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An extension of mean-�eld coarsening theory to include particle

coalescence using nearest-neighbour functions

Hector Basoalto and Magnus Anderson∗

School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

Abstract

A mean �eld description of particle coalescence and Ostwald ripening is presented. The inclusion

of particle coalescence events is shown to in�uence the evolution of the size distribution function

and the time taken to reach the steady state particle coarsening regime. Nearest neighbour

functions are used to represent the spatial arrangement of particles within multi-modal particle

radius distributions and to calculate the frequency of coalescence events. The impact of particle

coalescence upon long term coarsening kinetics has been studied. By tracking the evolution of

a unimodal and bimodal dispersions in phase space, it is demonstrated that coalescence a�ects

the paths of particle dispersion towards the steady state particle coarsening regime as well as the

time scales to reach it.

Keywords: multimodal γ′ dispersion, mean �eld theory, coalescence, Nickel-based superalloys

1. Introduction

The mechanical response of precipitate strengthened alloys are signi�cantly in�uenced by the

size and spatial distribution of the embedded particle phase. At high temperatures the dispersion

is unstable, with particle growth rates driven by the minimisation of the free energy. During

Oswald ripening, kinetics of particle coarsening are driven by the minimisation of the interfacial

energy between the particle and matrix phases. This phenomena was �rst treated by Greenwood

[1] and later expanded into a comprehensive mean �eld theory by Lifshitz and Slyozov [2] and

Wagner [3] (LSW) for dilute particle dispersions in a binary alloy. LSW coarsening theory pre-

dicts the existence of an attractor (steady) state for the particle radius distribution. Once such

a state is attained LSW theory predicts scaling laws for the temporal evolution of the moments

of the particle size distribution: the cubed mean particle radius increases linearly with time and

the concentration of particles decreases linearly with time.

Over the last forty to �fty years, there has been a considerable e�ort on the extension of LSW

coarsening theory to describe particle kinetics in engineering precipitate strengthened materi-

als. Progress has been made in linking the chemical composition of alloys to coarsening ki-
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netics through CALPHAD (Computer Coupling of Phase Diagrams and Thermochemistry) [4].

Kheuman and Voorhees [5] developed a description of ternary alloys, which was later generalised

to multi-components by Jou et al. [6] and Phillipe and Voorhees [7]. Other multi-component

formulations have been developed such as that by Svoboda et al. [8] and Chen et al. [9]. Soft-

ware such as TC PRISMA [10] and MatCalc [11] o�er the ability to calculate the phase diagram,

particle composition, thermodynamic variables and mobility variables needed to determine the

particle kinetics as a function of chemical composition. These models capture the formation and

growth of particles, describing Ostwald ripening kinetics coupled with classical nucleation theory.

Another key aspect in simulating the precipitate kinetics in engineering alloys is the treatment

of non-dilute particle systems [12]. Neighbouring particle's di�usion �elds may interact, accel-

erating the particle growth or dissolution rate. Multiple-particle di�usion has been assessed by

describing the di�usion �eld as quasi-static with particles treated as either point sources or sinks

[13, 14, 15]. Several authors have built upon this approach and that of Ardell [12], deriving cor-

rection factors to modify dilute particle growth rates to describe �nite volume fraction particle

dispersions [16, 17, 18].

Other phenomena may impact particle coarsening behaviour such as changes in particle morphol-

ogy [19, 20], inverse coarsening [21] and particle coalescence [22]. Di�erences in lattice parameter

between coherent particles and matrix gives rise to mis�t stresses which contribute to the elastic

strain energy and in�uences the particle morphology [19]. When the contribution to the total

energy of elastic strain energy is greater than that of interfacial energy, it is possible that small

particles grow at the expense of larger particles. Su et al. [21] describe such events as inverse

coarsening. In high volume fraction particle dispersions, particle coalescence can impact both

particle morphology and size [22].

The aim of this paper is to further develop the mean �eld description of population dynam-

ics of polydispersed particles to include coalescence events. The approach involves introducing

appropriate coalescence source and sink terms to the advection di�erential equation governing

the evolution of the particle size distribution and is developed in Section 2. To account for the

spatial arrangement of particles, a statistical approach based on nearest neighbour functions has

been adopted. Numerical implementation of the model is outlined in Section 3. The results and

discussion sections are given in Sections 4 and 5, and the work is concluded in Section 6.

2. A mean �eld description of particle coarsening and coalescence

2.1. Evolution of the particle radius distribution

The particle radius distribution function F (R, t) is de�ned as follows: the number of particles

per unit volume with radius between R and R+ dR is given by F (R, t)dR. The total number of
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particles per unit volume Nv(t) is then the integral of this function for all possible particle radii

Nv(t) =

∫ ∞
0

F (R, t) dR (1)

Nucleation, dissolution and coalescence of particles will in�uence the temporal evolution of Nv(t).

