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ABSTRACT

Aims. From observations of the K4III star β UMi we attempt to determine whether oscillations or any other form of variability is
present.
Methods. A high-quality photometric time series of ≈1000 days in length obtained from the SMEI instrument on the Coriolis satellite
is analysed. Various statistical tests were performed to determine the significance of features seen in the power density spectrum of
the light curve.
Results. Two oscillations with frequencies 2.44 and 2.92 µHz have been identified. We interpret these oscillations as consecutive
overtones of an acoustic spectrum, implying a large frequency spacing of 0.48 µHz. Using derived asteroseismic parameters in
combination with known astrophysical parameters, we estimate the mass of β UMi to be 1.3± 0.3 M�. Peaks of the oscillations in the
power density spectrum show width, implying that modes are stochastically excited and damped by convection. The mode lifetime is
estimated at 18 ± 9 days.

Key words. stars: individual: β UMi – stars: oscillations – stars: interiors – stars: fundamental parameters

1. Introduction

In this Letter we present new results on the variability of the
K4III giant β UMi (Kochab) from observations made by the
Solar Mass Ejection Imager (SMEI) on board the Coriolis satel-
lite. While the star is a suspected variable, as noted by its entry
in the New Catalogue of Suspected Variable Stars (NSV 6846;
Kukarkin et al. 1981), the period and amplitude of variability
have not yet been presented in the literature. Because it is on the
cool side of the instability strip, we may expect β UMi to show
Sun-like oscillations, that is, oscillations stochastically excited
and damped by convective noise.

Stellar parameters on β UMi, taken from the revised
Hipparcos catalogue van Leeuwen (2007), Mozurkewich et al.
(2003), and Decin et al. (2003), are shown in Table 1. We used
the scaling laws of Kjeldsen & Bedding (1995, hereafter KB95)
to make predictions for Sun-like oscillations of the star. The
maximum power of the modes is expected to be in the range
of 3.3 to 4.7 µHz (Eq. (10), KB95), with a significant rms am-
plitude of 1.1 to 2.1 parts per thousand (ppt) (Eq. (8), KB95).
The “large frequency spacing” (between adjacent harmonics) is
expected to be small at 0.6 to 0.8 µHz (Eq. (9), KB95). This
may present a problem if, as has been suggested by Stello et al.
(2006), mode lifetimes in giants are short, meaning neighbour-
ing modes may overlap in frequency; however, other recent de-
terminations (Tarrant et al. 2007) suggest mode lifetimes may be
longer in some giants, which would alleviate such problems.

The SMEI observations we present here extend over a period
of around three years and have a good overall duty cycle. The
excellent resolution in frequency has allowed us to identify two
individual modes of oscillation in βUMi, and to also place direct
constraints on the mode lifetime.

Table 1. Stellar parameters for βUMi.

Parameter Value
Literature values:
Parallaxa 24.91 ± 0.12 mas
Vmag

a 2.2044 ± 0.0008
B − Va 1.465 ± 0.005
Mass (from evolutionary tracks)b 2.2 ± 0.3 M�
Mass (from log g)b 2.5 ± 0.9 M�
Angular diameterc 10.3 ± 0.1 mas
Derived values:
Distance 40.1 ± 0.2 pc
Effective temperature 4040 ± 100 K
Luminosity 475 ± 30 L�
Radius (photometric) 43.5 ± 0.5 R�
Radius (interferometric) 44.4 ± 0.7 R�
Predictions:
Frequency of maximum power, νmax 4.0 ± 0.7 µHz
Large frequency spacing, ∆ν 0.7 ± 0.1 µHz
Maximum predicted rms amplitude in SMEI,
δL/L (700 nm) 1.6 ± 0.5 ppt

a From the revised Hipparcos catalogue (van Leeuwen 2007).
b From two determinations in Decin et al. (2003).
c From Mozurkewich et al. (2003).

2. Data and light-curve extraction

The reader is referred to Tarrant et al. (2007) for an overview
of the processing of SMEI data for use in asteroseismology. A
more detailed description of the data extraction and processing
pipeline is given in Spreckley and Stevens (in prep).

In summary, the SMEI instrument consists of three cameras
facing respectively along, perpendicular to, and away from the
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Fig. 1. Data in the time domain – the whole time series (top), phase-
folded across 365.26 days with the fitting to the annual cycles in red
(middle), a three month time series with smoothed data (blue) (bottom).

Earth-Sun direction. Each of these cameras images a 60-by-3
degree slice of the zenith-facing hemisphere at a 4-s cadence,
resulting in data on a 170-by-3 degree slice of the sky. Due to
the Coriolis satellite’s orbital geometry, this slice will co-rotate
with the satellite over the course of an orbit such that the entire
sky is imaged at an approximately 100-min cadence (Jackson
et al. 2004).

