever λ(A)

is finite. The matrix λ−1A for λ ∈ R will be denoted by Aλ.
The (tropical) column span of a matrix A will be denoted by span (A) that is for A

with columns A1, . . . , An

span (A) =
{∑⊕

i
αiAi;α1, . . . , αn ∈ R

}
.

We also define

span+ (A) =
{∑⊕

i
αiAi;α1, . . . , αn ∈ R

}
.

Given A ∈ R
n×n it is standard [17,2,24,7] in max-algebra to define the infinite series

A+ = A⊕A2 ⊕A3 ⊕ . . . (4)

and

A∗ = I ⊕A+ = I ⊕A⊕A2 ⊕A3 ⊕ . . . . (5)

The matrix A+ is called the weak transitive closure of A and A∗ is the strong transitive 
closure of A, also called the Kleene star.

It follows from the definitions that every entry of the matrix sequence{
A⊕A2 ⊕ . . .⊕Ak

}∞
k=0

is a nondecreasing sequence in R and therefore either it is convergent to a real number 
(when bounded) or its limit is +∞ (when unbounded). If λ(A) ≤ 0 then

A+ = A⊕A2 ⊕ . . .⊕Ak

and

A∗ = I ⊕A⊕A2 ⊕ . . .⊕Ak−1

for every k ≥ n and can be found using the Floyd–Warshall algorithm in O
(
n3) time [7]. 

If A is also irreducible and n > 1 then both A+ and A∗ are finite.
If λ ∈ R then (Aλ)+ will be shortly written as A+

λ , similarly (Aλ)∗. If λ = λ (A)
then the symbol Ã+

λ stands for the matrix consisting of the columns of A+
λ with indices 

j ∈ Nc (A). The following will be useful and is easily proved.

Lemma 2.1. (See [17,24,7].) Let A ∈ R
n×n, λ = λ (A) > ε and A+

λ = (γij). Then 
j ∈ Nc (A) if and only if γjj = 0.



P. Butkovič / Linear Algebra and its Applications 498 (2016) 574–591 579
Let S ⊆ R
n. The set S is called a tropical subspace if

αu⊕ βv ∈ S

for every u, v ∈ S and α, β ∈ R. The adjective “tropical” will usually be omitted.
If S ⊆ R

m is a finite set then as a slight abuse of notation we will denote by span (S)
the set span (A), where A is the matrix whose columns are exactly the elements of S. If 
span (S) = T then S is called a set of generators for T and T is called finitely generated.

Let v ∈ R
m. The max-norm or just norm of v is the value of the greatest component 

of v, notation ‖v‖; v is called scaled if ‖v‖ = 0. The set S is called scaled if all its elements 
are scaled.

The set S = {v1, . . . , vn} ⊆ R
m is called dependent if vk ∈ span{v1, . . . , vk−1, vk+1,

. . . , vn} for some k ∈ N . Otherwise S is independent.
Let S, T ⊆ R

m. The set S is called a basis of T if it is an independent set of generators 
for T . The following is of fundamental importance as it shows that every subspace has 
an essentially unique basis.

Theorem 2.2. (See [36,37,11,7].) Every non-trivial finitely generated subspace has a 
unique scaled basis.

Finally, for A ∈ R
n×n and λ ∈ R we denote

V (A, λ) =
{
x ∈ R

n;Ax = λx
}
,

V∗(A, λ) =
{
x ∈ R

n;Ax ≤ λx
}
,

V ∗(A, λ) =
{
x ∈ R

n;Ax ≥ λx
}
,

FV (A, λ) = {x ∈ R
n;Ax = λx} ,

FV ∗(A, λ) = {x ∈ R
n;Ax ≤ λx} ,

FV ∗(A, λ) = {x ∈ R
n;Ax ≥ λx} ,

Λ (A) =
{
λ ∈ R;V (A, λ) �= {ε}

}
.

The set Λ (A) or just Λ will be called the spectrum of A.