These mechanisms can be accounted for by introducing appropriate source and sink terms, such

that the rate of change of the total number of particles per unit volume is given by

Ṅv(t) = Ṅ+
v (t)− Ṅ−v (t) (2)

where Ṅ+
v (t) and Ṅ−v (t) are the 'generation' and 'removal' rates, respectively. These are as-

sociated with a number of possible phenomena such as nucleation, coalescence and dissolution.

Both Ṅ+
v (t) and Ṅ−v (t) can be expressed in terms of particle size density functions ṅ+(R, t) and

ṅ−(R, t), so that the number of particles generated and removed per unit volume with radius

lying in the closed interval [R,R+dR] is then dṄ+ = ṅ+(R, t)dR and dṄ− = ṅ−(R, t)dR. With

these de�nitions, Equation (2) becomes

Ṅv(t) =

∫ ∞
0

(
ṅ+(R, t)− ṅ−(R, t)

)
dR (3)

The source terms ṅ+(R, t) and ṅ−(R, t) may be introduced into the continuity equation:

∂F (R, t)

∂t
+
∂(F (R, t) V (R, t))

∂R
= ṅ+(R, t)− ṅ−(R, t) (4)

From the moments of F (R, t) the mean particle size and volume fraction of the dispersion can

be calculated:

〈R〉 =
1

Nv

∫ ∞
0

R F (R, t)dR (5)

φ =
4

3
π

∫ ∞
0

R3F (R, t)dR (6)

The general form of the particle growth rate for spherical particles is given by [23]

V (R, t) =
A(t)

R

(
1

Rc(t)
− 1

R

)
z(R, t) (7)

where A is a function of the di�usivities of the alloying elements. The term z is a correction

factor that accounts for competitive growth [12, 13, 14, 16, 15, 17, 18]. The parameter Rc is a

critical radius and represents the particle size at which the transition between dissolution and

growth occurs. The mean �eld description outlined above assumes that particles are spherical

and maintain this morphology as the particle radius distribution evolves.

2.2. Particle coalescence

Consider the coalescence of two particles of size R1 and R2 forming a new particle of size R.

Introducing the volume fraction frequency density g(R, t) de�ned such that the volume fraction

of particles having radius between R and R+ dR is g(R, t)dR. This is the probability of �nding
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particles with radius lying in the closed interval [R,R + dR]. It is related to the distribution

function F (R, t) as follows

g(R, t)dR =
4π

3
F (R, t)R3dR (8)

Assuming that the probability of any two particles randomly sampled from the dispersion having

sizes R1 and R2 are independent from each other, then the likelihood of the �rst particle having

a radius R1 ∈ [R1, R1 + dR1] and the second particle having a radius in R2 ∈ [R2, R2 + dR2]

is given by g(R1, t), g(R2, t)dR1dR2. Let Gp(R1, R2, λ) be a spatial distribution function (to be

de�ned in Section 2.3) such that the probability of �nding a particle of size R1 at a distance

[λ, λ + dλ] from R2 is given by Gp(R1, R2, λ)dλ. The probability of two particles with radius

R1 ∈ [R′1, R
′
1 + dR′1] and R2 ∈ [R′2, R

′
2 + dR′2] a distance λ ∈ [λ′, λ′ + dλ′] is

P [R′1 < R1 ≤ R′1 + dR′1, R
′
2 < R2 ≤ R′2 + dR′2, λ

′ < λ ≤ λ′ + dλ′] = fc (R′1, R
′
2, λ
′) dR′1dR

′
2dλ
′

(9)

where

fc (R′1, R
′
2, λ
′) = g(R′1, t) g(R′2, t) Gp(R

′
1, R

′
2, λ
′) (10)

If at any given time only two particles merge, the total possible number of coalesce events is

1/2 Nv. The particle collide a rate is then given by 1/2 Nv Γ(R1, R2, λ) fc (R′1, R
′
2, λ
′) dR′1dR

′
2dλ
′,

where Γ(R1, R2, λ) is the frequency at which two particles R1 and R2 initially a distance λ apart

coalesce. Integrating over all possible values of R1, R2 and λ, the rate of coalescence is given by

Ṅ+
v (t) =

1

2
Nv(t)

∫ ∞
0

∫ ∞
0

∫ ∞
0

Γ (R′1, R
′
2, λ
′) fc (R′1, R

′
2, λ
′) dR′2 dλ

′ dR′1 (11)

Since the integral is identi�ed as the expectation value of the coalescence frequency 〈Γ〉, it follows

that Equation (11) can be expressed as Ṅ+
v = 1/2 Nv 〈Γ〉 . Carrying out a change of variable

from R′1 to R using the volume constraint R3 = R′31 +R′32 , Equation (11) becomes

Ṅ+
v (t) =

1

2
Nv(t)

∫ ∞
0

∫ ∞
0

∫ ∞
0

R2 Γ
(
(R3 −R3

2)1/3, R′2, λ
′) fc ((R3 −R3

2)1/3, R′2, λ
′)

