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Phenotypic Covariance of Longevity, Immunity and
Stress Resistance in the Caenorhabditis Nematodes
Francis R. G. Amrit, Claudia M. L. Boehnisch, Robin C. May*

School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom

Abstract

Background: Ageing, immunity and stresstolerance are inherent characteristics of all organisms. In animals, these traits are
regulated, at least in part, by forkhead transcription factors in response to upstream signals from the Insulin/Insulin–like
growth factor signalling (IIS) pathway. In the nematode Caenorhabditis elegans, these phenotypes are molecularly linked
such that activation of the forkhead transcription factor DAF-16 both extends lifespan and simultaneously increases
immunity and stress resistance. It is known that lifespan varies significantly among the Caenorhabditis species but, although
DAF-16 signalling is highly conserved, it is unclear whether this phenotypic linkage occurs in other species. Here we
investigate this phenotypic covariance by comparing longevity, stress resistance and immunity in four Caenorhabditis
species.

Methodology/Principal Findings: We show using phenotypic analysis of DAF-16 influenced phenotypes that among four
closely related Caenorhabditis nematodes, the gonochoristic species (Caenorhabditis remanei and Caenorhabditis brenneri)
have diverged significantly with a longer lifespan, improved stress resistance and higher immunity than the hermaphroditic
species (C. elegans and Caenorhabditis briggsae). Interestingly, we also observe significant differences in expression levels
between the daf-16 homologues in these species using Real-Time PCR, which positively correlate with the observed
phenotypes. Finally, we provide additional evidence in support of a role for DAF-16 in regulating phenotypic coupling by
using a combination of wildtype isolates, constitutively active daf-16 mutants and bioinformatic analysis.

Conclusions: The gonochoristic species display a significantly longer lifespan (p,0.0001) and more robust immune and
stress response (p,0.0001, thermal stress; p,0.01, heavy metal stress; p,0.0001, pathogenic stress) than the
hermaphroditic species. Our data suggests that divergence in DAF-16 mediated phenotypes may underlie many of the
differences observed between these four species of Caenorhabditis nematodes. These findings are further supported by the
correlative higher daf-16 expression levels among the gonochoristic species and significantly higher lifespan, immunity and
stress tolerance in the constitutively active daf-16 hermaphroditic mutants.
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Introduction

Longevity is a phenomenon shared by all living organisms but

which varies hugely across species and between different sexes of

the same species. Several evolutionary theories have been

postulated to explain this phenomenon, but the underlying

biological regulators of longevity remained largely unknown until

pioneering genetic studies using the roundworm Caenorhabditis

elegans identified the first gene with a substantial role in

determining lifespan [1,2,3].

Given that post-reproductive survival cannot evolve under

direct selection, diapause (the entry into a semi-dormant state with

low metabolic turnover) is generally perceived as being a by-

product of a survival strategy triggered by the organism to outlive

harsh conditions so that, upon encountering a suitable environ-

ment, reproduction can be resumed [4]. One such strategy

employed by the Caenorhabditis nematodes is to enter into a

temporary, developmentally arrested dauer stage. [5,6,7]. In C.

elegans, this phenomenon is regulated by the IIS (Insulin/Insulin–

like growth factor (IGF) signalling) pathway, which consists of a

transmembrane protein DAF-2 [8], several intracellular kinases

and the DAF-16 transcription factor [9]. When inactivated, this

pathway not only extends lifespan but also regulates resistance to

pathogens and abiotic stresses [10,11,12]. Mutations in this

pathway, such as inhibitory mutations in age-1 (a homologue of

the mammalian phosphatidylinositol 3-OH kinase) or daf-2 (a

homologue of the mammalian insulin receptor) result in the

relocalization of the transcription factor DAF-16 into the nucleus

where it regulates a plethora of downstream genes [2,13,14,15,16].

The IIS pathway is highly conserved in organisms ranging from

yeast to humans and, in many cases, appears to retain its dual role

as a major effector of immunity and longevity [17,18,19,20].

Studies in C. elegans have explored this coupling relationship

between the daf-16 determined phenotypes of longevity, immunity
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and stress tolerance to a great extent, but little is known about the

corresponding phenotypes in other nematode species.

