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Context: Steroid 11�-hydroxylase (CYP11B1) deficiency (11OHD) is the second most common form
of congenital adrenal hyperplasia (CAH). Cases of nonclassic 11OHD are rare compared with the
incidence of nonclassic 21-hydroxylase deficiency.

Objective: The aim of the study was to analyze the functional consequences of seven novel CYP11B1
mutations (p.M88I, p.W116G, p.P159L, p.A165D, p.K254_A259del, p.R366C, p.T401A) found in
three patients with classic 11OHD, two patients with nonclassic 11OHD, and three heterozygous
carriers for CYP11B1 mutations.

Methods: We conducted functional studies employing a COS7 cell in vitro expression system com-
paring wild-type (WT) and mutant CYP11B1 activity. Mutants were examined in a computational
three-dimensional model of the CYP11B1 protein.

Results: All mutations (p.W116G, p.A165D, p.K254_A259del) found in patients with classic 11OHD
have absent or very little 11�-hydroxylase activity relative to WT. The mutations detected in pa-
tients with nonclassic 11OHD showed partial functional impairment, with one patient being ho-
mozygous (p.P159L; 25% of WT) and the other patient compound heterozygous for a novel mild
p.M88I (40% of WT) and the known severe p.R383Q mutation. The two mutations detected in
heterozygous carriers (p.R366C, p.T401A) also reduced CYP11B1 activity by 23 to 37%, respectively.

Conclusion: Functional analysis results allow for the classification of novel CYP11B1 mutations as
causative for classic and nonclassic 11OHD, respectively. Four partially inactivating mutations are
predicted to result in nonclassic 11OHD. These findings double the number of mild CYP11B1
mutations previously described as associated with mild 11OHD. Our data are important to predict
phenotypic expression and provide important information for clinical and genetic counseling in
11OHD. (J Clin Endocrinol Metab 95: 779–788, 2010)
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Abbreviations: Adx, Adrenodoxin; BA, bone age; CAH, congenital adrenal hyperplasia; DOC,
11-deoxycorticosterone; 11OHD, 11�-hydroxylase deficiency; 17OHP, 17-hydroxyprogester-
one; SDS, SD score.
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Congenital adrenal hyperplasia (CAH) is one of the
most common metabolic diseases. It is caused by a

severe or partial impairment of adrenal steroidogenesis
affecting cortisol biosynthesis. Approximately 5–8% of
all cases are due to steroid 11�-hydroxylase deficiency
(11OHD; OMIM �202010), which occurs in approxi-
mately 1:100,000 to 1:200,000 live births in nonconsan-
guineous populations (1).

Steroid 11�-hydroxylase (CYP11B1, EC 1.14.15.4)
converts 11-deoxycortisol and 11-deoxycorticosterone
(DOC) to cortisol and corticosterone, respectively. Inac-
tivating CYP11B1 mutations cause an impairment of these
two reactions. Therefore 11OHD results in an accumula-
tion of the precursor steroids, which are shunted into the
adrenal androgen synthesis pathway, resulting in viriliza-
tion of female external genitalia (46,XX disordered sex
development). Postnatal androgen excess causes preco-
cious pseudopuberty, rapid somatic growth, and acceler-
ated bone maturation in both sexes. The accumulation of
DOC, which binds and activates the mineralocorticoid
receptor, leads to hypertension in about two thirds of pa-
tients (1).

A milder, nonclassic 11OHD form (2, 3), with a phe-
notype resembling nonclassic 21-hydroxylase deficiency
(4), is caused by partial impairment of CYP11B1 function
(2). The frequency of this mild form is unknown, but it
appears to be rare (2, 3). Nonclassic 11OHD can manifest
with mild virilization and precocious pseudopuberty in
children and with signs and symptoms suggestive of poly-
cystic ovary syndrome in adult women. However, unlike
classic 11OHD, arterial hypertension is not commonly
found in the nonclassic form (2).

The CYP11B1 gene is localized on chromosome 8q21,
approximately 40 kb from the paralog aldosterone syn-
thase gene (CYP11B2) (5). A mutation cluster in exons 2,
6, 7, and 8 has been suggested (6, 7). However, a large
number of CYP11B1-inactivating mutations are localized
to other gene regions (Table 1 and Supplemental Fig. 1,
published as supplemental data on The Endocrine Soci-
ety’s Journals Online web site at http://jcem.endojournals.
org). In addition, chimeric CYP11B2/CYP11B1 genes
abolishing 11�-hydroxylase function have been de-
scribed (8 –10).