The individual 60-by-3 degree images are then processed.
Images with high background are removed, bias and dark current
corrections are performed, and images are then flat-fielded and
cosmic rays removed. A stray light correction is also performed.
Once the images have been cleaned, aperture photometry based
upon a modified form of the DAOPHOT routines (Stetson 1987)
is performed. As a final step, corrections are made for long-term
degradation of the CCD, and a position-dependent correction is
applied to compensate for variation in the point-spread function.
A single photometric measurement of intensity is thus obtained
once per orbit.

As βUMi is at high declination (+74◦), it is only observed
by camera #2, which points perpendicular to the Earth-Sun di-
rection; however, the coverage was very good, with fill of ap-
proximately 70%. As the data set contained a number of asym-
metrically distributed outliers, a simple arithmetic mean would
not provide a good estimate of the average flux. For this reason
a mean of the entire time series was taken, which was calcu-
lated from only those points lying within 3 times the median
absolute deviation from the global median value (≈98% of all
points). The average flux thus determined was subtracted from
each value, and the resulting deviations were divided through by
the average to give each point as a fractional change in intensity,
δL/L. Point-to-point scatter in the time domain is ≈1.5 parts per
thousand (ppt).

Figure 1 (top) shows the residual light curve of the time se-
ries in units of parts per thousand. A long-term trend can be read-
ily observed in the data with a periodicity of around a year. These
trends have been linked to an instrumental effect correlated to
the instrument temperature. Work is on going to remove these
trends in a later version of the data-generation pipeline. Due to

this instrumental effect, it is difficult to draw conclusions regard-
ing periodicities associated with stellar rotation, which would be
expected to have a comparable period of a few hundred days. A
phase-folded plot (Fig. 1, middle) with a period of 1 year shows
the annual and semi-annual cycles in the data, with amplitudes of
a few ppt. Further harmonics of these cycles were also present
at significant amplitude. Fits were performed up to the eighth
harmonic of a year (n = 8) and were removed from the data by
subtraction in the time domain, leading to a reduction in the rms
amplitude of the time series from ≈6 to 4 ppt.

Zooming in on a three-month section of the data between
Dec. 2003 and Mar. 2004 (Fig. 1, bottom) we can see clearly
an oscillation with a period of ≈4.6 days and an amplitude of a
few ppt. A power density spectrum of the time series is shown
in Fig. 2. A prominent spike and concentration of power can be
seen at a frequency of ≈2.5 µHz, in agreement with the strong
oscillation of 4.6 days visible in the time series. Further spikes
and concentrations of power can be seen within the range 2
to 4 µHz; in particular, the eye is drawn to three prominent fea-
tures, located between approximately 2.2 to 2.6 µHz (including
the above noted spike), 2.7 to 3.1 µHz, and 3.2 to 3.4 µHz. In the
smoothed spectrum (red), the features at 2.2 to 2.6 µHz and 2.7
to 3.1 µHz could be construed as being composed of two or more
distinct concentrations of power.

Missing data in a time series can result in power being redis-
tributed between frequencies. This redistribution is represented
in a plot of the spectral window, shown in Fig. 2 as an inset.
Apart from the central peak, there are evidently no prominent
spikes in the spectral window, which is very clean. Outside of
the range visible in the plot, peaks occur at the diurnal frequency
of 11.57 µHz with a size of roughly one thousandth that of the
central peak. Sub-harmonics of a day do not appear to be visi-
ble. To ensure redistribution of power by the window function
was not in any way responsible for the excess power observed
between 2 to 4 µHz in the real power density spectrum, we cre-
ated artificial data with a power-law background model – as de-
scribed in the first paragraph of the results section below – to
which the window function of the original data was applied. No
such simulation gave any concentration of power in the region 2
to 4 µHz of comparable prominence to what is seen in the βUMi
power density spectrum.

3. Results

Next, we applied statistical tests to determine whether the promi-
nent features in the power density spectrum between 2 and 4 µHz
could be accounted for as a product of smooth broad-band back-
ground noise. In these statistical tests the power was compared
to the local background, and any significant deviations noted. In
the case of βUMi, a power-law model of the form a + bν−c, in
which a, b, and c are parameters to be fitted, was chosen to repre-
sent the background. To account for the redistribution of power
by the spectral window the background model was convolved
with the spectral window, during fitting. In this way we sought
to ensure that the model background gave a good representation
of the actual background.

Statistical tests, described in Tarrant et al. (2007), were per-
formed upon the power density spectrum, detecting first the pres-
ence of any significant spikes over the background noise, that is,
power concentrated into a single bin. This may indicate the cen-
tral frequency of a sharp mode. A second test highlighted any
significant concentrations of power across a narrow frequency
range. This may in turn indicate a broad mode in which the
power is spread over a number of adjacent bins.