Here we provide experimental data to address this question by

undertaking a comprehensive analysis of immunity, stress response

and longevity phenotypes in several representative isolates of four

nematode species within the same genus. We demonstrate that,

within this group of closely related animals, there exists a high

divergence with regards to traits such as lifespan and stress

tolerance and, intriguingly, in the expression of daf-16. Further-

more, we investigated conservation in the DAF-16 downstream

regulon (target genes) by surveying the three available Caenorhabdi-

tis genomes (C. elegans, C. briggsae and C. remanei) for genes

containing the known consensus sites for DAF-16. Based on

orthologous sets of genes containing the consensus sites, we asked

whether certain biological processes are more prevalent in one

species than in others (divergent targets) and which processes are

shared between all three species. We also tested for adaptive

sequence evolution along the IIS pathway in these species. Finally,

we use classical genetics to constitutively activate the DAF-16

pathway in two Caenorhabditis species in order to experimentally

identify both conserved and divergent downstream phenotypes.

Results

Gonochoristic species are longer lived than the
hermaphroditic species and show higher levels of daf-16
expression

We and others have previously demonstrated that different

Caenorhabditis species exhibit significantly different lifespans

[21,22]. Since different laboratory isolates can exhibit variation

in lifespan [23], we conducted parallel longevity assays on our

isolates of C. elegans N2, C. briggsae AF16, C. remanei EM464 and C.

brenneri CB5161. As previously reported [22], the two gonochor-

istic species (C. remanei and C. brenneri) exhibit a significantly

(p,0.0001; see Table S1 for all p-values) longer lifespan than both

hermaphroditic species (C. elegans and C. briggsae) (Figure 1a).

Additional testing confirmed that this trend was highly conserved

across multiple wildtype isolates of each species (Figure 1b, Table

S2), as previously reported [22]. The testing of several hermaph-

roditic wildtype isolates also ruled out the possibility that these

observations were due to the fixation of novel mutations under the

force of genetic drift in our laboratory C.elegans (N2) line.

Given the evolutionary conservation and critical role played by

DAF-16 in regulating lifespan in C. elegans, we quantified daf-16

mRNA levels in both mixed populations (nematodes at various

stages of development) and staged populations (L2-L3, L4 and

adult stages) of all strains of the four Caenorhabditis species. Whilst

C. briggsae showed daf-16 levels similar to those in C. elegans, daf-16

expression in the two gonochoristic species was between seven (C.

brenneri) and twelve (C. remanei) fold higher than C. elegans in the

mixed populations (Figure 2a). Higher daf-16 expression levels

among the gonochoristic species was also observed throughout

development in the staged populations (Figure 2bi, 2bii & 2biii)

with the difference being most prominent in the L4 stage

(Figure 2bii). Thus higher levels of daf-16 expression seem to

positively correlate with longer lifespan.

We also tested for expression levels of daf-16 in C.elegans males

using two independent reference genes (Table S3) and found no

significant transcriptional difference in comparison to C. elegans

hermaphrodites, indicating that the absence or presence of males

in a population has no effect with regards to daf-16 expression

levels. We note that the presence of both males and females within

the gonochoristic population could mean that enhanced daf-16

expression may be restricted to one or other gender, but given that

both male and female animals in the gonochoristic species are

longer lived than either gender of C. elegans or C. briggsae [21], we

regard it as more likely that daf-16 is highly expressed in both

genders of the gonochoristic species.

Long-lived species are more resistant to abiotic stress
than shorter-lived species

In C. elegans, DAF-16 activity substantially increases survival

following exposure to high temperature or heavy metals [10,24].

To test whether the observed higher levels of daf-16 in the

gonochoristic species also correlate with better survival to abiotic

stress, we exposed multiple isolates of all four species to prolonged

high temperature of 37uC (Figure 3a) or toxic heavy metals such as

CuCl2 (Figure 3b, Figure S2). In both cases, the gonochoristic

species showed significantly (Table S1) higher survival than either

hermaphroditic species. The correlation of these phenotypes with

daf-16 expression levels, together with prior knowledge from

studies in C. elegans, suggests that higher DAF-16 levels could

potentially be driving both increased lifespan and increased

resistance to abiotic stress.