Herein, we have characterized seven novel CYP11B1
mutations identified in three patients with classic 11OHD,
two patients with a mild form (nonclassic) of the disease,
and three heterozygote carriers for CYP11B1 mutations.
To prove the disease-causing effect of the novel CYP11B1
variants, the mutations were functionally characterized
using an in vitro expression system. The results of the in
vitro analysis confirmed the molecular diagnosis of 11OHD

in five patients and allowed the 11OHD carrier status to be
established in the other three individuals.

Patients and Methods

Patients with classic CYP11B1 deficiency

Patient 1. p.[W116G]�[R448H]
The male patient of Eastern German origin first presented 34

yr ago at the age of 2 yr when admitted with vomiting. Signs of
precocious pseudopuberty were noted, including pubic hair, pe-
nile growth, and accelerated bone age (BA) of 7 yr. He was mildly
hypertensive (110/85 mm Hg). The history revealed that the pe-
nile growth, growth acceleration, and pubic hair development
had started at age 11 months. He was treated with prednisolone
until the age of 22 yr, when dexamethasone was introduced. His
final height was well within the normal range (182 cm). At
present, he is mildly overweight (body mass index, 26.87 kg/m2)
and normotensive (100/70 mm Hg). A current clinical assess-
ment revealed normal sexual function, normal sperm count, and
androgens in the normal male range.

Patient 2. p.[Q19X]�[A165D]
The male patient of British Caucasian origin was diagnosed

41 yr ago at the age of 21 months. He presented with enlarged
penis, pubic hair, and acne. At diagnosis he was hypertensive
(130/90 mm Hg; 140/90 mm Hg). Currently he receives glu-
cocorticoid treatment with prednisolone and antihypertensive
therapy with a combination of spironolactone, amiloride, and
furosemide.

Patient 3. p.[K254_A259del]�[K254_A259del]
The 13-yr-old patient of Kuwaiti origin was born with an

apparently male genital phenotype. It is reported that shortly
thereafter he was diagnosed as suffering from CAH. The patient
was commenced on hydrocortisone and fludrocortisone replace-
ment and was reared as a boy. At age 11 yr, he was hypertensive
(140/100 mm Hg), with a height of 141.1 cm [�1.74 SD score
(SDS)] and body mass index of 19.39 kg/m2 (�0.28 SDS). He had
a BA of 15.5 yr. On examination, he had a 6-cm stretched phallus
with penoscrotal hypospadias, fused rugose scrotum with no
palpable gonads, and internal female genitalia. Chromosome
analysis established the diagnosis of 46,XX disordered sex de-
velopment. The patient is now on hydrocortisone replacement
and has been gonadectomized.

Patients with nonclassic CYP11B1 deficiency

Patient 4. p.[M88I]�[R384Q]
The boy (46,XY karyotype) from Spain presented at age 10.3

yr with precocious puberty. Physical examination revealed pubic
hair stage P3, genital stage G3, a testicular volume of 8 ml, and
acne. He was normotensive. The parents reported that they had
noted penile growth continuously since birth. His height was
159.2 cm (�3.26 SDS) with an advanced BA of 14 yr. Blood
pressure was within the normal range. Basal and cosyntropin-
stimulated 11-deoxycortisol levels were elevated at 114 and
135 nmol/liter, respectively (normal values, �11.6 and �23.1
nmol/liter).
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TABLE 1. CYP11B1 gene mutations

