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Abstract Recent developments in methods to study virus
internalisation are providing clearer insights into mecha-
nisms used by viruses to enter host cells. The use of
dominant negative constructs, specific inhibitory drugs and
RNAi to selectively prevent entry through particular path-
ways has provided evidence for the clathrin-mediated entry
of hepatitis C virus (HCV) as well as the caveolar entry of
Simian Virus 40. Moreover, the ability to image and track
fluorescent-labelled virus particles in real-time has begun to
challenge the classical plasma membrane entry mechanisms
described for poliovirus and human immunodeficiency
virus. This review will cover both well-documented entry
mechanisms as well as more recent discoveries in the entry
pathways of enveloped and non-enveloped viruses. This
will include viruses which enter the cytosol directly at the
plasma membrane and those which enter via endocytosis
and traversal of internal membrane barrier(s). Recent
developments in imaging and inhibition of entry pathways
have provided insights into the ill-defined entry mechanism
of HCV, bringing it to the forefront of viral entry research.
Finally, as high-affinity receptors often define viral internal-
isation pathways, and tropism in vivo, host membrane

proteins to which viral particles specifically bind will be
discussed throughout.
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Introduction

Viruses are obligate intracellular pathogens and entry into
the host cell is a critical step in the viral life cycle. Cellular
membranes present a barrier between the viral particle and
intracellular site(s) of replication in the cytosol or nucleus.
While enveloped viruses are bound by a lipid bilayer, non-
enveloped viruses are surrounded by a proteinaceous
capsid. Both enveloped viruses and non-enveloped viruses
have evolved complex and often poorly defined mecha-
nisms to enter cells. Identification of host cell receptors and
their trafficking pathways provide tools to study viral entry.
Although this generally involves the endocytic processes of
the host cell, the exact entry mechanisms of many medically
important viruses, such as hepatitis C virus (HCV), have yet
to be fully elucidated.

The entry of both enveloped and non-enveloped viral
particles requires specific interactions between host cell
molecules, or receptors, and viral encoded envelope or
capsid proteins. One key result of this is to bring the virus
into close contact with the plasma membrane and in some
documented cases, to initiate a cascade of signalling events
important to the viral life cycle (Dangoria et al. 1996). In
addition to primary receptors critical for virus attachment to
the cell surface (e.g. CD4 for human immunodeficiency
virus (HIV)), important co-receptors have been identified
(e.g. chemokine receptors CXCR4 or CCR5 for HIV). It is
now becoming apparent that a wide variety of host cell
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molecules are important for virus internalisation in the
absence of any direct association with the virus particle.
This is leading to the notion of “entry factors”, for example
the tight junction proteins claudin-1 and occludin appear to
have an indirect role in HCV entry (Ploss et al. 2009).

Following attachment to the host cell surface, virus entry
at the plasma membrane has been described for many
viruses such as HIV and Poliovirus (PV; Stein et al. 1987;
Dunnebacke et al. 1969). Enveloped viruses can fuse
directly with the plasma membrane, releasing the capsid
directly into the cytosol, whilst non-enveloped viruses disrupt
or form pore(s) in the plasma membrane to gain entry. In
contrast to fusion at the plasma membrane, many viruses
(such as SV40 and Influenza A) utilise intracellular traffick-
ing pathways to fuse with internal membranes in order to
release their genomic material into the cytosol (Anderson et
al. 1996; Lakadamyali et al. 2004). The biophysical
mechanisms of endosomal entry have been well documented
(Cohen et al. 1984; Sarkar et al. 1989; Lee 2010).

Host cells offer a variety of internalisation mechanisms
for virus entry, including: macropinocytosis (cell drinking),
a process where substances present in extracellular fluid are
internalised in a non-specific manner, and receptor-
mediated endocytosis, including the well-described
clathrin- and caveolar-dependent pathways, in addition to
the more recently described lipid-raft-based endocytic
mechanisms that are clathrin and caveolin independent.
Receptor trafficking pathways often define particle internal-
isation routes and viruses typically enter the cell by a single
defined pathway, although examples have been reported
where viruses utilise multiple pathways in diverse cell types
(Meier et al. 2002; Damm et al 2005; Patel et al 2009).