Longer-lived species in general are more resistant to
biotic stress factors than the shorter-lived species

Numerous human pathogens are now known to be lethal

towards C. elegans [25,26,27,28,29,30,31]. Since DAF-16 activity

contributes towards stress resistance during infection [32], we

assessed whether the four Caenorhabditis species varied in resistance

to a range of pathogens. Interestingly, type strains of the two long-

lived, gonochoristic species (EM464 and CB5161) showed

significantly higher resistance to the Gram-negative bacterium

Pseudomonas aeruginosa (Figure 4a), the Gram-positive bacterium

Staphylococcus aureus (Figure 4b) and the fungus Cryptococcus neofor-

mans [21] than type strains of the two hermaphroditic species

(AF16 and N2). However, all four species showed similar

sensitivity to the Gram-negative pathogen Salmonella typhimurium

(Figure 4c). To ensure that these differences were not isolate

dependent, we tested multiple additional isolates of each species

for resistance to S. aureus. In all cases, gonochoristic isolates exhibit

substantially higher resistance to killing by this pathogen (Table S2

and Figure S1), suggesting that the higher DAF-16 levels in the

two gonochoristic species may potentially drive enhanced

resistance to some, but not all, pathogens.

Since progeny production and the consequent risk of matricidal

killing has previously been shown to shorten C. elegans lifespan,

particularly when exposed to pathogens, [30,33,34] we considered

the possibility that the enhanced survival of gonochoristic species

may result from the absence of matricidal killing. To test this, we

exposed feminised (and thus infertile when singled) C. elegans

animals (BA17, fem-1(hc17)) to the pathogenic bacteria S. aureus.

As previously reported, feminised C. elegans exhibited improved

survival under pathogenic conditions (Figure S3), but this increase

is nowhere as significant as the increase in lifespan seen in the

higher daf-16 producing gonochoristic species on S. aureus. Thus

the enhanced survival of gonochoristic species is not attributable to

the lack of progeny production.

Manipulation of the DAF-16 pathway
C. elegans DAF-16 activity can be dramatically enhanced by loss-

of-function mutations in the upstream insulin-like growth factor

receptor DAF-2 [35,36]. We investigated whether this phenomenon

is conserved in C. briggsae, which, like C. elegans, has low basal levels of

DAF-16 (Figure 2a), by comparing daf-2 loss-of-function mutants in

both species. As previously reported [7] we observed that C. briggsae

Phenotypic Covariance/Coupling
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(daf-2) mutants, have increased longevity relative to wildtype

animals (Figure 5a). In addition, inactivation of daf-2 in C. briggsae

enhances resistance to high temperature (Figure 5b) and heavy

metal toxicity (Figure 5c), as it does in C. elegans [10,37].

Interestingly, C. briggsae daf-2 mutants show enhanced resistance

towards S. aureus (p,0.02, Table S4) and P. aeruginosa (p,0.0001,

Table S4), but the magnitude of the increase is substantially smaller

than that for C. elegans daf-2 mutants (Figures 5d and 5e). Finally, loss

of daf-2 did not enhance resistance to S. typhimurium in either C.

elegans or C. briggsae (Figure 5f). Regrettably, genetic mutants in daf-2

or daf-16 are not available for either gonochoristic species, nor is

RNA interference efficient enough in these species to allow direct

manipulation of the IIS pathway in a similar manner. However,

should such studies become feasible in the future, then our data

would predict that loss of daf-2 would likely have only a minimal

effect on lifespan and stress resistance in the gonochoristic species.

Figure 1. Lifespan analysis. (a) Hermaphrodite (N2, AF16) or female (EM464, CB5161) animals at the fourth larval stage (L4) were transferred onto
plates pre-seeded with OP50 and monitored for survival over fifty days. Whilst hermaphrodite animals show 100% lethality over this period, survival is
significantly higher for both gonochoristic species (p,0.0001, Table S1), with more than 50% of animals surviving longer than twenty days. (b) This
effect is conserved across multiple wildtype isolates of each species.
doi:10.1371/journal.pone.0009978.g001

Phenotypic Covariance/Coupling

PLoS ONE | www.plosone.org 3 April 2010 | Volume 5 | Issue 4 | e9978



Comparative analysis of the DAF-16 regulon in C. elegans,
C. briggsae and C. remanei

We considered the possibility that the DAF-16 pathway itself

may have become modified during the diversification of the

Caenorhabditid nematodes. However, calculation of Ka/Ks ratios

for all of the components in the IIS signalling pathway (daf-2, age-1,

pdk-1, akt-1, and daf-16) between C. elegans, C. briggsae and C. remanei

showed no evidence for positive selection in any of the genes

(Table S5).