g.DNA
Exon/

introna c.DNA Proteinb Localization
11OH activity

(%)c Ref.
g.55C�T e1 c.55C�T p.Q19X Pre-protein ND 15
g.96delC e1 c.96delC p.R33GfsX18 N-term ND 6
g.124C�T e1 c.124C�T p.P42S N-term 15 2
g.128G�A e1 c.128G�A p.R43Q N-term 30–50 16, 21
g.635T�G e2 c.248T�G p.L83S A-B connecting region 3 16
g.651G>A e2 c.264G>A p.M88I A-B connecting region 73
g659_660dup e2 c.272_273dup p.M92X A-B connecting region ND 32
g.668C�T e2 c.281C�T p.P94L B helix 0–2 13, 33
g.702_729del e2 c.315_342del p.S105SfsX19 B-C loop ND 7
g.733T>G e2 c.346T>G p.W116G B-C loop 0
g.734G�A e2 c.347G�A p.W116X B-C loop 0 12
g.735G�C e2 c.348G�C p.W116C B-C loop 3 14
g.745_749dup e2 c.358_362dup p.H122DfsX13 B-C loop ND 34
g.761A�G e2 c.374A�G p.H125R B-C loop 30–50 16
g.772G�A e2 c.385G�A p.V129M B-C loop 0 7
g.2593A�C e3 c.397A�C p.N133H B-C loop 17 2
g.2599C�T e3 c.403C�T p.P135S C helix 2–10 16
g.2611T�C e3 c.415T�C p.F139L C helix 30–50 16
g.2617C�T e3 c.421C�T p.R141X C helix ND 35
g.2669T�C e3 c.473T�C p.L158P D helix 3 16
g.2672C>T e3 c.476C>T p.P159L D helix 40
g.2677_2679del e3 c.481_483del p.V161del D helix ND 35
g.2690C>A e3 c.494C>A p.A165D D helix 2
g.2716A�T e3 c.520A�T p.K174X D-E loop ND 6
g.2782A�G e3 c.586A�G p.T196A E helix 30–50 16
g.2807G�T i3 c.595 � 16G�T p.? ND 9
g.3073G�A e4 c.740G�A p.W247X G helix ND 7
g.3093_3110del e4 c.760_777del p.K254_A259del G helix 0
g.3126C�T e4 c.793C�T p.Q265X G helix ND 10
g.3132G�A e4 c.799G�A p.? G helix ND 20
g.3132G�C e4 c.799G�C p.G267R G helix ND 19
g.3137G�T i4 c.799 � 5G�T p.? ND 36
g.3419G�A e5 c.800G�A p.G267D G helix ND 19
g.3515T�C e5 c.896T�C p.L299P H-I loop 1 14, 17
g.3536C�T e5 c.917C�T p.A306V I helix ND 24
g.3559G�C e5 c.940G�C p.G314R I helix 0 10
g.3571A�C e5 c.952A�C p.T318P I helix ND 24
g.3572C�T e5 c.953C�T p.T318M I helix 0 6
g.3572C�T e5 c.953C�G p.T318R I helix ND 15
g.3573G�C e5 c.954G�C p.? ND 37
g.3573G�A e5 c.954G�A p.? ND 38
g.3574G�A i5 c.954 � 1G�A p.? ND 15
g.3574G�C i5 c.954 � 1G�C p.? ND 39
g.3935G�A i5 c.955–1G�A p.? ND 19
g.3937C�T e6 c.956C�T p.T319M I helix 37 2
g.3942T�G e6 c.961T�G p.F321V I helix ND 21
g.3973C�T e6 c.992C�T p.A331V I helix 0 7
g.3993C�T e6 c.1012C�T p.Q338X J helix ND 6
g.4002C�A e6 c.1021C�A p.R341S J helix ND 21
g.4047C�T e6 c.1066C�T p.Q356X J-K loop ND 6
g.4077C>T e6 c.1096C>T p.R366C K helix 38
g.4084C�A e6 c.1103C�A p.A368D K helix 1 13
g.4093A�G e6 c.1112A�G p.E371G K helix (ERR triad) 0 7
g.4102G�A e6 c.1121G�A p.R374Q K helix (ERR triad) 0 6
g.4530C�G e7 c.1150C�G p.R384G K-L loop ND 18
g.4531G�A e7 c.1151G�A p.R384Q K-L loop 0 6
g.4537C�T e7 c.1157C�T p.A386V K-L loop ND 21
g.4559_4560dup e7 c.1179_1180dup p.N394RfsX37 K-L loop ND 40
g.4561delA e7 c.1181delA p.N394TfsX36 K-L loop ND 41

(Continued)

J Clin Endocrinol Metab, February 2010, 95(2):779–788 jcem.endojournals.org 781



Patient 5. p.[P159L]�[P159L]
The female patient (46,XX karyotype) of Eastern German

origin presented 33 yr ago at the age of 7 yr with premature
pubarche, but no further signs of androgen excess such as viril-
ization of the external genitalia or growth acceleration. The di-
agnosis of non-salt wasting CAH was established, and the pa-
tient was treated with prednisolone. Menarche occurred at age
13.5 yr, followed by regular periods. She had four uncomplicated
pregnancies with normal outcome (three girls, one boy).

Carriers for CYP11B1-deficient alleles

Patient 6. p.[P159L]�[�]
The girl from Spain presented at age 7.9 yr with premature

pubarche and slightly advanced BA of 8.8 yr. Blood pressure was
normal (110/70 mm Hg). Biochemical analysis showed a normal
basal 11-deoxycortisol of 2.7 nmol/liter (normal, �11.6 nmol/
liter), but increased 11-deoxycortisol of 52.1 nmol/liter (normal,
�23.1 nmol/liter) 60 min after cosyntropin administration.
Basal and stimulated serum concentrations of 17-hydroxypro-
gesterone (17OHP) [basal, 0.8 nmol/liter (0.2–5.2 nmol/liter);
stimulated, 5.3 nmol/liter (�10.0 nmol/liter)] and androstenedi-
one [basal, 0.9 nmol/liter (0.4–1.7 nmol/liter); stimulated, 1.4
nmol/liter (�3.4 nmol/liter)] were in the normal range as was the
cortisol response to cosyntropin.