The majority of host cell membrane proteins internalise
through clathrin-mediated endocytosis. Whilst the clathrin-
mediated pathway is ubiquitous, caveolae have only been
demonstrated in a limited number of cell types. Nevertheless,
caveolar entry pathways have been described for a selected
number of viruses including SV40 and human coronavirus
229E (Anderson et al. 1996; Nomura et al. 2004; Kawase et
al. 2009). However, SV40 has also been reported to infect
cells devoid of caveolae (Damm et al. 2005).

Non-enveloped and enveloped viruses enter the cytosol
directly at the plasma membrane or via host cell endocytic
pathways (Fig. 1). The mechanisms employed by non-
enveloped and enveloped viruses to cross membrane
barriers differ significantly, most likely as a consequence
of the biophysical constraints imposed by the viral envelope
(Cohen et al. 1984). The goal of this review is to summarise
the different entry strategies employed by specific viruses
and to highlight research areas where classical understand-
ing of viral entry mechanisms have been challenged by
more recent analyses. Finally, we will identify specific
pharmacological and genetic manipulations which have

been demonstrated to inhibit viral entry with medically
relevant implications.

Non-enveloped viruses Non-enveloped viruses can enter
the cytosol by directly penetrating the plasma membrane, as
well as through a variety of endocytic mechanisms leading
to penetration of internal membrane(s). Internal membranes
crossed by non-enveloped viruses include the endosomal
membrane (e.g. adenovirus; Wickham et al. 1993), the
Golgi (e.g. papillomavirus; Day et al. 2003) and the
endoplasmic reticulum (e.g. SV40; Pelkmans et al. 2001;
Schelhaas et al. 2007). Strategies to disrupt or traverse host
cell membranes must be included in the mechanisms of
non-enveloped virus entry. However, the precise molecular
and biophysical means by which non-enveloped viruses
gain entry to the cytosol have not been clearly defined in all
cases. The entry mechanisms of the non-enveloped viruses
PV, AdV 2/5 and SV40 will be discussed below.

Poliovirus Early electron micrographs of PV-infected cells
demonstrated virus particles adjacent to and directly
penetrating the plasma membrane (Dunnebacke et al.
1969). Such evidence gave rise to a long-standing belief
that PV entry occurs directly at the cell surface. However,
use of drugs such as the ionophore monensin to dissipate
cellular proton gradients suggested a pH-dependent route of
PV entry (Madshus et al. 1984a, b), contradicting the earlier
electron microscopic observations. It was known that under
low pH, substances such as diphtheria toxin exposed a
hydrophobic region which could insert into the membrane
(Sandvig and Olsnes 1980). To investigate such a model for
PVentry, Madshus and colleagues measured PVentry into the
detergent phase of Triton-X114 under different pH conditions
(Madshus et al. 1984a, b). The results indicated that PV was
hydrophilic at neutral pH but became amphipathic at low
pH, suggesting the exposure of hydrophobic regions or

Fig. 1 Conventional understanding of entry pathways for particular
viruses. Both HIV and Polio virus have been considered able to
directly penetrate the host cell plasma membrane. SV40 and
coronavirus 229E have been shown to enter through caveolae, while
adenovirus2/5, influenza and HCV can all infect through clathrin-
mediated endocytosis. However, as described in the text, recent
observations are challenging some of these conclusions
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‘fusion domains’. These data suggest PV association with
cellular receptors induced the exposure of hydrophobic
regions at low pH. Although it is possible that micro-
regions of low pH occur at the cell surface, apart from
specialised tissues such as the stomach, extracellular fluid is
typically neutral, suggesting that PVenters cells via an acidic
intracellular compartment.

Recent developments allowing the imaging of fluorescent
PV in live cells have supported an endocytic internalisation
route (Brandenburg et al. 2007). Furthermore, the involve-
ment of actin in the entry process was implicated by
inhibition of infection following incubation with cytochala-
sin D. Use of siRNA and inhibitors of clathrin-, caveolin-
and flotillin-dependent pathways as well as macropinocytosis
suggest that PV entry is independent of all these cellular
pathways (Brandenburg et al. 2007). This study also used
total internal reflection fluorescence microscopy to demon-
strate that genome release into the cytosol occurs from
recently internalised vesicles, close to the cell surface. Taken
together, recent studies of PV entry highlight an endocytic
event that is independent of the classical clathrin- and
caveolin-mediated pathways, followed by low pH-mediated
exposure of hydrophobic residues in an early endocytic
vesicle. Recent reports of clathrin- and caveolin-independent
routes of endocytosis await further clarification (reviewed in
Kirkham and Parton 2005), and it is likely that studies of PV
entry will provide important information about alternative
endocytic mechanisms operating in host cells.