Given that the IIS pathway itself does not appear to have been

modified during the evolution of these species, we next

investigated whether the downstream targets of DAF-16 differed

between the three sequenced nematode species (C. elegans, C.

briggsae and C. remanei). We searched for the presence of perfectly

matched DAF-16 canonical consensus sites (ttatttac/gtaaataa,

ttgtttac/gtaaacaa) in the 3kb upstream of every predicted gene in

C. elegans, C. briggsae and C. remanei. In C. elegans our approach

yielded 6293 genes (31.2% of the genome) containing either one or

both of the known sites in their 3kb upstream region. In

comparison, only 23.4% (5,150 genes) in C. briggsae and 26.7%

(8,456 genes) in C. remanei contained at least one of the consensus

sites. We note that the short length and relative variability of the

DAF-16 consensus sequence means that this approach inherently

overestimates the number of DAF-16 binding sites in the genome.

However, given the absence of experimental techniques (such as

chromatin immunoprecipitation) in the non-elegans species, such a

bioinformatic approach is, at present, the only way of obtaining an

approximate estimate of genome-wide differences in the IIS

pathway within this group of organisms.

Based on this analysis, the number of orthologous genes that

contain perfect matches to the DAF-16 consensus binding sites

appears similar between C. elegans and C. briggsae (1900 genes), C.

elegans and C. remanei (2111 genes) and C. briggsae and C. remanei

(2165 genes). However, although C. elegans, C. briggsae and C.

remanei have 13,015 genes in common (64.4% of the C. elegans

genome) only 913 of these contain the DAF-16 binding elements

in all three species, a group that we define as the core DAF-16

regulon (Figure S4).

Based on these gene sets, we asked whether the core DAF-16

regulon and the species-specific DAF-16 regulons differ in the type

of genes they contain by testing whether particular gene ontology

(GO) terms (using GOTERM BP_ALL and GOTERM BP_2) are

overrepresented (Table S6 and Table S7). The DAF-16 core

regulon shows, amongst others, enrichment for genes that are

involved in lifespan regulation, immune response and responses to

chemical stimuli (including detoxification and stress response)

(Table S6). Intriguingly, whilst both the C. elegans-specific and C.

remanei-specific DAF-16 regulons also show overrepresentation of

genes involved in immunity (11 genes in C. elegans, 13 genes in C.

remanei) and stress responses (38 genes in C. elegans, 14 genes in C.

Figure 2. Quantitation of daf-16 gene expression. (a) mRNA from a mixed population of hermaphroditic (N2, AF16) and gonochoristic (EM464,
CB5161) animals was extracted and daf-16 gene expression was quantified relative to the housekeeping gene gpd-3. Data represent the mean of
three experiments, error bars show standard deviation. (b) daf-16 gene expression for the same species but measured at various stages of
development that include L2-L3 stage (bi), L4 stage (bii) and the adult stage (biii).
doi:10.1371/journal.pone.0009978.g002

Phenotypic Covariance/Coupling
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remanei) these groups are not overrepresented in the C. briggsae-

specific DAF-16 regulon (Table S6).

In order to reduce the number of false positives in our C. elegans

dataset we compared it to a gene list containing all putative DAF-

16 targets recently identified in C. elegans via a range of other

approaches by Oh [38], Murphy [14], Halaschek-Wiener [39],

Lee [16], McElwee [40] and Dong [41]. Altogether, 1746 genes

were identified as putative DAF-16 targets in at least one of these

other datasets and 678 of these were also identified by our

approach, a group we refer to as the adjusted dataset. Of the 678

potential C. elegans DAF-16 target genes, 283 overlap with the C.

brigssae dataset and 274 genes were found in the C. remanei list. The

adjusted DAF-16 core regulon (genes found in all three species)

contains 145 genes (Figure 6a).