Patient 7. p.[R366C]�[�]
A 24-yr-old woman (46,XX karyotype) of Spanish origin was

referred because of hirsutism. She was normotensive (130/70
mm Hg). Baseline 11-deoxycortisol was in the upper normal
range [10.4 nmol/liter (normal, �11.6 nmol/liter)], and serum
androstenedione was increased [33.9 nmol/liter (normal range,
1.4–11.9 nmol/liter)]. A cosyntropin stimulation test showed a
normal response of 17OHP with 3.2 nmol/liter (1.8–7.0 nmol/
liter) at baseline and 6.3 nmol/liter (�10.0 nmol/liter) 60 min
after ACTH, thereby ruling out 21-hydroxylase deficiency.

Patient 8. p.[T401A]�[�]
The girl from Spain presented at the age of 9.1 yr with accel-

erated growth. Her height was 148.7 cm (�2.46 SDS), and she
had an advanced BA of 11 yr. Her clinical appearance was fully
prepubertal (B1, P1); blood pressure was normal (106/60 mm
Hg). Basal and stimulated 11-deoxycortisol concentrations were
slightly elevated [13.3 nmol/liter (normal, �11.6 nmol/liter);
and 29.5 nmol/liter (normal, �23.1 nmol/liter), respectively].
Basal androstenedione was high normal (1.7 nmol/liter; normal
range, 0.4–1.7 nmol/liter). The 17OHP response to cosyntropin
was also normal [basal, 2.5 nmol/liter (normal range, 0.2–5.2
nmol/liter); stimulated, 7.3 nmol/liter (normal, �10.0 nmol/
liter)]. She had her menarche at 13 yr and achieved a final height
of 161.4 cm (3.4 cm above midparental target height).

Molecular genetic analysis of the CYP11B1 gene
The molecular genetic analysis of the CYP11B1 gene was

carried out after taking informed consent. DNA was extracted
from peripheral blood leukocytes following a standard proce-
dure. The coding sequence of the CYP11B1 gene including exon-
intron boundaries was amplified in three nonoverlapping frag-
ments as previously described (11, 12). Direct sequencing was
carried out using an automated ABI3730XL Sequencer (Applied
Biosystems Inc., Foster City, CA). Sequences were analyzed using
the Staden Package v.4.1 software (http://staden.sourceforge.net).
Southern blotting was adapted (9), digesting 5 �g of DNA with
BamHI restriction enzyme. Sequence variants were designated ac-
cording to Human Genome Variation Society recommendations
(www.hgvs.org/rec.html) using the reference sequences GenBank
NC_000008 (g.DNA), GenBank NM_000497 (c.DNA), and Gen-
Bank NP_000488.3 (protein).

Site-directed mutagenesis, transient transfection,
enzymatic activity assays, and enzyme kinetics

A pcDNA3.1 expression vector construct with the CYP11B1
cDNA as insert (pcDNA3.1-CYP11B1 construct) was used as

TABLE 1. Continued

g.DNA
Exon/

introna c.DNA Proteinb Localization
11OH activity

(%)c Ref.
g.4660A>G e8 c.1201A>G p.T401A K-L loop 60
g.4669dup e8 c.1210dup p.R404Pfs�18 K-L loop ND 20
g.4728T�G e8 c.1269T�G p.Y423X K-L loop ND 2
g.4739G�A e8 c.1280G�A p.R427H K-L loop (ERR triad) ND 19
g.4772_4774del e8 c.1313_1315del p.F438del K-L loop 0 14
g.4781T�G e8 c.1322T�G p.V441G K-L loop 0 6
g.4790G�A e8 c.1331G�A p.G444D Cys pocket ND 23
g.4801C�T e8 c.1342C�T p.R448C Cys pocket 0 7
g.4802G�A e8 c.1343G�A p.R448H Cys pocket 0 6, 11
g.4817G�A e8 c.1358G�A p.R453Q L helix 1 32
g.4841T�C e8 c.1382T�C p.L461P L helix ND 22
g.4849_4851dup e8 c.1390_1392dup p.L464dup L helix 0 7
g.4861A�G i8 c.1398 � 4A�G p.? ND 37
g.5395T�C e9 c.1466T�C p.L489S C-term ND 3