SV40 Although SV40 represents a virus with a particularly
well-studied entry pathway, recent evidence suggests that
this well-characterised route is not as clear cut as it may
initially have seemed. SV40 became of particular interest to
virologists and cell biologists alike as being the first virus
shown to enter cells via a clathrin-independent endocytic
pathway (Anderson et al. 1996). In fact it was, at least in
part, the study of SV40 entry which led to the discovery of
what we know as caveolar endocytosis and the caveosome,
and as such, labelled SV40 is often used as a tool to study
intracellular trafficking (Fig. 2).

Early studies on SV40 entry found the internalisation
pathway to differ in several ways from the classical clathrin-
mediated endocytic process described for many viruses.
Firstly, electron micrographs of SV40-infected cells showed
the majority of particles in small tight-fitting vesicles, which
appeared to be uncoated (Hummeler et al. 1970). These
vesicles were able to fuse to generate larger compartments
within the cell (which we now term caveosomes; Maul et
al. 1978). Secondly, these vesicles could be tracked to the
ER, rather than the endosomal/lysosomal compartment,
which is the fate of most endocytosed viruses (Maul et al.
1978; Pelkmans et al. 2001; Norkin et al. 2002). Moreover,
the ability of SV40 to internalise into different endocytic

compartments was dependent on the capacity to be
enveloped by cellular membranes. Subsequently, the cav-
eolar entry pathway of SV40 was confirmed by the use of
drugs found to disrupt caveolae, such as nystatin, which
inhibited SV40 entry (Anderson et al. 1996).

However, as relatively stable membrane domains, it was
unclear how caveolae could offer a productive entry
pathway for SV40. The related murine polyoma virus has
also been reported to internalise via caveolae (Richterová
et al. 2001; Gilbert et al. 2003; Liebl et al. 2006), but, while
SV40 employs the class I Major Histocompatability
Complex as a receptor, murine polyoma virus interacts
with sialyloligosaccharide receptors (Breau et al. 1992;
Stehle and Harrison 1996). Furthermore, murine polyoma
virus binding to host cells induces an up-regulation of
primary and early response genes that regulate particle
internalisation (Zullo et al. 1987; Glenn and Eckhart 1990).
SV40–host cell interactions induce an intracellular signal-
ling event that up-regulates the expression of primary
response genes c-myc, c-jun, c-cis within 30 min and JE,
a PDGF-inducible gene encoding monocyte chemoattrac-
tant MCP-1, within 90 min (Dangoria et al. 1996). SV40
up-regulation of both c-myc and c-jun was blocked by the
tyrosine kinase inhibitor genistein. Furthermore, genistein
was shown to block SV40 infection in a reversible manner,
resulting in a model where SV40 binding induces a
signalling pathway that primes particle internalisation.
More recently, labelling of the virus and use of live-cell
imaging have demonstrated a role for actin in SV40
internalisation and trafficking (Pelkmans et al. 2002). Upon
virus binding, a transient breakdown of actin-stress fibres

Fig. 2 Caveolar endocytosis of SV40. Fluorescence imaging of red-
labelled SV40 (Texas Red) and green-labelled caveolae (Caveolin1-
GFP) demonstrates a caveolar entry route for SV40 (adapted from
Pelkmans et al. 2001; reprinted by permission from Macmillan
Publishers Ltd., copyright 2001)
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was observed. After leaving the caveosome, labelled SV40
trafficked in tubular, caveolin-free vesicles, which move
along microtubules to fuse with smooth ER organelles
(Pelkmans et al. 2001; Schelhaas et al. 2007).