Partitioning the adjusted DAF-16 core regulon using the

GOTERM BP_ALL and GOTERM BP_2 gene categories

Figure 3. Survival analysis following exposure to abiotic stress (heat and heavy metal). L4 Hermaphrodite (N2, AF16) or female (EM464,
CB5161) animals were monitored for survival (a) at 37uC or (b) during exposure to 7 mM copper chloride. C. elegans and C. briggsae show significantly
higher susceptibility to both high temperature (p,0.0001, Table S1) and heavy metal toxicity (p,0.01, Table S1).
doi:10.1371/journal.pone.0009978.g003

Phenotypic Covariance/Coupling
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revealed significant enrichment for genes involved in the regulation

of lifespan, stress response, transport, localization and metabolism

(Figure 6b and Table S8). As expected the outcomes of the analyses

of the unadjusted and the adjusted datasets differ slightly. However,

the overall pattern is the same between the two approaches for both

the core regulon as well as the species-specific regulon.

Finally, we compared the list of putative C. elegans DAF_16

targets identified by Oh and colleagues via a direct, chromatin

Figure 4. Survival analysis following exposure to biotic stress (three species of pathogenic bacteria). Survival of L4-stage
hermaphrodites or female animals during exposure to pathogenic bacteria. C. remanei and C. brenneri are significantly more resistant to Pseudomonas
aeruginosa (Figure 4a, p,0.0001, Table S1) and Staphylococcus aureus (Figure 4b, p,0.0001, Table S1). However, all four species show similar
susceptibility to Salmonella typhimurium (SL1344) (Figure 4c, p.0.05, Table S1).
doi:10.1371/journal.pone.0009978.g004

Figure 5. The effect of daf-2 mutations on lifespan and resistance to abiotic and biotic stress. daf-2 mutations in C. elegans (CB1370) and
C. briggsae (PS5531) result in enhanced lifespan (Figure 5a) and resistance to high temperature (37uC, Figure 5b) or 7 mM copper chloride (Figure 5c).
Both mutants also show significantly higher resistance to killing by Staphylococcus aureus (Figure 5d) and Pseudomonas aeruginosa (Figure 5e),
although the magnitude of the resistance is significantly lower for C. briggsae daf-2 than for the equivalent mutation in C. elegans. In contrast, the daf-
2 mutation does not enhance the resistance of either species to Salmonella typhimurium (Figure 5f).
doi:10.1371/journal.pone.0009978.g005

Phenotypic Covariance/Coupling
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immunoprecipitation (ChIP) approach [38] with those identified

via microarray or bioinformatic approaches in the other studies

(Murphy [14], Halaschek-Wiener [39], Lee [16], McElwee [40]

and Dong [41]) or our own dataset. (Table 1). Interestingly, there

is very little overlap between DAF-16 targets identified by ChIP

and those inferred from microarray or bioinformatic analysis, with

the exception of 11 genes shared between Oh et al and McElwee

et al and 30 genes shared between Oh et al and our dataset. Thus

there is likely to be considerable benefit in combining a range of

experimental approaches in order to narrow down the list of true

DAF-16 target genes.

Discussion

It is now clear that the lifespan of an organism is determined by

a combination of environmental conditions, stochastic factors

(such as lifestyle) and genetic background. Numerous studies have

demonstrated that the evolutionarily conserved transcription

Figure 6. The DAF-16 regulon based on an adjusted C. elegans dataset. (a) Venn diagram of putative DAF-16 target genes in the three
species. 145 orthologous genes have an upstream DAF-16 binding site in all three species, a group we define as the core DAF-16 regulon. (b) The
genes within the core DAF-16 regulon were tested for over-representation of particular annotation categories within GOTERM BP_2 provided by the
database DAVID. In brackets are the number of genes in the core DAF-16 regulon which are associated with a particular GO term within GOTERM
BP_2.
doi:10.1371/journal.pone.0009978.g006

Phenotypic Covariance/Coupling
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factor DAF-16 is a critical gene regulator that controls the

transcription of hundreds of genes involved in immunity, stress

responses and longevity in C. elegans [42]. The homologues of daf-

16 in other organisms have been shown to perform similar

functions [18] and yet species differ significantly in terms of

lifespan and immunity, raising the question of how such DAF-16

mediated phenotypes have changed through evolutionary time.