(R3 −R′32 )2/3
dR′2 dλ

′ dR

(12)

Comparing Equations (11)with (3) we obtain the following expression for the generation rate

density function

ṅ+v (R, t) =
1

2
Nv(t)

∫ ∞
0

∫ ∞
0

R2 Γ
(
(R3 −R3

2)1/3, R′2, λ
′) fc ((R3 −R3

2)1/3, R′2, λ
′)

(R3 −R′32 )2/3
dR′2 dλ

′

(13)

The particle sink rate ṅ−v (R, t) can be derived by considering the frequency at which a particle

of size R is intercepted by another of size R′. Using similar arguments as above, the rate at

which particles are removed due to collision is given by

ṅ−v (R, t) = Nv(t)

∫ ∞
0

∫ ∞
0

Γ (R,R′, λ′) f (R,R′, λ′) dR′ dλ′ (14)

The frequency of coalescence, Γ(R1, R2, λ) can be determined from the inverse of the time taken

for two particles to grow such that their separation distance λ→ 0. This occurs at a rate given
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by
dλ(R1, R2)

dt
= − [V (R1, t) + V (R2, t)] (15)

where the growth rates of the two particles are given by V (R1, t) and V (R2, t) respectively. It is

currently assumed that the particles are spherical. In real alloys the precipitate morphologies can

have complex shapes and the mean interface velocity of such particles will deviate from that of a

sphere. In particular, in high volume fraction nickel-based superalloys, large γ′ particles tend to

be cuboidal and in this case they will grow at a slower rate than that predicted for a spherical

particle of equivalent volume due to its planar interfaces. As a result, the mean growth rate of

a particle,V̄ may be related to the growth rate a spherical particle of equivalent volume through

the following relation, V (R, t) = kV̄ (R, t), where k is a scaling parameter associated with the

ratio of area of curved surfaces and total surface area of the particle. Solving the Equation (15)

for the time t∗ as λ→ 0, the coalescence rate can then be estimated through the relation

Γ (R1, R2, λ) =
k

t∗
s(t− t∗) (16)

where s(t− t∗) = 1 if t > t∗ and s(t− t∗) = 0 if t < t∗.

2.3. Nearest neighbour functions

The coalescence rates derived in the previous section require knowledge of the spatial distri-

bution function Gp(R1, R2, λ). Lu and Torquato [24] have developed spatial probability functions

descriptive of the particle spacing in systems of randomly dispersed penetrable or impenetrable

spheres. This work makes use of the nearest neighbour functions descriptive of three dimensional

impenetrable spheres [25, 26].

Consider a poly-dispersion of particles. Figure 1 gives a schematic representation of the pa-

rameters used to de�ne the spatial arrangement. Surrounding each particle is a spherical domain

Ω that is free of neighbouring particles. Torquato [25] de�nes the exclusion probability, Ep(R, λ∗),

as the likelihood of �nding a region Ω of radius λ∗ enclosing a particle of radius R. The inter-

particle spacing between the reference particle and the nearest neighbour is given by λ. The

dependence of Ep(R, λ∗) on λ∗ is illustrated in Figure 2(a). For values of λ∗ less than the radius

R we have Ep(R, λ∗) = 1. For λ∗ > R the likelihood of encountering a neighbouring particle in-

creases and thus Ep decreases. The distance at which Ep → 0 is the maximum possible distance

between the centre of the particles of radius R and the nearest neighbouring particle's surface

predicted by the Ep function.

Let Hp(R, λ
∗) be a probability density function such that the likelihood of �nding a nearest

neighbour at a distance within the closed interval [λ∗, λ∗+dλ∗] from the reference particle centre
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Figure 1: An illustration of the nearest neighbour function a) Hp(R) and b), Gp(R1, R2).

is Hp(R, λ
∗)dλ∗. The Hp(R, λ

∗) function is related to Ep(R, λ∗) through the relations [25]:

Ep(R, λ
∗) = 1−

∫ λ∗

0

Hp(x)dx

Hp(R, λ
∗) = −∂Ep

∂λ∗
(17)

The Ep(R, λ∗) and Hp(R, λ
∗) functions are obtained from the particle radius probability density

function, f(R, t) = F (R, t)/Nv(t). The Ep(R, λ∗) function can be calculated from the moments

of f(R, t). The Dth moment is de�ned as

〈RD(t)〉 =

∫ ∞
0

RDf(R, t) dR (18)

where D is the degree of the moment. The speci�c surface of the particle dispersion, S is given

by

S =
〈R2〉
〈R3〉

〈R〉 (19)

The calculation for the function Ep(R, λ∗) is given in Equation set (20), where the radius of the

spherical region Ω is normalised by the mean diameter of the particle radius distribution (2〈R〉)

[24]:

x = λ∗/(2〈R〉)

Ev(x) = φ.exp
[
−2φS

(
a0x

3 + a1x
2 + a2x

)]
Ep(x) =

Ev(x)

Ev(x = R/(2〈R〉))

Hp(x) = −∂Ep
∂λ∗

=
φS

2〈r〉
(
3a0x

2 + 2a1x+ a2
)
Ep(x)

Ep(λ
∗) = 1, Hp(λ

∗) = 0, for 0 ≤ λ∗ ≤ R

(20)
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Figure 2: An example of the Ep and Hp functions.