3. Known results on eigenvectors and subeigenvectors

The tropical eigenvalue–eigenvector problem (briefly eigenproblem) is the following:
Given A ∈ R

n×n, find all λ ∈ R (eigenvalues) and x ∈ R
n, x �= ε (eigenvectors) such 

that

Ax = λx.
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This problem has been studied since the work of R.A. Cuninghame-Green [16]. A full 
solution of the eigenproblem in the case of irreducible matrices has been presented by 
R.A. Cuninghame-Green [17,18] and M. Gondran and M. Minoux [22], see also N.N. 
Vorobyov [35]. The general (reducible) case was first presented by S. Gaubert [20] and 
R.B. Bapat, D. Stanford and P. van den Driessche [3]. See also [9] and [7].

Theorem 3.1. (See [16,17,22].) If A ∈ R
n×n is irreducible then Λ (A) = {λ (A)} and all 

eigenvectors of A are finite.

The value λ (A) is usually called the principal eigenvalue. For a matrix A to have 
finite eigenvectors it is not necessary that A is irreducible:

Theorem 3.2. (See [17].) Let A = (aij) ∈ R
n×n and λ (A) > ε. Then A has finite 

eigenvectors if and only if for every i ∈ N there is a j ∈ Nc (A) such that i → j. All 
finite eigenvectors (if any) are associated with λ = λ (A).

The following theorem identifies an essentially unique basis of the eigenspace of A
corresponding to the principal eigenvalue. Note that this statement for irreducible ma-
trices was already proved in [17]. The case when λ (A) = ε is trivial [7] and will not be 
discussed here.

Theorem 3.3. (See [1].) Suppose that A ∈ R
n×n

, λ = λ(A) > ε and g1, . . . , gn are the 
columns of A+

λ . Then

V (A, λ (A)) = span
(
Ã+

λ

)
and we obtain a basis of V (A, λ(A)) by taking exactly one gj for each equivalence class 
in (Nc(A),∼).

Reducible n × n matrices have up to n eigenvalues. In order to identify all of them 
A is transformed by simultaneous permutations of the rows and columns (which do not 
change the spectrum) to a Frobenius normal form (FNF)

A′ =

⎛⎜⎜⎜⎝
A11 ε . . . ε

A21 A22 . . . ε

. . . . . . . . . . . .

Ar1 Ar2 . . . Arr

⎞⎟⎟⎟⎠ , (6)

where A11, . . . , Arr are irreducible square submatrices of A′. This form is unique up to 
the order of the blocks and simultaneous permutations of the rows and columns within 
each block. If A is in the Frobenius normal form (6) then the corresponding partition 
subsets of the node set N of DA will be denoted as N1, . . . , Nr and called classes (of A). 
It follows that each of the induced subgraphs DA[Ni] (i = 1, . . . , r) is strongly connected 
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and an arc from Ni to Nj in DA exists only if i ≥ j. As a slight abuse of language we 
will also say for simplicity that λ(Ajj) is the eigenvalue of Nj .

If A is in the Frobenius normal form (6) then the reduced digraph, notation RA, is the 
digraph with nodes N1, . . . , Nr and the set of arcs {(Ni, Nj); (∃k ∈ Ni)(∃	 ∈ Nj)ak� > ε}. 
Observe that RA is acyclic and represents a partially ordered set. Any class that has no 
incoming (outcoming) arcs in RA is called initial (final), similarly for diagonal blocks. 
Recall that the symbol Ni −→ Nj means that there is a directed path from Ni to Nj

in RA (and therefore from each node in Ni to each node in Nj in DA).
It is intuitively clear that all eigenvalues of A in an FNF are among the unique eigen-

values of diagonal blocks. However, in general some of these values are not eigenvalues 
of A. The following key result appeared for the first time independently in the thesis [20]
and report [3], see also [7] and [9].

Theorem 3.4 (Spectral theorem). Let (6) be a Frobenius normal form of a matrix 
A ∈ R

n×n. Then

Λ(A) = {λ ∈ R; (∃j)λ = λ(Ajj) = max
Ni→Nj

λ(Aii)}.

Corollary 3.5. Every n ×n matrix A has up to n eigenvalues and the greatest eigenvalue 
is λ (A) (which will therefore also be denoted by λmax).