Recent data showing SV40 entry into cells lacking
detectable caveolae, including the human hepatoma Huh7
cell line and embryonic fibroblasts from a Cav1 knockout
mouse, suggest alternative pathways may be in operation
(Damm et al. 2005). The same authors noted caveolin-
independent SV40 internalisation in wild-type embryonic
fibroblasts with an active caveolar pathway (Damm et al.
2005). In all of the aforementioned cells, viruses were seen
to internalise in small, tight-fitting vesicles similar to those
seen in the first EM images of SV40-infected cells. SV40
was subsequently transported to pH-neutral organelles,
which resembled caveosomes despite being devoid of both
Cav1 and Cav2 (Damm et al. 2005). Importantly, expres-
sion of SV40 encoded T-antigen suggests these caveolin-
independent pathway(s) represent productive infection. The
observation that this entry mechanism was observed in cells
with detectable Cav1, indicates that this alternative pathway
is active even in the presence of Cav1. This could represent
further evidence of host cell endocytic mechanisms acting
independently of clathrin and caveolin, similar to that
utilised by Adenovirus 2/5 (AdV 2/5).

Adenovirus 2/5 AdV 2 and 5 are non-oncogenic adenovi-
ruses that infect the upper respiratory tract. Ad2 and Ad5 bind
to coxsackie virus B Ad receptor (CAR; Leon et al. 1998).
CAR is expressed at different levels on different tissues and
is the primary determinant for susceptibility to Ad infection
(Bergelson et al. 1997; Meier and Greber 2004). In addition
to a requirement for CAR binding, activation of αv-integrin
is necessary for virus entry into cells (Wickham et al. 1993;
Greber et al 1993; Wang et al. 1998).

The first electron micrographs depicting AdV 2 entry
suggested a role for coated vesicles early in the entry

process (Brown and Burlingham 1973; Svensson 1985).
Furthermore, the inhibitory effects of lysosomotropic agents
on infection indicated that this was followed by escape from
acidic endosomes (Svensson 1985). The use of drugs
known to selectively inhibit receptor-mediated endocytosis
reduced the extent of virus internalisation similarly to
effects on transferrin entry (a marker for clathrin-mediated
endocytosis; Varga 1991). Despite the mounting evidence
for a clathrin-mediated entry pathway (Fig. 3), other studies
reported direct penetration at the plasma membrane in
addition to the proposed receptor-mediated endocytic
pathway (Svensson 1985; Meier et al. 2002).

Although the use of dominant negative constructs of
Eps15 (required for clathrin-mediated endocytosis) and
dynamin (required for vesicle fission) seemed to confirm
the clathrin-mediated entry pathway, AdV was reported to
stimulate the uptake of fluid phase markers, largely via
macropinocytosis (Wang et al. 1998; Meier et al. 2002).
Whilst this could result from virus disruption of general
membrane integrity, the process was shown to be dependent
on αv-integrin, protein kinase C, F-actin and the amiloride-
sensitive sodium/proton exchanger, all of which are
involved in the AdV endosomal escape mechanism (Meier
et al. 2002). Taken together, these results suggest a model
whereby AdV 2/5 binds to CAR and activates integrin co-
receptors leading to the clathrin-mediated endocytosis of
the virus. This is followed by trafficking to the early
endosome, where low pH mediates endosomal escape
(Gastaldelli et al. 2008). Alongside endosomal escape,
macropinocytosis is stimulated leading to the non-specific
internalisation of virus particles from the extracellular
environment. It is unclear whether this is a coincidental
side effect of adenovirus infection, or whether this
represents a manipulation of host cell machinery to ensure
the uptake of more virions.

As the name implies, CAR also acts as the receptor for
coxsackie B group viruses (CVB), which are known to

Fig. 3 Clathrin-mediated endocytosis of Ad2. Electron microscopy of HeLa cells incubated with Ad2 demonstrates internalisation of virus
through clathrin-coated pits into clathrin-coated vesicles (adapted from Meier et al 2002). (© Meier et al., 2002, originally published)
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infect polarised epithelia (Coyne and Bergelson 2005). As
CAR is a component of tight junctions, it is inaccessible to
virus on the apical side of the epithelium, for example, viral
particles in the intestinal lumen. Many isolates of CVB
interact with decay accelerating factor (DAF or CD55), a
GPI-anchored protein, which is expressed on the apical
surface, and is accessible to virus. Virus attachment to DAF
on the apical surface is thought to trigger signalling events
culminating in actin rearrangement and virus movement to
the tight junction (Coyne and Bergelson 2006; Coyne et al.
2007). Signalling events induced by virus interaction with
DAF are thought to induce caveolar endocytosis of virus at
the tight junction (Coyne et al. 2007; Coyne et al. 2009).
Moreover, although not involved in CVB binding, particle
internalisation from the tight junction is dependent on
occludin (Coyne et al. 2007). Cell polarity and viral
receptors localised to the tight junction are also important
factors in hepatitis C virus entry, which will be discussed
below.