The coe�cients a0, a1 and a2 are

a0 =
4
[
〈R〉2/〈R2〉

]
(1− φ)(1− η + 3φS) + 8φ2S2

(1− φ)3

a1 =
6
[
〈R〉2/〈R2〉

]
(1− φ) + 9φS

(1− φ)2

a2 =
1

1− φ

(21)

The mean particle spacing for particles of radius R is

λ̄(R) =

∫ ∞
R

Ep(R, λ
∗) dλ∗ =

∫ ∞
0

λ∗Hp(R, λ
∗) dλ∗ −R (22)

To evaluate the accuracy of the nearest neighbour function method, a similar approach to the

numerical analysis of Lu and Torquato [24] has been implemented and applied to a unimodal and

bimodal distribution of particles. This involves generating randomly dispersed three dimensional

systems of impenetrable spheres with periodic boundary conditions. The Gaussian and bimodal

distributions described by Chen and Voorhees [27] have been used to de�ne the initial shape of
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Figure 3: The initial particle radius distributions used in this study.

the particle radius distribution, and are given by

χ(ρ, t = 0) =
A

σ
√

2π
exp

[
−(ρ− µ)2

2σ2

]
ρ = R(t)/ 〈R(t)〉

χ(ρ, t = 0) dρ =
4π

φ∞
F (R, t) 〈R(0)〉3 dR

(23)

where µ and σ a�ect the shape of the size distribution and the normalisation constant A is

determined from mass balance. These are illustrated in Figure 3. The unimodal particle radius

distribution is generated using a µ parameter value of 1.0 and a σ value of 0.1. The bimodal

distribution is generated using µ values of 0.75 and 1.25, and σ values of 0.07 and 0.25. Both

particle radius distributions had a mean particle radius of 1µm with a volume fraction of 40%.

To generate systems of randomly dispersed non-penetrating spheres, an initial system of com-

pact particles was created from the cumulative distribution function associated with f(R, t).

The method used to generate the initial structure was similar to that of Zhou et. al. [28], and

is based on a rain dropping algorithm. Once a compact dispersion of particles was obtained,

the next step was to repeatedly move each particle in a random direction by a small amount.

The mean particle spacing was used to determine the amount of movement needed to obtain a
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Figure 4: Generation of a random particle dispersion. (a) A bi-modal particle ensemble; (b) Change in mean

particle spacing due to random movement of particles.

random dispersion, as shown in Figure 4. A total of 5956 and 8365 unique particles were used to

describe the unimodal and bimodal particle radius distributions, respectively. Di�erent spatial

con�gurations of these particles were used to assess a total of 482,436 and 677,565 particles for

the unimodal and bimodal distributions.

Figure 5 compares the mean particle spacing of a reference particle from the numerically gen-

erated data to the calculated mean spacing from Equation 22. The calculated and measured

exclusion probabilities are compared in Figures 6 and 7, which show reasonable agreement. The

variations (5%-95% percentile) in the numerically determined data are also shown in Figures 4-7.

The mean relative di�erence between the mean spacings calculated using the Hp(λ
∗, R) function

and the numerically generated particle systems is -9.04 ± 3.75 %. The di�erence is within the

standard deviation of the particle spacings measured from the numerically generated particle

systems.

Although it has been demonstrated that Equations (20 - 22) can be applied to bimodal

particle distributions with reasonable accuracy, there is a limit to the width of the shape of the

particle radius distribution that may be described. The issue occurs when Ev(R, λ∗)→ 0. This

becomes a problem for particle radius distributions where the maximum particle radius is signif-

icantly greater than the mean particle radius, such as the tri-modal particle radius distributions

that exist in turbine disc nickel-based superalloys. The method adopted in this work was to

determine the largest particle size that can be calculated and restrict the reference particle size

to a value below this limit.