N. J. Tarrant et al.: Oscillations in βUrsae Minoris L45

Fig. 2. Power density spectrum with spectral
window at the same frequency scale. Here
the spectrum is shown in black, with a 9-bin
(≈0.1 µHz), moving-mean smoothed spectrum
in red, and a fitted power-law background in
blue.

Fig. 3. Fits to the most prominent features in the power density spec-
trum. Here the raw spectrum is show in black, and a 9-bin (≈0.1 µHz)
moving-mean smoothed spectrum in red. The raw fitting is shown in
green, and smoothed over 9 bins in blue.

Considering the spectrum as a whole and setting a threshold
of 1%, only one instance of a single bin with a significant excess
of power was observed, located at a frequency of ≈2.46 µHz.
This bin contains 18.5 times the background power at this fre-
quency, giving a “false alarm” probability of lower than 0.1%.
Considering power within ≈0.1 µHz ranges, three concentra-
tions were highlighted as having less than a 1% chance of be-
ing a product of noise. These ranges were centred at approxi-
mately 2.33, 2.44, and 2.98 µHz.

These results suggest that the region of excess power
between 2 and 4 µHz has some structure to it. We first tested
the null-hypothesis that the power between 2 and 4 µHz is rep-
resented by a single resonant peak against the hypothesis that
it would be reproduced better by two peaks. This was done by
fitting resonant peak profiles (by the method described below)
reflecting each hypothesis, and performing a likelihood ratio test
(Appourchaux et al. 1995). This revealed that fitting two reso-
nant profiles represented a significant increase in the quality of
fit over a single profile.

Next we considered each of the two broad concentrations of
power, between 2.2 to 2.6 µHz and 2.7 to 3.1 µHz, respectively.
We tested whether the structure of each concentration could be
ascribed to the effects of noise upon a single broad mode or rep-
resent two separate narrow modes. In this case it was found that
fitting two resonant profiles offered an insignificant increase in
quality-of-fit over a single profile. We therefore treated each of
the two concentrations of power as composed of a single broad
mode.

Table 2. Best-fitting estimates of identified modes.

Frequency Width (FWHM, ∆) Height rms amplitude
(µHz) (µHz) [(ppt)2/µHz] (ppt)

2.44 ± 0.04 0.2 ± 0.1 5.4 ± 2.2 1.3 ± 0.4
2.92 ± 0.05 0.2 ± 0.1 2.8 ± 1.1 0.9 ± 0.3

A fitting to the features in the power density spectrum is
shown in Fig. 3 in which each of the two concentrations of power
at 2.2 to 2.6 µHz and 2.7 to 3.1 µHz was fitted as a single mode
by means of a maximum likelihood technique. As the mode life-
times appear not to be significantly longer than the period of the
oscillations, it was necessary in this case to use the full resonant
profile describing a classically damped oscillator as the model
to describe each mode, instead of the usual simplification of a
Lorentzian model. This fitting was performed by simultaneously
fitting to the spectrum a power-law model of the background
and the two resonant profiles, which were constrained to have
the same width. The window function can alter the parameters
describing a fitted mode, so we convolved our model with the
window function. By this means we hoped to fit a true descrip-
tion of the modes better. The best-fitting parameters describing
each mode are listed in Table 2.

As the signal-to-noise ratio is low, more simulations were
performed to further ensure that the fitted parameters were a ro-
bust representation of the power density spectrum. In these a
model spectrum was made consisting of the background and two
modes described by the parameters in Table 2. Artificial power
density spectra, P′(νi), were then created point-wise in which
P′(νi) = − ln (xi)P(νi), where xi is a uniformly distributed ran-
dom variable in the range [0, 1], and P(νi) is the model power
at the frequency νi. By this method, the artificial spectra showed
the correct χ2 with two degrees of freedom statistics expected for
power spectra (Anderson et al. 1990). Fittings to these artificial
spectra were performed and the returned parameters compared
to those of the input model. Each fitted parameter showed a dis-
tribution around a mean value consistent with the initial fitting.
The standard deviation of each parameter was used to determine
the error estimates shown in Table 2.

Considering other spikes and concentrations of power in the
region of the two identified modes, it is tempting to speculate
that some of these may represent additional modes. However,
we note the strongest feature at ≈3.3 µHz occurs at the same
location as an alias introduced by the window function, as can
be observed by the slight hump seen in the fitting in Fig. 3. In
addition, the feature at 3.3 µHz does not show the width of the
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identified modes at 2.44 and 2.92 µHz, and occurs at a lower fre-
quency than would be expected for a higher harmonic respecting
the same frequency spacing shown between the other two modes.