The location of the first nucleotide used for g.DNA and c.DNA numbering is the A of the ATG translation initiation codon of the reference
sequence �GenBank NC_000008 (CYP11B1 g.DNA), GenBank NM_000497 (CYP11B1 c.DNA)�. Mutations characterized in the report are given in
bold letters. ND, not determined.
a �e� denotes exon, and �i� denotes intron.
b p.? denotes mutations that produce an aberrant splicing, and thus, result in an alteration of the normal protein.
c 11OH, 11�-hydroxylase activity.
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previously described (13). Site-directed mutagenesis was per-
formed using the QuikChange XL Site-Directed Mutagenesis Kit
(Stratagene, Amsterdam, The Netherlands). Insertion of the mu-
tations and the integrity of the insert were checked by direct
sequencing. Approximately 3.5 � 105 COS7 cells were plated
24 h before transfection. Cells were transiently transfected with
1 �g of each pcDNA3.1-CYP11B1 construct, 0.5 �g of adreno-
doxin (pECE-Adx), and 0.5 �g of Adx reductase (pECE-ADR)
expression vectors (kindly provided by Professor W. L. Miller,
Department of Pediatrics, University of California, San Fran-
cisco, CA), using Fugene-HD transfection reagent according to
the manufacturer’s protocol (Roche Applied Sciences, Indianap-
olis, IN). COS7 cells were incubated with the transfection re-
agents for 24 h at 37 C in DMEM supplemented with 200 mM

glutamine and 10% fetal calf serum, followed by a further 24-h
incubation in fresh full DMEM media.

The kinetic constants of CYP11B1 in intact COS7 cells were
determined 48 h after transfection. The cells were incubated for
90 min at 37 C with 1000 �l DMEM containing 5 �mol/liter
18�-glycyrrhetinic acid (an 11�-hydroxysteroid dehydrogenase
inhibitor to inhibit the 11�-hydroxysteroid dehydrogenase type
2 activity endogenous to COS7 cells, which otherwise facilitates
the further conversion of the reaction product cortisol to corti-
sone), 0.2 �Ci 3H-labeled 11-deoxycortisol, and 2, 5, 10, or 15
�mol/liter unlabeled 11-deoxycortisol. Steroids were extracted
with 5 ml dichloromethane, concentrated by evaporation at 55
C, and separated by thin-layer chromatography on PE SIL G/UV
silica gel plates (Whatman, Maidstone, Kent, UK) using a 300:
20:1 dichloromethane:methanol:water solvent system. Sub-
strates and conversion products were identified by comparison
with comigration of unlabeled reference steroids and quantified
using a Bioscan 2000 image analyzer (Lablogic, Sheffield, UK).
All assays were performed in at least three independent triplicate
experiments, and data are presented as means 	 SEM. Kinetic
parameters were established by nonlinear regression, using the
Michaelis-Menten equation to determine the Michaelis-Menten
constants Km and Vmax. Catalytic efficiency was defined as the
ratio Vmax/Km expressed as percentage of wild-type. Mutations
with undetectable activity under the above conditions were in-
cubated for24hat37Cwith1ml fullDMEMcontaining0.2 �Ci
3H-labeled 11-deoxycortisol and 250 nmol/liter unlabeled 11-
deoxycortisol as previously described (13). Cells were scraped
from the plates, resuspended in cold 1xPBS, and sonicated for cell
lysation. A Bio-Rad assay (Bio-Rad Laboratories, Hercules, CA)
was used for total protein assessment. The 11�-hydroxylase ac-
tivity of the mutants was expressed as a percentage of substrate
conversion in nanomoles per milligram of total protein per
minute, defining CYP11B1 wild-type activity as 100%. Enzyme
kinetic parameters and enzymatic activity were calculated using
the GraphPad Prism software version 4.0 (GraphPad, Inc., San
Diego, CA).

To ensure comparable levels of expression and translation of
CYP11B1 wild-type and mutant proteins, Western blot analysis
was performed using an antihuman-CYP11B rabbit antiserum
(kindly provided by Dr. H. Takemori, Department of Molecular
Physiological Chemistry, Osaka University Medical School,
Osaka, Japan) as previously described (13).

Molecular modeling
The detailed generation of the human CYP11B1 three-dimen-

sional structure model using the x-ray structure of the mamma-
lian cytochrome CYP2C5 (Pdb code 1DT6) as a template has

been described previously (13, 14). The structural representa-
tions were generated using the programs Deep View/Swiss-Pdb
Viewer (http://www.expasy.org/spdbv/) and Molsoft ICM
Browser Pro (Molsoft L.L.C, La Jolla, CA).