When calculating the coalescence rates ṅ+v (R, t) and ṅ−v (R, t), the nearest neighbour function

9



Figure 5: The comparison of the predicted and numerically measured particle spacing for di�erent reference

particles in the a) unimodal and b) bimodal particle radius distributions.
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Figure 6: A comparison of the predicted exclusion probability and the exclusion probability measured from a

unimodal distribution of particles created numerically.
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Figure 7: A comparison of the predicted exclusion probability and the exclusion probability measured from a

bimodal distribution of particles created numerically. The black crosses refer to the numerically generated data

whilst the red line describes the prediction.
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needs to be extended to account for the size of the neighbouring particles. Figure 1 illustrates the

di�erence between the Hp(λ
∗, R) and Gp(λ∗, R,R2) functions. In Figure 1 (b), the Gp(λ∗, R,R2)

function describes the domain Ω originating from the reference particle's centre to the nearest

particle of radius greater than R2. In this case, the Gp(λ∗, R,R2) function is a conditional prob-

ability of �nding a spherical domain Ω free of neighbouring particles of radius greater than R2.

The Gp(λ∗, R,R2) is obtained from Hp(R, λ
∗) as describe by Torquato [25], with the moments

that enter the calculation obtained from Equation set (24). Note that the integral is over the

interval [R2,∞]. The Gp(λ∗, R,R2) function is given by Equation set (25).

〈RD(t)〉 =

∫ ∞
R2

RDf(R, t) dR

Nv(t) =

∫ ∞
R2

F (R, t) dR

φ(t) =
4π

3

∫ ∞
R2

R3F (R, t) dR

(24)

x = λ∗/(2〈R〉)

ev(x) = φ.exp
[
−2φS

(
a0x

3 + a1x
2 + a2x

)]
ep(x) =

ev(x)

ev(x = R/(2〈R〉))

Gp(x) =
φS

〈D〉
(
3a0x

2 + 2a1x+ a2
)
ep(x)

(25)

Figure 8 compares the predicted particle spacings and numerical measurements for the bimodal

particle radius distributions for three di�erent sizes of R2. The calculation captures the correct

behaviour however, there are noticeable discrepancies between the estimated values for λ from

the discrete particle dispersion model and the Gp(λ∗, R,R2) function. Let the relative deviation

be given by d(R1, R2) = (λGp
− λr)/λr, where λGp

and λr are the spacings obtained from

Gp(λ
∗, R,R2) and the discrete simulation, respectively. The average value for d is -0.16 ± 0.158

with a lower and upper limit of -0.41 and 0.25, respectively.

3. Numerical implementation

3.1. The particle growth rate

This work utilises the particle growth rate expression proposed by Svoboda et. al. [8], which

is based on a multi-component description of di�usion in an alloy containing n many alloying

elements. Let the chemical potential and concentration of the ith alloying element within the

particle phase be given by µki and cki, respectively. Similarly for the matrix phase, these are

µ0i and c0i. The matrix di�usivity of the ith element is given by D0i. The multi-component

13



Figure 8: A comparison of the predicted and measured exclusion probability from a bimodal distribution of

particles generated numerically.
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growth rate of Svoboda et. al. [8] has been rearranged to have the same form as Equation (7).

The terms A and Rc for this case are given below:

A =
2σ

RgT

[
n∑
i=1

(cki − c0i)2

c0iD0i

]−1
(26)

Rc =
2σ

−Umis −
n∑
i=1

cki(µki − µ0i)
(27)

where σ is the interfacial energy, Umis is the mis�t strain energy, T is the absolute tempera-

ture and Rg is the gas constant. For non-dilute particle dispersions, Marqusee and Ross [14]

introduced the following correction factor for the particle growth rate

z(R, t) = 1 +R(t)
√

4πNv(t) 〈R(t)〉 (28)

The model has been applied to describe the coarsening and coalescence kinetics of the γ′ phase

particles in the nickel-based superalloy, Inconel 738LC. This alloy contains a high volume fraction

of particles in the as-heat treated condition, making it suitable for the proposed calculations.

The composition is given in Table 1. The commercial software Thermocalc [10] has been used

to calculate the thermodynamic and mobility parameters, making use of the thermodynamic

database TTNI8 and mobility database MOBNi1.

Al B C Co Cr Mo Nb Ni Ta Ti W Zr

7.26 0.05 0.52 8.19 17.5 1.04 0.513 bal 0.549 4.09 0.803 0.0342

Table 1: Chemical composition of IN738LC (at.%)

3.2. Normalisation and reformulation

The normalisation procedure outlined by Lifshitz and Slyozov [2] has been applied to the

coalescence source and sink rates. The spatial and temporal terms are now made dimensionless

with the normalisation constants Rk and τ , respectively. The normalised continuity equation is

given by
∂ξ(r, t′)

∂t′
+
∂ξ(r, t′)v(r, t′)

∂r
= q+(r, t′)− q−(r, t′) (29)
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where the normalised coalescence source and sink are given by q+ and q− respectively. The

normalised model parameters are de�ned as

ξ(r, t′)dr ≡ F (R, t)R3
kdR ≡

3

4π

(
Rk
R

)3

g(R, t)dR

r ≡ R(t)/Rk

rc ≡ Rc(t)/Rk

t′ ≡ t/τ

λ′ ≡ λ∗(t)/Rk

Γ′ ≡ Γ(R,R2, λ
∗)τ

G′p ≡ Gp(R,R2, λ
∗)Rk

τ ≡ R3
k/A(t)

(30)

The normalised moments are given by Equation set (31) with the normalised particle growth rate

given in Equation (32). These have been obtained by substituting Equation (10) into Equations

(13) and (14). The normalised coalescence source and sink rates are given in Equations (33) and

(34), respectively.