Note that if a diagonal block, say Ajj has λ (Ajj) ∈ Λ (A), it still may not satisfy 
the condition λ(Ajj) = maxNi→Nj

λ(Aii) and may not provide any eigenvectors. It is 
therefore necessary to identify blocks that satisfy this condition: If

λ(Ajj) = max
Ni→Nj

λ(Aii)

then Ajj (and also Nj or just j) is called spectral. Thus λ(Ajj) ∈ Λ(A) if j is spectral but 
not necessarily the other way round. We immediately deduce that all initial blocks as 
well as the blocks with maximum cycle mean λ (A) are spectral. The smallest eigenvalue 
of A that is

min Λ (A) = min {λ (Ni) ;Ni spectral}

will be denoted λmin.
We now explain how to find a basis of the eigenspace associated with a general eigen-

value λ ∈ Λ (A). Let A ∈ R
n×n be in the Frobenius normal form (6), N1, . . . , Nr be the 

classes of A and R = {1, . . . , r}. The case λ = ε is trivial [7] and will not be discussed 
here. Suppose that λ ∈ Λ(A), λ > ε and denote

I(λ) = {i ∈ R;λ(Ni) = λ,Ni spectral}.
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Note that λ(λ−1A) = λ−1λ(A) may be positive since λ ≤ λ(A) and thus A+
λ = (γij)

may now include entries equal to +∞. Let us denote

N ′
c(A, λ) =

⋃
i∈I(λ)

Nc(Aii, λ) =
{
j ∈ N ; γjj = 0, j ∈

⋃
i∈I(λ)

Ni

}
.

Theorem 3.6. (See [9,7].) Suppose that A ∈ R
n×n and λ ∈ Λ(A), λ > ε. Let g1, . . . , gn be 

the columns of A+
λ and Ã+

λ consist of gj , j ∈ N ′
c(A, λ). Then

V (A, λ) = span
(
Ã+

λ

)
and a basis of V (A, λ) can be obtained by taking exactly one gj, j ∈ N ′

c(A, λ) for each 
∼λ equivalence class.

Corollary 3.7. The spectrum Λ(A) and bases of V (A, λ) for all λ ∈ Λ(A) can be found 
in O(n3) time.

4. Subeigenvectors

If A ∈ R
n×n and λ ∈ R then a vector x ∈ R

n
, x �= ε satisfying

Ax ≤ λx (7)

is called a subeigenvector of A with associated subeigenvalue λ.
The question of existence of subeigenvectors and finite subeigenvectors has been stud-

ied for some time and the theorem below summarizes the main results. The case when 
λ (A) = ε is trivial [7] and will not be discussed here.

Theorem 4.1. (See [10,7].) Let A ∈ R
n×n

, λ (A) > ε. Then

(a) FV ∗ (A, λ) �= ∅ if and only if λ ≥ λ (A) and FV ∗ (A, λ) = span+ (A∗
λ) for λ ≥ λ (A).

(b) V∗ (A, λ) �= {ε} if and only if λ ≥ λmin and V∗ (A, λ) = span (G), for λ ≥ λmin, 
where G is the matrix consisting of the columns gj of the matrix A∗

λ with indices 
j ∈

⋃
i∈I∗(λ)

Ni, where

I∗(λ) = {i ∈ R;λ(Ni) ≤ λ,Ni spectral}.

It follows that bases of FV ∗ (A, λ) �= ∅ and V∗ (A, λ) �= {ε} can be found in O
(
n3)

time [32].
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5. Supereigenvectors

If A ∈ R
n×n and λ ∈ R then a vector x ∈ R

n
, x �= ε satisfying

Ax ≥ λx (8)

is called a supereigenvector of A with associated supereigenvalue λ.
In contrast to eigenvectors and subeigenvectors the questions of existence and full 

description are more difficult for supereigenvectors, although there is a trivial answer for λ
small enough as stated in the next proposition. In what follows we denote mini=1,...,n aii
by λ (A) or just λ. Clearly, λ (A) ≤ λmin.

Proposition 5.1. If λ ≤ λ then V ∗(A, λ) = R
n.