Here we show covariance of three DAF-16 mediated pheno-

types, longevity, immunity and stress response, across the

Caenorhabditis genus. Strikingly, the two gonochoristic species (C.

remanei and C. brenneri) show significantly higher basal expression of

DAF-16 than the shorter-lived hermaphroditic species C. elegans

and C. briggsae. Thus, enhanced expression and/or activation of

DAF-16 may be an important mechanism by which species

regulate a combination of phenotypes that enhance resistance to

abiotic and biotic stresses and hence favour a longer life. The fact

that this pattern is seen in multiple isolates of two gonochoristic

species may reflect their need to search for a partner to mate, a

lifestyle that increases the chance of encountering stressful

conditions (eg. pathogens, high temperature) and is likely to

favour the evolution of a longer lifespan in order to increase

mating opportunities. In addition, since we know very little about

the natural ecology of the Caenorhabditis nematodes [43], it is

possible that differences in the niches inhabited by these species

may impose extrinsic stresses that have led to the evolution of

improved stress tolerance via the over-expression of DAF-16.

It is interesting to note that susceptibility to several pathogens

correlates with other DAF-16 mediated effects, with the exception

of the Gram-negative bacterium S. typhimurium, which shows

similar lethality in all four species and the two daf-2 mutants. Since

S. typhimurium is one of the few human pathogens thus far shown to

establish a truly persistent infection in the worm due to its

resistance towards antimicrobial peptides [25,44], this finding may

indicate that DAF-16 plays little or no role in dealing with gut-

colonising pathogens.

The insulin-like signalling pathway contributes to both innate

immune responses and stress responses in C. elegans. Our data

suggests that this may also hold true in closely related nematode

species. In line with this, we show that the components of this

pathway do not show evidence of adaptive sequence evolution

during the diversification of these species whereas the complement

of putative downstream targets controlled by DAF-16 appear to

vary between these species. All three sequenced species share a

core DAF-16 regulon comprised of genes functioning in longevity,

stress response and other biological processes. However, whilst C.

elegans and C. remanei contain a similar set of target types in their

species-specific DAF-16 regulons, the species-specific DAF-16

regulon of C. briggsae lacks genes involved in immunity and stress

response. Interestingly, in line with this finding, we observed that a

daf-2 mutant in C. briggsae is long-lived and resistant to abiotic

stress, but only moderately resistant to killing by a range of

pathogens.

The majority of enriched genes identified by our approach are

associated with other biological processes such as metabolism,

transport and other functions, in line with previous studies that

have identified downstream targets of DAF-16 in C. elegans

[14,38,39,40,45,46]. We note, however, that such bioinformatic

analyses are susceptible to false positive (due to the chance

occurrence of DAF-16 consensus sequences) and false negative

(due to its reliance on perfect-match sequence motifs) errors.

Indeed, depending on the approach used, others have estimated

that up to 78% of C. elegans genes might be potential DAF-16

downstream targets [42]. As such, we would emphasize that our

bioinformatic analysis is intended only as a guide for future

experimental analyses once tools become available.

In conclusion, we demonstrate covariance of DAF-16 mediated

phenotypes in the four most well-characterized species of the

Caenorhabditis clade. We note that our data are correlative but, as

yet, cannot prove a causative influence of daf-16 expression level

on these phenotypes in the gonochoristic species. Currently,

demonstrating a direct role for DAF-16 in phenotypic covariance

in the gonochoristic nematodes is not technically feasible. Very few

genetic mutants have been made in these species, RNA

interference is of low efficiency and no antibodies exist for

chromatin immunoprecipitation approaches. However, many

groups are currently attempting to develop such tools for these

species and, as such, we hope that a full mechanistic investigation

of the IIS pathway in non-elegans species will be feasible within

the next few years.

Materials and Methods

Bacterial strains and growth conditions
Escherichia coli OP50 [47], Salmonella typhimurium SL1344 [48],

Pseudomonas aeruginosa PA01 and Staphylococcus aureus NCTC8532

were grown in nutrient rich Luria-Bertani (LB) broth overnight

with shaking at 37u. The bacterial culture was then seeded onto

standard Nematode Growth agar Medium (NGM[47,49]) plates.

These plates were incubated overnight at 37u (,16 hrs) followed

by storage at 4u. Plates were always equilibrated to room

temperature before use.