Nv(t) =
1

R3
k

∫ ∞
0

ξ(r, t′) dr =
1

R3
k

nv(t/τ)

〈R(t)〉 =
Rk
nv

∫ ∞
0

rξ(r, t′) dr = Rk(t/τ)〈r〉

φ(t) =
4π

3

∫ ∞
0

r3ξ(r, t′) dr

(31)

v =
1

r

(
1

rc(t/τ)
− 1

r

)
z(r, t/τ) (32)

q+(r, t′) =
8π

9
nv(t

′)

∫ ∞
0

∫ ∞
0

ξ((r3 − r32)1/3, t′)ξ(r2, t
′)r32 r

2 (r3 − r32)

(r3 − r′32 )2/3

×G′p
(

(r3 − r32)1/3, r′2, λ
′
)

Γ′
(

(r3 − r32)1/3, r′2, λ
′
)
dr′2 dλ

′ (33)

q−(r, t′) =
16π

9
nv(t

′)

∫ ∞
0

∫ ∞
0

ξ(r, t′) r3 ξ(r′, t′) r′3 G′p (r, r′, λ′) Γ′ (r, r′, λ′) dr′ dλ′ (34)

Further improvement to the accuracy of the calculation may be obtained by describing the

particle radius distribution in a space scaled by the volume of the particle, as shown below.

γ(r, t′)dr ≡ 4π

3
ξ(r, t′)r3dr (35)

This reformulation avoids loss of signi�cance errors which may occur when there is a large

di�erence between the mean particle sizes of multi-modal particle dispersions. This normalisation

leads to the following form of the continuity equation

∂γ(r, t′)

∂t′
+
∂(γ(r, t′)v(r, t′))

∂r
=

3

r
γ(r, t′) + ω+(r, t′)− ω−(r, t′) (36)
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where ω+(r, t′) and ω−(r, t′) are the reformulated coalescence rates

ω+(r, t′) =
1

2
nv

∫ ∞
0

∫ ∞
0

r2 γ((r3 − r32)1/3, t′) γ(r2, t
′)

(r3 − r′32 )2/3

×G′p((r3 − r32)1/3, r2, λ
′) Γ′((r3 − r32)1/3, r2, λ

′) dλ′ dr2 (37)

ω−(r, t′) = nv

∫ ∞
0

∫ ∞
0

γ(r, t′) γ(r′, t′) G′p (r, r′, λ′) Γ′ (r, r′, λ′) dλ′ dr2 (38)

The reformulated moments are obtained as follows

Nv(t) =
3

4πR3
k

∫ ∞
0

r−3 γ(r, t′) dr

〈R(t)〉 = Rk

∫ ∞
0

r−2 γ(r, t′) dr

/∫ ∞
0

r−3 γ(r, t′)dr

φ(t) =

∫ ∞
0

γ(r, t′) dr

(39)

3.3. Numerical considerations

The numerical methods described by Anderson et al [29] were applied to solve the continuity

equation given in Equation 36. A Courant-Friedrichs-Lewy condition was used to determine the

appropriate time step based upon the particle growth and coalescence rates.

When calculating the coalescence rate, the maximum spacing λ′m for two particles sized R1 and

R2 was calculated by determining the distance λ′ such that Gp(R1, R2, λ
′) ≈ 0. The distance

λ′ = R1 to λ′ = λ′m was then discretized and Gp(R1, R2, λ
′) and Γ(R1, R2, V, λ

′) calculated for

these ordinates. The computation time was improved by �rst calculating the Gp(F (R, t), R1, R2)

coe�cients as a function of R2 to avoid repetition. A smaller number of ordinates was used to

discretize the coalescence rates than used to de�ne the particle radius distribution with cubic

spline interpolation linking the discretizations.

4. Results

4.1. Particle coarsening and coalescence

Numerical solutions of Equation (36) for the unimodal and bimodal dispersions introduced

in Section 2.3 (and shown Figure 3) will now be presented. The predicted evolution of these

distributions are shown in Figure 9 for di�erent values of the scaling parameter k introduced in

Section 2.2. The corresponding mean particle radius 〈R(t)〉 and concentration Nv(t) for these

cases are shown in Figure 10. The condition of k = 0 is descriptive of kinetics entirely driven

by Ostwald ripening without particle coalescence. In this limit, the mean particle radius of the

unimodal particle dispersion is observed to decrease during the transient coarsening regime as

shown in Figure 10 a). Figure 10 b) shows that approximately 1000h is needed for particles

to shrink su�ciently to fully dissolve within the matrix, initiating the reduction of the particle
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concentration. Particle coalescence changes this behaviour, causing the reduction in the particle

number density prior to complete dissolution. As a result of coalescence, there is a brief increase

in mean particle radius as shown in Figure 10 a). The impact of coalescence upon the evolution

of the particle distribution is shown in Figure 9. A signi�cant number of coalesce events result

in the skewing of the size distribution to the right, as shown in Figure 9 b).