Proof. If λ ≤ aii for every i then for every x and every i we have

λ⊗ xi ≤ aii ⊗ xi ≤ (A⊗ x)i

and so λx ≤ Ax. �
In order to describe the values of λ associated with supereigenvectors we start with a 

necessary condition for finite supereigenvectors (which later turns out to be insufficient 
in general).

Lemma 5.2. If Ax ≥ λx, x finite then λ ≤ λ (A).

Proof. Take any i = i1 ∈ N . Then

λ + xi1 ≤ ai1i2 + xi2

for some i2 ∈ N . Similarly

λ + xi2 ≤ ai2i3 + xi3

for some i3 ∈ N and so on. By finiteness and by omitting, if necessary, a few first indices 
we get for some k:

λ + xik ≤ aiki1 + xi1 .

After adding up and simplifying we have

λ ≤ ai1i2 + . . . + aiki1
k

≤ λ (A) . �
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Given A ∈ R
n×n and non-empty sets J, K ⊆ N the symbol A (J,K) will denote the 

submatrix of A consisting of entries with row indices from J and column indices from K. 
The principal submatrix A (J, J) will be written briefly as A (J).

We are ready to characterize all λ associated with supereigenvectors. This result first 
appeared in [8] and then independently in [38].

Theorem 5.3. V ∗ (A, λ) �= {ε} if and only if λ ≤ λ (A).

Proof. Suppose first Ax ≥ λx, x �= ε. Let J = supp (x), then

A (J)x (J) ≥ λx (J) .

By Lemma 5.2 we have λ ≤ λ (A (J)) ≤ λ (A).
Suppose λ ≤ λ (A). Let x ∈ V (A, λ (A)) , x �= ε, then

A⊗ x = λ (A) ⊗ x ≥ λ⊗ x. �
Corollary 5.4. If λ (A) = ε and V ∗ (A, λ) �= {ε} then λ = ε and V ∗ (A, ε) = R

n.

The size of a minimal set of generators of V ∗(A, λ) can be exponentially large in terms 
of n [38]. An algorithm for finding a set of generators of V ∗(A, λ) has been presented 
in [38]. This method is incrementally polynomial. It can be decided about each generator 
whether it is an extremal (an element of an essentially unique basis, see Theorem 2.2) 
of V ∗(A, λ) in O

(
n3) time [31]. However, the question of finding a basis in an efficient 

way remains open.
The next two statements show that compared to eigenvectors there is a greater level 

of freedom in choosing infinite components for a supereigenvector and unlike for eigen-
vectors we can associate a supereigenvector with any cycle in DA.

Proposition 5.5. For every J ⊆ N, J �= ∅ there exists an x ∈ V ∗ (A, λ) , x �= ε, where 
λ = λ (A (J)) and x (N − J) = ε.

Proof. Let J ⊆ N, J �= ∅. Then by Theorem 3.4 there exists a z �= ε such that A (J) z =
λ (A (J)) z. Set x (J) = z and x (N − J) = ε. Hence

A⊗ x =
(

A (J, J) A (J,N − J)
A (N − J, J) A (N − J,N − J)

)(
x (J)
ε

)

=
(

λ (A (J))x (J)
A (N − J, J)x (J)

)

≥ λ (A (J))
(
x (J)
ε

)
= λ (A (J))x. �
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Proposition 5.6. If A ⊗ x ≥ λ (A (J))x, x �= ε, where J = supp (x) then there exists a 
critical cycle (i1, i2, . . . , ik) in DA(J) such that

A (C)x (C) = λ (A (J))x (C) , (9)

where C = {i1, i2, . . . , ik}.

Proof. If λ (A (J)) = ε then every cycle is critical and at least one component, say i, 
of A (J) ⊗ x is ε because A (J) has an ε row. Then we can take C = {i}.

Let us now suppose that λ (A (J)) > ε and denote λ = λ (A (J)). Let i1 ∈ J . Then

λ + xi1 ≤ max
j

(ai1j + xj) = ai1i2 + xi2

for some i2 ∈ J . Similarly we have

λ + xi2 ≤ max
j

(ai2j + xj) = ai2i3 + xi3

for some i3 ∈ J , and so on. By finiteness and by omitting, if necessary, a few first indices 
we get for some k:

λ + xik ≤ max
j

(aikj + xj) = aiki1 + xi1 .