Results

Molecular genetic analysis of the CYP11B1 gene
Seven novel mutations in eight nonrelated individuals

were detected (Table 1 and Supplemental Fig. 1). Patient
1 was a heterozygous for the novel T to G transversion at
position 733 (g.733T�G, p.W116G) and the known
p.R448H mutation (11) on the other allele. Patient 2
was a compound heterozyogous for a novel C to A trans-
version at position 2690 (g.2690C�A; p.A165D) and a
described nonsense mutation (p.Q19X) (15). Patient 3
carried a novel homozygous 18-bp deletion resulting in
a six-amino acid in-frame deletion (g.3093_3110del,
p.K254_A259del).

Patient 4 was a compound heterozygous for the novel
G to A substitution at position 651 (g.651G�T; p.M88I)
on the maternal allele and for the severe mutation
p.R384Q (6) on the paternal allele. A novel heterozygous
C to T transition at nucleotide 2672 was found in the
unrelated patients 5 and 6 (g.2672C�T; p.P159L). Patient
5 was homozygous for the p.P159L mutation, whereas
patient 6 was a heterozygous carrier for the p.P159L allele.
Patient 7 was confirmed to be a heterozygous carrier for a
novel C to T transition at position 4077 (g.4077C�T,
p.R366C). Patient 8 was also a heterozygous carrier hav-
ing a novel A to G transition at nucleotide 4660
(g.4660A�G, p.T401A). Partial CYP11B1 gene deletions
in the carriers were ruled out by Southern blot analysis.

Functional 11�-hydroxylase in vitro assays
The seven novel CYP11B1 mutations were functionally

analyzed using transiently transfected COS7 cells measur-
ing the conversion of 11-deoxycortisol to cortisol. The
three mutations detected in patients with classic 11OHD
(p.W116G; p.A165D; p.K254_A259del) had absent en-
zymatic activity.

Only the p.A165D mutation showed some conversion
for 11-deoxycortisol to cortisol after incubating these
three mutations with a lower 11-deoxycortisol concentra-
tion (250 nmol/liter) for 24 h. The conversion rate of
p.A165D was not expressed in percentage CYP11B1 wild-
type activity because it would overestimate the residual
activity.

The other four mutations (p.M88I, p.Pro159Leu,
p.R366C, and p.T401A) detected in patients with mild
11OHD and heterozygous carriers resulted in partial 11�-
hydroxylase impairment. The p.M88I mutation reduced
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activity to 39.8 	 6.4% of wild-type. p.P159L and
p.R366C showed a similar impairment with 25.8 	 3.3%
and 23.0 	 3.1% of wild-type activity, respectively.
p.T401A had 37.5 	 3.8% of the normal 11�-hydroxy-
lase activity (Fig. 1A).

Determination of kinetic constants showed similar Km
values for p.M88I, p.R366C, and p.T401A with signifi-
cantly impaired Vmax compared with wild-type (Fig. 1B).
The p.P159L mutation did not reach substrate saturation
under the established reaction conditions.

Western blot analysis demonstrated that all mutations
apart from the p.K254_A259del mutation had translation
efficiency similar to wild-type. The p.K254_A259del mu-
tation resulted in a smaller band of decreased intensity
(data not shown).

Discussion

Herein, we have characterized three severe and four mild
CYP11B1 mutations found in three patients with classic
11OHD, in two patients with nonclassic 11OHD, and in
three heterozygous carriers. Apart from the p.P159L mu-
tation, allmutationsweredetected indifferent individuals.
However, there was no obvious connection between the
patient homozygous for the p.P159L from Eastern Ger-
many and the heterozygous carrier from Spain. The in
vitro activity of the less severely affected allele was con-
sistent with the clinical phenotype in all affected patients.
Diagnostic criteria such as an 11-deoxycortisol response
after 1-24ACTH stimulation to differentiate between het-
erozygous carriers and patients with mild 11OHD are not
well established, such as differentiation by 17OHP re-
sponse to 1-24ACTH in 21-hydroxylase deficiency. The
two genetically proven carriers studied had normal or
mildly elevated basal 11-deoxycortisol levels and showed
a variable increase of 11-deoxycortisol to 1-24ACTH
stimulation. This variability has previously been reported
in patients with mild or nonclassic 11OHD (2).

Functional effects of CYP11B1 mutations
In vitro 11�-hydroxylase activity of less than 5% can be

considered severe and is most likely associated with classic
11OHD (6, 7, 10, 13, 14, 16, 17). However, a significant
number of detected CYP11B1 missense mutations have
not been functionally analyzed yet (15, 18–24) (Table 1),
which does not allow for exact phenotype prediction.