Enveloped viruses Infection with an enveloped virus
requires the fusion of the viral envelope with a cellular
membrane. In some cases, this can occur at the plasma
membrane, as reported for HIV, where binding to plasma
membrane-expressed forms of CD4 and chemokine recep-
tors induce changes in the viral envelope glycoprotein that
are thought to mediate membrane fusion under neutral pH
conditions. Fusion of other enveloped viruses occurs within
the low-pH environment of an acidic endosomal compart-
ment. Enveloped viruses typically reach the endosomal
compartment via trafficking in clathrin-coated vesicles,
although a caveolar route of entry has been reported for
human coronavirus 229E (Nomura et al. 2004; Kawase et
al. 2009). Examples of enveloped viruses with entry
mechanisms of particular interest are HCV, influenza A
and HIV and will be discussed in more detail below.

HCV Hepatitis C virus is a hepatotropic enveloped virus
associated with liver disease, fibrosis, cirrhosis and hepa-
tocellular carcinoma. The HCV particle comprises a single-
stranded positive-sense RNA surrounded by an icosahedral
capsid and envelope derived from a host cell lipid bilayer
(Bartosch and Cosset 2006). HCV encodes two envelope
glycoproteins E1 and E2 which play a critical role in
binding host cell surface receptors and membrane fusion
(Keck et al. 2004; Op De Beeck et al. 2004; Helle and
Dubuisson 2008). Recombinant forms of HCV E2 were
used to identify interaction(s) with host cell proteins,
tetraspanin CD81 (Pileri et al. 1998; Bartosch et al.
2003a; Cormier et al. 2004; Flint et al. 2006) and scavenger
receptor B type I (SR-BI; Scarselli et al. 2002; Grove et al.
2007; Catanese et al. 2010). The recent development of
infectious lentiviral pseudoparticles bearing HCV glyco-

proteins (HCVpp; Bartosch et al. 2003b; Hsu et al. 2003;
Drummer et al. 2003), and native HCV capable of
replication in cell culture (HCVcc; Lindenbach et al.
2005; Wakita et al. 2005; Zhong et al. 2005) have enabled
studies to validate the role of CD81 and SR-BI in HCV
entry. Following development of these experimental sys-
tems, the tight junction proteins Claudin-1 and Occludin
were recently reported to be essential for virus internal-
isation (Evans et al. 2007; Zheng et al. 2007; Yang et al.
2008; Liu et al. 2009; Ploss et al. 2009). HCVpp bearing
diverse glycoproteins of all major genotypes show a marked
preference for infecting liver-derived cells suggesting that
receptor-dependent entry events may in part define hepato-
tropism (Bartosch et al. 2003c; McKeating et al. 2004).

Hepatocytes in the liver are highly polarised with bile
canaliculi, surrounded by tight junctions, running between
adjacent cells at the apical membrane. HCV enters the liver
via the sinusoidal blood and is likely to encounter the
basolateral surface of hepatocytes. The observation that
CD81 and SR-BI localise at basolateral hepatocellular
membranes (Reynolds et al. 2008) is consistent with particle
attachment occurring at this site. Recent data from our
laboratory demonstrate a role for CD81–claudin complexes
in HCV entry (Harris et al. 2008; Harris et al. 2010 JBC
submitted). The involvement of tight junction proteins has
raised many questions about HCV entry. For example, does
the virus need to locate to tight junctions to internalise?
Current data demonstrate that HCV E2 engagement of
CD81 promotes clathrin-mediated endocytosis and there is
limited evidence to support a role for CD81-induced
movement of the virus to tight junctions in polarised
hepatoma cells (Farquhar, personal communication).