After adding up and simplifying we have

λ ≤ ai1i2 + . . . + aiki1
k

≤ λ (A (J)) .

Hence none of the inequalities can be strict and (9) follows. �
Our main result is a full characterization of all values of λ associated with finite

supereigenvectors. Suppose that A is in an FNF (6). Recall that for i, j ∈ N the symbol 
i → j means that there is a path from i to j in DA and similarly Ni → Nj means that 
there is a path from Ni to Nj in RA. On the other hand Ni ⇒ Nj will mean that there 
is a path from Ni to Nj in RA containing only nodes Nt such that λt ≤ λj .

We denote

λ∗ (A) = min {λ (Ajj) ;Nj is a final class} .

We also use λ∗ for λ∗ (A) if appropriate. Note that in the above definition it does not 
matter whether Nj is spectral or not.

The following immediate corollary of Theorem 3.2 will be useful for proving our main 
result, Theorem 5.8 below. In both statements we assume that A ∈ R

n×n is in the FNF 
(6) with classes N1, . . . , Nr, R = {1, . . . , r} and the symbol λj , j ∈ R stands for λ (Ajj).
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Proposition 5.7. Let j ∈ R,

Mj = {i ∈ R;Ni ⇒ Nj} ,

Mj =
⋃

i∈Mj

Ni

and

B(j) = A (Mj) .

Then FV
(
B(j), λj

)
�= ∅.

Theorem 5.8. FV ∗ (A, λ) �= ∅ ⇐⇒ λ ≤ λ∗ (A).

Proof. Let Nj be final and λ (Ajj) = λ∗ (A). Let A ⊗ x ≥ λ ⊗ x, x finite. Then Ajj ⊗
x (Nj) ≥ λ ⊗ x (Nj) , x (Nj) finite and so by Lemma 5.2 λ ≤ λ (Ajj) = λ∗ (A).

For the converse it is sufficient to prove that FV ∗ (A, λ∗) �= ∅. Let j ∈ R be such 
that Nj is final and λ∗ = λj . By Proposition 5.7 (using the same notation) there exists 
a finite vector y(j) such that B(j) ⊗ y(j) = λj ⊗ y(j). Let A(1) = A, A(2) = A (N −Mj)
and l ∈ R be such that Nl is final in A(2) and λ∗ (A(2)) = λl. If Nl is also final in A(1)

then λl ≥ λj from the definition of λj . If Nl is not final in A(1) then Nl ⇒ Nj and so 
λl > λj (since otherwise l would have been included in Mj). In any case λl ≥ λj and 
again by Proposition 5.7 there exists a finite vector y(l) such that

B(l) ⊗ y(l) = λl ⊗ y(l).

Continue in this way with A(3) = A (N −Mj −Ml) and so on until some A(s) has a 
finite eigenvector – this is guaranteed to happen when B(s) consists of all the remaining 
parts of A.

This process creates a sequence of finite vectors y(j), y(l), . . . . Set x = (x1, . . . , xn)T

so that x (Mk) = y(k) for all sets Mk created in the process. Then x is finite and

A⊗ x = A⊗

⎛⎜⎜⎝
...

x (Mk)
...

⎞⎟⎟⎠

≥

⎛⎜⎜⎝
...

A (Mk) ⊗ x (Mk)
...

⎞⎟⎟⎠
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=

⎛⎜⎜⎝
...

λk ⊗ x (Mk)
...

⎞⎟⎟⎠

≥ λ∗ ⊗

⎛⎜⎜⎝
...

x (Mk)
...

⎞⎟⎟⎠ = λ∗ ⊗ x.

The last inequality follows because λk ≥ λ∗ for every k. �
It is easily seen that the identification of Mj in Proposition 5.7 can be done in 

polynomial time. Therefore the constructive proof above provides a method to find a 
non-trivial subset of a set of generators of finite supereigenvectors in polynomial time. 
If (in the notation of this proof) B is the n × t matrix (for some positive integer t) of 
the form ⎛⎜⎜⎜⎝

. . . ε ε

ε B̃
(j)
λj

ε

ε ε
. . .