We demonstrated a partially impaired CYP11B1 activ-
ity in four of the novel mutations, which are associated
with nonclassic 11OHD. Until now, only three mild
CYP11B1 mutations detected in three patients with non-
classic 11OHD have been functionally analyzed (2). The
residual 11�-hydroxylase enzyme activity of these previ-
ously described mutations (p.P42S, p.N133H, and
p.T319M) ranged from 15 to 40% of wild-type activity.
This is a similar magnitude as the in vitro activity of our
p.M88I, p.P159L, p.R366C, and p.T401A mutations.
Four other CYP11B1 variants (p.R43Q, p.P135S, p.F139L,
and p.T196A) resulted in approximately 30–50% resid-
ual CYP11B1 activity (16). These variants were found in
a cohort study analyzing the effect of CYP11B1 variants
on the etiology of hypertension, and no data on the sex
hormone status are available. All previously described in
vitro studies on mild CYP11B1 mutations employed sig-
nificantly longer incubation times for the analysis of the
p.P42S, p.N133H, and p.T319M mutations (15–24 h) (2)
and for the analysis of the p.R43Q, p.P135S, p.F139L, and
p.T196A variants (24 h) (16). This potentially overesti-
mates the in vitro CYP11B1 activity of mutations. Using
similar incubation times for our mild CYP11B1 mutations

FIG. 1. Comparison of residual 11�-hydroxylase activity of the
CYP11B1 variants. A, The activities of the mild mutants are expressed
as percentage of wild-type activity (cortisol synthesis rate, 4.7 	 0.7
nmol/mg protein/min), which is defined as 100%. Values are depicted
for the conversion of 11-deoxycortisol to cortisol at a substrate
concentration of 10 �mol/liter of unlabeled steroid. Error bars
represent the mean 	 SEM (%). B, Lineweaver-Burk plots of 11�-
hydroxylase activity converting 11-deoxycortisol (S) to cortisol assessed
by incubation of transiently transfected COS7 cells coexpressing
human wild-type (WT) or mutant CYP11B1, and human Adx reductase
and Adx with 2–15 �M 11-deoxycortisol and [3H]-11-deoxycortisol.
Error bars represent the mean 	 SEM (%). The p.P159L mutation is not
shown because this mutation did not reach substrate saturation under
the employed reaction conditions.
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resulted in a significant overestimation with an increase to
55–63% of wild-type activity (data not shown). The re-
sidual activity of mild mutations described in this paper
(p.M88I, p.P159L, p.R366C, and p.T401A) are within
the well-established range of 21-hydroxylase mutations
causing nonclassic CAH with a residual 21-hydroxylase
activity of about 20 –50% (25, 26).

Putative effects of severe CYP11B1 mutations
The tryptophan 116 residue is highly conserved in the

CYP11 family across species (Fig. 2), and two severe mu-

tations at codon 116 have already been described (12, 14).
Trp116 lies in the B-C loop (Fig. 3), which contains the
substrate recognition site 1, one of six postulated substrate
recognition sites (27). The side chains of Trp116 and
Leu113 interact with Phe223 and Trp247. Thus, the
change from the aromatic tryptophan to the small ali-
phatic glycine might alter the conformation of the sub-
strate access channel in a similar fashion as the p.W116C
mutation (14). This alteration might impact on substrate
access and product release, thereby abolishing CYP11B1
function.

Alanine 165 is localized in the D helix of CYP11B1 (Fig.
3) and conserved in the CYP11 family, including members
of hepatic CYP2C monooxygenases (Fig. 2C), with the
exception of human CYP11A1 (Fig. 2A). No acidic amino
acids such as aspartic acid are present at the corresponding
residue in aligned cytochrome P450 enzymes (CYP) (Fig.
2). The change to Asp165 does not lead to obvious steric
problems in silico with neighboring residues, but it
changes the polarity and structure of the protein surface.
This change will most likely not affect redox-partner bind-
ing because it takes place on the opposite side of the
CYP11B1 protein. Further conclusions on the effect of the
p.A165D mutation on CYP11B1 from the comparison
with other steroidogenic CYP enzymes are difficult. No
mutations in the D helix of CYP17A1 have been reported,
and only two mutations without functional data available
in CYP21A2 (p.V139W; p.C147R) have been described to

FIG. 3. Total view on the three-dimensional molecular model of
CYP11B1. N-term, Amino terminus.; The B-C loop is colored in dark
orange, the D helix in blue, the I helix in red, and the K helix in light
blue. Amino acid residues affected by missense mutations are shown
in ball representation; the region affected by the six-amino acid
deletion in the G helix is depicted in gray.