Soon after the development of HCVpp and HCVcc, the
use of drugs such as Bafilomycin A1 and concanamycin A
(which inhibit the vacuolar ATPase, dissipating membrane
proton gradients) demonstrated the pH-dependence of HCV
entry, implicating the involvement of receptor-mediated
endocytosis and fusion in an acidic endosomal compart-
ment (Hsu et al. 2003; Blanchard et al. 2006; Tscherne et al.
2006). Furthermore, the use of dominant negative con-
structs of Eps15 and dynamin demonstrated a clathrin-
mediated endocytic entry process (Meertens et al. 2006). A
recent siRNA study confirmed the involvement of several
genes involved in clathrin-mediated endocytosis and actin
polymerisation in the viral entry process and used time-
lapse imaging to observe viral entry in live unpolarised
liver-derived cells (Coller et al. 2009). The authors
demonstrated an association between labelled HCV and
clathrin, suggesting that virions bind to filopodia and traffic
towards the cell body, where endocytosis occurs. However,
analysis of viral particles in polarised cells will be
necessary before the exact entry pathway of the virus is
clear.
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Influenza A The entry process of Influenza A is a much-
studied topic and differs from the simple membrane fusion
processes described for the majority of enveloped viruses.
The first electron micrographs of influenza-infected cells
demonstrated particles inside cytoplasmic compartments.
Subsequently, the particles were seen to penetrate the
membrane of this compartment followed by genome release
in the cytosol (Dourmashkin and Tyrrell 1974). While this
evidence pointed towards an endocytic mechanism of entry,
the images failed to show the fusion of viral and host cell
membranes that is believed to play a critical role in
escaping the low pH environment of the endosome.

Lysosomotropic agents such as ammonium chloride
(Matlin et al. 1981) and chloroquine (Yoshimura et al.
1982) inhibited influenza infection, suggesting an endocytic
entry pathway. Many studies have demonstrated the pH-
dependence of the Influenza entry mechanism (Guinea and
Cerrasco 1994; Guinea and Cerrasco 1995), where fusion
with the plasma membrane occurs at pH 5.5 or below but
not in less acidic environments (Matlin et al. 1981). Further
evidence for an endocytic entry mechanism includes
dynamin dependence and the involvement of the Rab
GTPases Rab5 and Rab7 (Roy et al. 2000; Sieczkarski
and Whittaker 2003). Taken together, the data point
towards endocytosis in coated pits followed by trafficking
to an acidic internal compartment where low pH mediates
membrane fusion and the release of the viral genetic
material into the cytosol.

Influenza binds to cell surface sialic acid residues via
interaction with the viral hemagglutinin (HA) glycoprotein
(Weiss et al. 1988). Interestingly, strain-specific viral
tropism is dependent on the specific types of sialic acids
expressed on the target cell surface (Carroll et al. 1981).
HA is critical for influenza fusion with host cells, which
does not passively occur in the presence of low pH but is
triggered in an HA-dependent process. HA is a trimeric
spike glycoprotein which undergoes an irreversible confor-
mational change at low pH which is necessary for endo-

somal escape of the virus. Evidence suggests that this
process involves the insertion of the coiled coil of the HA
trimer into the membrane, bringing the viral envelope and
endosomal membranes into close contact and facilitating
membrane fusion (Doms and Helenius 1986; Chambers et
al. 1990; Yu et al. 1994).

Recent observations demonstrate influenza A entry into
cells expressing dominant negative Eps15. Furthermore,
inhibitors of caveolar endocytosis, such as nystatin,
genistein and dominant negative caveolin-1 had minimal
effect(s) on viral entry (Sieczkarski and Whittaker 2003).
Other studies, including pharmacological manipulations
and fluorescence imaging of live cells suggest that
Influenza can enter via diverse pathways, including
clathrin-dependent (Fig. 4) and clathrin- and caveolin-
independent endocytic mechanisms (Nunes-Correia et al.
2004; Rust et al. 2004).

Various aspects of the influenza A entry process represent
targets of a new class of antivirals, entry inhibitors (Voss et
al. 2008; Saong et al. 2009; Yamaya et al. 2010). Whilst
Influenza entry inhibitors are not currently clinically
available, one recent study found clarithromycin, the
macrolide antibiotic clinically used to treat pharyngitis
and tonsillitis could inhibit two steps in the influenza virus
entry process (Yamaya et al. 2010). The drug was found to
reduce expression of sialic acid residues on the surface of
airway epithelial cells, reducing virus binding, as well as
reducing the number of acidic endosomes in the cell,
inhibiting endosomal escape.