For the bimodal dispersion with k = 0, the simulated behaviour begins with the dissolution

of the smaller population of particles to allow for the growth of the larger population. It takes

approximately 500h for the smaller particle population to commence dissolution. During this

time scale the mean particle radius decreases (see Figure 10(c)). As the small particles are

removed from the system, the mean particle radius increases; however after 2000h the smaller

particles have been completely dissolved and 〈R〉 decreases. To continue coarsening, competitive

growth must occur between the larger population of particles. This results in a decreasing mean

particle radius, as particles from the larger population start to shrink. Once these particles fully

dissolve, the mean particle radius then continues to increase. By this time the particle dispersion

is nearing the steady state coarsening regime, as shown in Figures 9 i) and j). These solutions

illustrate that it can take a few hundred hours to establish steady state (regime were the mean

particle size scales with t1/3) for unimodal particle distribution and considerably longer for a

bimodal dispersion.

Particle coalescence changes this behaviour for the bimodal distribution, introducing a new

population of coalesced particles as shown in Figure 9 g). Such solutions arise from repeated

coalescence events between the largest and smallest particle populations. The predicted series

of events change so that after the �rst population of the bimodal particle dispersion dissolves, a

multi-modal particle dispersion remains. For the condition where k =1/30, a tri-modal particle

population exists after 20,000h as shown in Figure 9 j).

4.2. Attractor states

The impact of coalescence upon the evolution of the unimodal and bimodal particle size

distributions towards the attractor state has been studied. The attractor state is important in

that once reached the moments of the particle size distribution follow simple scaling laws, i.e.,

〈R〉 ∼ t1/3. LSW derived an analytical solution to describe the attractor state in the limit of

dilute particle dispersions. For non-zero volume fraction particle systems, analytical solutions

are di�cult to derive and in most cases obtained numerically. Chen and Voorhees [27] have in-

vestigated the impact of the initial shape of the particle size distribution on its evolution towards

the attractor state using a phase space representation. This approach has been adopted in the

present work.

The phase space is constructed from the temporal evolution of moments of the particle size
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Figure 9: The simulated evolution of the particle radius distribution for di�erent values of k.
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Figure 10: Statistical predictions of the coarsening kinetics of the bimodal and unimodal particle dispersions

with di�erent values of k

probability density function ω(ρ, t), where ρ = R/〈R〉. The ω(ρ, t) distribution is related to

F (R, t)dR as follows

ω(ρ, t) dρ =
1

B 〈R〉
F (R, t) dR (40)

where B is an integration constant that ensures
∫ ∞
0

ω(ρ, t) dρ = 1. The n-th moments hn(t) of

ω(ρ, t) with respect to ρ are given by

hn(t) =

∫ ∞
0

ρnω(ρ, t)dρ (41)

A trajectory in phase space is given by the pair
(
hn(t), ḣn(t)

)
.

Following Chen and Voorhees [27], the attractor state for particle dispersions containing vol-

ume fractions of 1% , 20% and 40% have been calculated and are shown in see Figure 11. These

were calculated using the z(R, t) factor derived by Marqusee and Ross [14]. The simulated evo-

lution of ω(ρ, t) for the unimodal and bimodal particle dispersions are shown in Figure 12, for

di�erent magnitudes of k. For the unimodal dispersion, particle coalescence increases the right

hand tail of ω(ρ, t), as shown in Figure 12 a) to e). The coalescence behaviour for the bimodal

dispersion is such that distinct new populations of coalesced particles are formed, as shown in

Figure 12 j). Figures 13 e) and 14 e) show the trajectories in phase space for the unimodal and

bimodal particle dispersions, plotting h2 against dh2/dt. The 2nd moment of ω(ρ, t) is descrip-

tive of the width of the distribution. The direction of the trajectory is given by arrows with
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Figure 11: The attractor shapes based on the Marqusee and Ross [14] z factor.

dispersions at select times shown in the Figures a), b), c) and d).