FIG. 2. Multiple CYP11B1 clustalW alignments. The M88, W116,
P159, A165, R366, and T401 residues of CYP11B1 and corresponding
amino acids of the aligned CYPs are shaded and marked by a triangle.
A, Alignment of human CYP11B1 with human CYP11B2 and
CYP11A1, the mouse and rat orthologs. B, Alignment of different
human steroidogenic CYP enzymes. C, Alignment of mammalian
CYP11B1 with different cytochrome P450 type 2 enzymes.
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result in salt-wasting or simple-virilizing and nonclassic
21-hydroxylase deficiency, respectively (28).

The novel in-frame deletion of the six amino acid res-
idues 254 to 259 affects the G helix (Fig. 3). In general, the
F and G helices and F-G-loop together with the B-C loop
control access to the active site of mammalian CYP en-
zymes, with he F and G helices and F/G-loop forming the
roof of the substrate-binding pocket (29). Therefore, a
deletion within this structure can be predicted to result in
an enzyme with absent CYP11B1 function, consistent
with our patient’s clinical phenotype and absent in vitro
CYP11B1 activity.

Putative effects of mild CYP11B1 mutations
The methionine 88 residue localized in the N-terminal

region is not highly conserved and an isoleucine is present
at the corresponding position of murine 11�-hydroxylase
(Fig. 2). M88 is found in a region connecting the A and B
helices (Fig. 3). It lies in a hidden cove on the surface of
CYP11B1 and forms an H-bond with E383, which is lo-
calized in a � sheet of the K-L loop. The substitution for
isoleucine does not lead to any major structural changes.
There is only a minor polarity change on the surface of
CYP11B1. Therefore, it is unsurprising that the p.M88I
mutation only leads to mild reduction of in vitro 11�-
hydroxylase activity.

Proline 159 is conserved within the CYP11 family and
is found in CYP21A2, CYP3A4, and CYP3A7 (Fig. 2).
However, various types of amino acids are present in other
CYP enzymes ranging from hydrophobic, over polar to
acidic and basic amino acids in other CYP enzymes. P159
is localized in the D helix opposite the L helix. A change to
leucine would not affect the protein surface, neither pre-
dicted H-bond formation nor interference with residues in
the L helix. However, the presence of a leucine residue at
this position (L159) removes a small kink from the D helix.
This might lead to a minor change in orientation of the E
helix but without obvious direct effect on the active center.
Overall, these in silico changes are consistent with the
partially preserved in vitro activity of p.P159L.

The arginine 366 residue is localized in the K helix (Fig.
3) and conserved within the CYP11B family. A lysine res-
idue is present at the corresponding position of CYP11A1
enzymes (Fig. 2). This lysine residue (K377 in human
CYP11A1) appears to be involved in binding the electron
providing factor Adx (30). The side chain of R366 faces
toward the protein surface, and a change to cysteine
(p.R366C) eliminates a positive surface charge. This mu-
tation leaves a cove on the surface, which most likely im-
pacts on Adx binding. Other residues are involved in the
CYP-Adx interaction (30, 31), including amino acid res-
idues R453 and R454, which remain intact. A mutation of

residue R453 (p.R453Q) resulted in almost absent
CYP11B1 activity (32) emphasizing the importance of
these two arginine residues (R453, R454). The change to
cysteine at position 366 might also lead to an interaction
with T359. Threonine 359 is localized in the J-K loop, but
this proposed new interaction has no obvious effect on the
active center. Therefore, p.R366C might affect the inter-
action with the electron providing factor Adx and thereby
partially impair CYP11B1 function.

Although the threonine 401 can be found in a huge
number of CYP enzymes, valine residues are present at the
corresponding residue in CYP3A4 and CYP3A7 (Fig. 2).
The effect of the p.T401A mutation appears less dramatic
as expected from the clustalW alignment. Threonine 401
is localized in between the K and L helices. The side chain
faces toward the surface providing a surface hydroxyl
group. The change to alanine 401 leads to loss of this polar
group and leaves a small cove on the surface, but it does
not lead to major steric changes. The only minor change is
the possible loss of a weak interaction with arginine 80.
Therefore, the in silico findings are consistent with mild
impairment of the CYP11B1 in vitro activity of the
p.T401A mutation.

In conclusion, we have confirmed the inactivating na-
ture of the seven novel CYP11B1 mutations. Furthermore,
four CYP11B1 mutations with significant residual activity
associated with nonclassic 11OHD were characterized.
This doubles the number of reported mutations responsi-
ble for mild 11OHD. Our findings emphasize the impor-
tance of considering mild 11OHD in patients presenting
with signs and symptoms similar to nonclassic 21-hydrox-
ylase deficiency. Therefore, our data are essential for the
clinical and genetic counseling, helping to estimate the
severity of clinical disease expression in 11OHD.
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