4. Discussion

Two features have been identified as unlikely to be part of the
background in both probabilistic and numerical models of the
data. We suggest that these features are radial modes separated
by the large frequency spacing. Given the quality of the data,
we feel it is not possible to say whether there might also be
non-radial modes present. However, we believe that we can ex-
clude the possibility of the separation between the features being
several times the large frequency spacing, as this would require
modes to be missing from the spectrum, and the lower spac-
ing thus implied would give an unrealistic mass estimate (see
below).

As we have measured two independent seismic quantities –
the frequency of maximum power, νmax, and large frequency
spacing, ∆ν – we may use Eqs. (9) and (10) in Kjeldsen &
Bedding (1995) to estimate the asteroseismic mass:
(

M
M�

)
=

(νmax/3050 µHz)3(Teff/5777 K)3/2

(∆ν/134.9 µHz)4
, (1)

where 3050 µHz, 134.9 µHz, and 5777 K are respectively the
frequency of maximum power, large spacing, and effective tem-
perature of the Sun (errors on these values will be insignificant
when compared with errors on the β UMi values and have been
ignored).

We determined the frequency of maximum power by
smoothing the power spectrum by means of a boxcar (mov-
ing mean) smoothing filter of width 2∆ν applied twice. This
will produce a single hump of excess power that is insensi-
tive to the discrete peaks of the oscillation spectrum. The fre-
quency of maximum power observed with this method was
νmax = 2.61 ± 0.08 µHz, where the uncertainty comes from the
scatter on results observed for the artificial spectra described in
Sect. 3. We note that this location seems somewhat inconsistent
with predictions based upon the scaling laws (Table 1).

When we use the observed values of ∆ν = 0.48 ± 0.06 µHz
and νmax = 2.61 ± 0.08 µHz we obtain a mass estimate of 2.3 ±
1.4 M�. This means of estimating the mass is highly sensitive
to both νmax and ∆ν (third and fourth power dependence, respec-
tively). As both values have significant errors, this leads to a very
large fractional uncertainty in the derived mass. We have there-
fore used two other approaches to estimate the mass, which give
better constrained estimates. In the first approach (Stello et al.
2008), we use estimates of the luminosity (from use of the paral-
lax) and effective temperature from Table 1, in combination with
the value for νmax. This expression is
(

M
M�

)
=

(νmax/3050 µHz)(L/L�)
(Teff/5777 K)3.5

· (2)

For β UMi this method returns a mass estimate of 1.4 ± 0.2 M�.
In the second approach, we make use of the dependence of ∆ν on
the square root of the mean density of the star. This expression is:

(M/M�) = (∆ν/134.9 µHz)2(R/R�)3. (3)

When we use the independent interferometric determination of
R = 44.4 ± 0.7 R� (Table 1), we obtain a mass of 1.1 ± 0.3 M�.

The mass estimates obtained from these two approaches are con-
sistent with each other, but do differ significantly from the log g
and evolutionary track mass estimates shown in Table 1. Since
the two approaches make use of input data that are independent,
we may give a combined mass estimate of 1.3 ± 0.3 M�.

From the fitted width, a mode lifetime τ = 1/(π∆) (where ∆
is the mode width) of 18 ± 9 days is obtained giving a low
Q-factor (ν/∆) of approximately 12. It has been suggested that
Sun-like oscillations may show a trend of decreasing quality
with decreasing frequency. Our results here respect this trend,
when considered in the context of other results obtained for
ξ Hya (νmax ≈ 80 µHz, Q ≈ 55; Stello et al. 2006) and Arcturus
(νmax = 3.5 µHz,Q ≈ 20; Tarrant et al. 2007).

We observe a maximum rms mode amplitude of
1.3 ± 0.4 ppt. This observed amplitude agrees with our
original prediction of 1.6 ± 0.5 ppt shown in Table 1. However,
the Table 1 prediction was made from the scaling laws based
upon an estimated mass of 2.2 M�. The prediction assumes that
mode amplitudes scale linearly with the luminosity-to-mass
ratio (L/M). If we re-calculate the predicted amplitude using our
estimated mass from above (1.3 ± 0.3 M�), we obtain a value
of 2.8 ± 0.8 ppt. While this prediction is more than double our
observed amplitude, the large errors on both the prediction and
observation mean the two values lie only 1.5σ apart.

5. Conclusions

Variability of period≈4.6 days has been observed in the K4III gi-
ant star, βUMi. Two modes appear to be present at 2.44 and
2.92 µHz, with a spacing between harmonics of 0.48 µHz. The
mode lifetime is estimated to be 18 ± 9 days.

Derived values for the frequency of maximum mode power
and spacing between harmonics suggest that previous estimates
of the mass, which have been in the range of ≈2.0 to 2.5 M�,
may represent an overestimate of the true mass, so we tentatively
suggest a lower mass for the star of 1.3 ± 0.3 M�.

The maximum rms mode amplitude is consistent with the
predictions from scaling relations, falling about 1.5σ below pre-
dictions based on the revised mass estimate given above.
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