HIV-1 Despite being extensively studied, the entry process
of HIV, the causative agent of AIDS remains a debated
issue. At a relatively early stage in the study of HIV
infection, CD4 was identified as an essential receptor
molecule defining HIV infection (Dalgleish et al. 1984).
However, it soon became clear that CD4 was not the sole
determinant of HIV entry and the chemokine receptors,
CCR5 and CXCR-4, were implicated as co-receptors

Fig. 4 Clathrin-mediated endocytosis of Influenza. Fluorescence
imaging of red-labelled virus (DiD) and YFP-tagged clathrin (shown
in green) demonstrates a clathrin-mediated entry route for Influenza

(adapted from Rust et al 2004; reprinted by permission from
Macmillan Publishers Ltd., copyright 2004)
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(Broder and Dimitrov 1996; Feng et al. 1996; Deng et al.
1996; Dragic et al. 1996). The importance of HIV co-
receptors was evident in the observation that humans with
mutant CCR-5 are resistant to HIV infection (Samson et al.
1996). Our current understanding of the role of these HIV
receptors in viral fusion supports an interaction with the
primary receptor CD4 that leads to conformational change
(s) that primes the virus to interact with CCR5. It is this
receptor complex formation which alters the conformation
of gp160 and leads to pH-independent gp41 fusion (Chan et
al. 1997; Tan et al. 1997; Weissenhorn et al. 1997).

It has long been thought that productive entry of HIV
occurs via direct fusion of the viral envelope with the host
cell plasma membrane. One key piece of evidence for an
endocytic-independent entry is the observation that infec-
tion is insensitive to neutralisation of endosomal pH (Stein
et al. 1987). In fact, blocking endosome acidification was in
some cases seen to augment viral infection, perhaps by
sparing particles from lysosomal degredation (Fredericksen
et al. 2002; Schaeffer et al. 2004; Wei et al. 2005). Despite
this long-standing belief, EM studies have shown internal-
ised virions in membrane-bound vesicles (Pauza and Price
1988; Grewe et al. 1990). Moreover, the rates of entry and
uncoating of radiolabelled virions in the human T-lymphoid
cell line CEM were consistent with a receptor-mediated
mechanism of entry (Pauza et al. 1988). However, CD4
endocytosis was not required for HIV entry, suggesting that
endocytosed particles were degraded by host cell lysosomes
(Maddon et al. 1988).

Whilst the clathrin-mediated entry pathway has been
documented for almost as long as the classical plasma
membrane entry mechanism, it has only recently been
confirmed that this route offers a productive entry pathway
for HIV (Daecke et al. 2005). Recent data may even
suggest that clathrin-mediated HIV entry is the only
productive pathway for infection (Miyauchi et al. 2009).
In fact, live cell imaging has demonstrated that HIV fusion
at the plasma membrane did not proceed further than
mixing of lipids and could therefore not lead to productive
infection.

Individual steps in the HIV entry process have become
the target for the development of antiviral entry inhibitors
(for review see Kuritzkes 2009). These include inhibitors of
the CD4–gp120 interaction (Guo et al. 2003; Lin et al.
2003), post-attachment inhibitors such as ibalizumab,
which is thought to decrease CD4 flexibility, inhibiting
access of CD4–gp120 to chemokine receptors (Burkly et al.
1992; Burkly et al. 1995; Kuritzkes et al. 2004) and
inhibitors of the fusion process such as Enfuvirtide (Wild et
al. 1994; Lalezari et al. 2003). Fusion inhibitors have
perhaps been the most successful of these inhibitors to date,
with Enfuvirtide approved for clinical use following phase
3 clinical trials (Clotet et al. 2007; Hicks et al. 2006).

Conclusions

The use of specific drugs, dominant negative constructs and
siRNA to inhibit specific internalisation pathways have
provided insights into viral entry mechanisms, providing
evidence for clathrin-mediated entry of HCV as well as the
caveolar-dependent entry of SV40. Recent developments in
live-cell imaging have allowed the real-time tracking of
fluorescent virus particles and have advanced our under-
standing of HCV entry in addition to challenging the
classical plasma membrane pathways of two well-studied
viruses, HIV and PV. However, the more information gained
through these new techniques, the more complicated viral
entry mechanisms seem to become, with AdV and influenza
A seeming to enter via two distinct mechanisms. Further
studies involving single-particle tracking of fluorescent-
labelled virus particles in real-time will help elucidate the
mechanisms of entry of many viruses and provide a greater
understanding of the endocytic mechanisms active within the
host cell which these viruses exploit.
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