For the unimodal particle dispersion with k = 0, the initial width of the dispersion is less than

that of the distribution at steady state. The results from k = 1/30 and k = 1/150 show a much

larger increase in width, with the trajectory curling around towards that of k = 0. The initial

increase in h2 for k = 1/30 and k = 1/150 is due to widening of the distribution resulting from

coalescence forming a large tail on the right hand side of the dispersion at the beginning of the

simulation. The bimodal trajectory for k = 0 starts with a lower value for h2 than the attractor

state. The moment h2 increases as the smaller population of particles shrink and the larger

population grows. As the smaller population of particle is removed, the width of the dispersion

narrows. The larger population then proceeds to widen, as it coarsens towards the attractor

state. Similar to the behaviour of the unimodal coarsening kinetics, particle coalescence results

in an initial increase in h2 due to the formation of a population of coalesced particles. The

presence of the coalesced particles results in an o�set in the value of h2 compared to the results

from k = 0.
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Figure 12: The evolution of the particle distribution shape for the unimodal and bimodal particle dispersions.
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Figure 13: A phase plot of the trajectory of the unimodal particle dispersion during coarsening

Figure 14: A phase plot of the trajectory of the bimodal particle dispersion during coarsening
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5. Discussion

The present work has focused on modelling the in�uence of particle coalescence events on

Oswald ripening. The coalescence rates were determined using of nearest neighbour functions

to capture the spatial arrangement of the particle dispersion. The model has been applied to

a unimodal and bimodal particle size distributions. Numerical solution of Equation (36) with

a starting unimodal dispersion predicts that particle coalescence has the e�ect of skewing the

particle radius distribution to the right, i.e., the density of the large particles is increased (see

Figure 12 ). For the bimodal distribution, the proposed model predicts new distinct particle

populations when coalescence takes place, as shown in Figure 9 j).

Particle coalescence extends the transient coarsening regime, as well as, perturbing the tra-

jectory towards the attractor state, as shown in Figures 13 and 14. The numerical solution

presented in this study were upto 20,000h, and within this time frame the unimodal disper-

sion reached the attractor state but the bimodal did not. As the particle dispersion coarsens,

the spacing increases and the particle concentration decreases, slowing the rate of coalescence.

As the impact of particle coalescence reduces, Ostwald ripening kinetics becomes the dominate

mechanism, with the dispersion evolving towards the Ostwald ripening attractor state.

Many alloys are speci�cally heat treated to obtain particle dispersions that evolve within the

transient coarsening regime. This work has shown that particle coalescence has a large impact

upon this regime, deviating the trajectory from the steady state. Including the mechanism may

prove important in capturing particle kinetics in greater detail.

A key limitation in the mean �eld description is the description of the particle geometry, where

complex morphologies are approximated by a sphere of equivalent volume. The parameter k

was introduced to address the deviation of the growth of particles with complex morphologies

that have non-uniform curvature, and thus non-uniform growth rates, from that expected from

spherical particles. Kozeschnik et al. [30] used shape factors to describe the particle growth rate

of disc or needle shaped precipitates. A similar approach could use to determine the k parameter.

Alternatively, the evolution of the shape factor could be derived in the context of energy min-

imisation to determine particle morphology that accounts for coalescence events. Determining

the energy minimising geometry within a non-dilute particle dispersion is a non-trivial task, as

the energy minimising shape is often sensitive to the local spatial arrangement of particles due

to the overlapping of strain �elds between neighbouring precipitates [21].

Another consideration is the description of the chemical composition of the precipitates. The

composition of the particle phase is currently described by mean values. Signi�cant di�erences

in chemistry between particle populations of γ′ particles in Nickel based superalloys has been
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observed [31]. The di�erence in composition would a�ect chemical potentials and thus particle

growth rates, impacting the continued growth behaviour of coalesced particles. The accuracy of

the calculation may be improved by accounting for such di�erences, however such detail comes

at the expense of increased computation time due to the increased number of combinations of

particles of di�erent compositions that would need to be assessed.

6. Conclusions

An extension to a mean �eld description of particle coarsening to include coalescence has been

presented. This has been achieved through the introduction of source and sink terms associated

with particle amalgamation into the population dynamics equation governing the evolution of

the particle radius distribution. Nearest neighbour functions have been used to characterise the

spatial distribution of particles and these were used to estimate the frequency of coalescence.

The particle growth rates were determined using the multi-component relation for the particle

interface velocity developed by Svoboda et al. [8] which also accounts for mis�t stresses.

The accuracy of nearest neighbour functions used to describe the spatial statistics of a dispersion

has been assessed against a numerically generated discrete ensemble of particle in three dimen-

sions. It is demonstrated that the nearest neighbour function and the discrete particle model

are in good agreement when describing interparticle spacing. They reproduce the observed be-

haviour in which large particles have smaller spacings to the nearest neighbouring particle and

greater probability of having a small particle as the nearest neighbour. This is more pronounced

for multi-modal particle dispersions.

Numerical studies of the trajectories in phase space of an initial unimodal and bimodal disper-

sion have been carried out. The paths followed by these distributions are shown to be distinctly

di�erent (see Figures 13 and 14). It is demonstrated that the inclusion of particle coalescence

in�uences the time scales to reach the attractor state.
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