⎞⎟⎟⎟⎠
then span+ (B) ⊆ FV ∗ (A, λ∗).

Remark 5.9. λ∗ (A) ranges over the whole discrete set {λ (Ajj) ; j ∈ R} and may be 
smaller or greater than λmin, or equal to λmin, for instance when

A =

⎛⎜⎝ α ε ε

0 2 ε

ε 0 1

⎞⎟⎠
then for any α ∈ R we have λ (A) = max (2, α) , λmin = 1 and λ∗ (A) = α.

Fig. 1 shows a comparison of values of λ associated with general/finite eigenvectors, 
subeigenvectors and supereigenvectors.

We conclude with an example. Let A be the matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
5

1
0 0 0 2

0 0 −1 1
0 −1 −2

0 0 6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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Fig. 1. Values of λ with associated eigenvectors, subeigenvectors and supereigenvectors.

where (and in the matrices below) all missing entries are ε. This matrix is in an FNF 
with n = 7, r = 6, Ni = {i} for i = 1, 2, 3, 4, N5 = {5, 6} and N6 = {7}. Clearly, 
λ1 = 3, λ2 = 5, λ3 = 1, λ4 = 2, λ5 = 0, λ6 = 6, Λ (A) = {5, 2, 0, 6}, λmax = λ (A) = 6, 
λmin = 0, λ∗ (A) = 1 = λ (N3), λ (A) = −2. Initial classes are N5, N6, final classes are 
N1, N2 and N3. The algorithm in the proof chooses first j = 3. Hence M3 = {3, 5}, 
M3 = {3, 5, 6}, λ3 = 1 and

B(3) = A ({3, 5, 6}) =

⎛⎜⎝ 1
−1 1

0 −1 −2

⎞⎟⎠ .

We then get

B
(3)
λ3

=

⎛⎜⎝ 0
−2 0

−1 −2 −3

⎞⎟⎠ ,
(
B

(3)
λ3

)+
=

⎛⎜⎝ 0
−1 −2 0
−1 −2 −2

⎞⎟⎠
and

B̃
(3)
λ3

=

⎛⎜⎝ 0
−1
−1

⎞⎟⎠
since only the first column is critical. Hence the eigenspace of B(3) (in which all vectors 
are finite) is the set of multiples of y(3) = (0,−1,−1)T .

In the next iteration

A(2) =

⎛⎜⎜⎜⎝
3

5
0 0 2
0 6

⎞⎟⎟⎟⎠ ,



P. Butkovič / Linear Algebra and its Applications 498 (2016) 574–591 589
l = 1, M1 = {1, 4} = M1, λ1 = 3 and

B(2) = A ({1, 4}) =
(

3
0 2

)
.

Similarly as before the eigenspace of B(2) (in which all vectors are finite) is the set of 
multiples of y(2) = (0,−3)T .

In the next iteration

A(3) =
(

5
6

)
,

l = 2, M2 = {2} = M2, λ2 = 5 and y(3) = (0)T .
Finally,

A(4) =
(

6
)
,

l = 6, M7 = {7} = M6, λ6 = 6 and y(4) = (0)T .
We conclude that finite supereigenvectors of A associated with λ exist if and only if 

λ ≤ 1 and for any such λ we have span+ (B) ⊆ FV ∗ (A, λ), where

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

0
−3

−1
−1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We also observe that FV ∗ (A, λ) = R
7 and V ∗(A, λ) = R

7 for all λ ≤ −2.

6. Conclusions

We have presented an overview of previously proved criteria for the existence of gen-
eral and finite eigenvectors and subeigenvectors. We have then proved such criteria for 
general and finite supereigenvectors. A method for finding a non-trivial subset of a set of 
generators of finite supereigenvectors follows from the proof. However, efficient finding 
of a set of generators and a basis of the subspace of all general or finite supereigenvectors 
associated with a given λ ∈ R remains open.
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