Worm Strains
Worm strains N2, RC301, CB4856 (wildtype Caenorhabditis

elegans), AF16, ED3033, ED3034 (wildtype Caenorhabditis briggsae),

EM464, JU1082, JU1084 (wildtype Caenorhabditis remanei), CB5161,

LKC28, SB129 (wildtype Caenorhabditis brenneri), CB1370 [C. elegans

daf-2(e1370)], PS5531 [C. briggsae daf-2(sy5445)] and BA17

[C.elegans fem-1 (hc17)] were grown on standard NGM plates

seeded with OP50 strain of E. coli bacteria as a food source

[47,49]. All strains except BA17 (which was grown at 25uC to

induce feminisation) were grown at 20uC. Fourth larval stage

hermaphrodites from the hermaphroditic species and females from

the gonochoristic species were used for all the phenotypic assays

performed.

Longevity/Pathogen Assays
The hermaphroditic and gonochoristic strains of worms were

bleached [49] to produce age-synchronous L4 molt populations.

Between 80 and 250 L4 worms from the hermaphroditic species,

or females in the case of gonochoristic species, were transferred

onto NGM plates (,30 worms per plate, yielding up to 10

replicates) seeded with OP50 for longevity assays and SL1344,

PA01 and NCTC8532 for pathogen assays as food source. Plates

Table 1. Overlap of the number of potential DAF-16 targets.

Lee Murphy Wiener McElwee Dong This study

Overlapping with Oh 1/81 2/473 1/317 11/953 1/93 30/6293

This table shows the overlap between the reference dataset of Oh and other
datasets obtained by Murphy [14], Halaschek-Wiener [39], Lee [16], McElwee
[40] and Dong [41] and the C. elegans gene list of this study. The first number
gives the number of genes that are shared between Oh and the dataset of
comparison. The second number stands for the total number of genes
identified as potential downstream targets of DAF-16 in the corresponding
study.
doi:10.1371/journal.pone.0009978.t001
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with OP50 were incubated at 20uC with the rest being incubated

at 25uC. Worms grown at 25uC on OP50 have been shown to

have a significantly longer lifespan than those grown on

pathogenic bacteria such as S. typhimurium [25] which eliminates

the negative effects of heat as an experimental determinant. The

worms on all these plates were scored for survival every 24 hrs.

Animals were considered dead when they failed to respond to

prodding by a platinum wire. The worms were transferred onto

new plates every one to two days until they stopped egg laying, in

order to prevent F1 progeny from interfering with the experiment.

Heat Shock Assay
L4 worms from the hermaphroditic species, and females in the

case of gonochoristic species, were transferred onto NGM plates

with OP50 that had been prewarmed to 37u. These plates were

then incubated at 37uC and the worms were scored for survival at

hourly intervals.

Metallotolerance Assay
Age synchronous L4 worms were transferred from NGM plates

into 24-well tissue culture plates containing copper chloride

(7 mM) dissolved in K medium (53 mM NaCl, 32 mM KCl)

[10,50]. The plate was incubated at 20uC and the worms were

scored for survival every hour.

Statistical Analysis
Survival curves were produced based on the Kaplan-Meier

method using MS-Excel and the significance was calculated using

the non-parametric log-rank method. Assays were then corrected

for multiple testing using the Bonferroni correction.

Preparation of total nematode mRNA and Quantitative
RT PCR

For qRT-PCR, RNA was isolated from a mixed larval stage

population of each of the four species of worms. These worms were

grown on NGM plates with OP50 as food source at 20u. Animals

were then washed off the plates using M9 buffer, followed by

repeated washes again with M9 buffer before being homogenized

using the Precellys 24 machine (Stretton Scientific). The RNA was

then isolated from these worm samples using the Qiagen RNeasy

Mini kit (cat. No. 74140) using the manufacturer’s protocol. RNA

was then reverse transcribed into cDNA using Superscript II reverse

transcriptase (Invitrogen) according to the manufacturer’s instruc-

tions. Real-time quantitative RT-PCR was performed (7300 Real

Time PCR System; Applied Bio Systems) on this cDNA using the

SYBR Green PCR kit (Quantace) to determine the expression levels

of daf-16 across the four species. Primers for this were designed

manually and tested for maximum efficiency with their respective

cDNA prior to qRT-PCR. Primers used include daf-16 primers for

C. elegans, C. briggsae, C. remanei and C. brenneri (Table 2).

The RT PCR levels were normalized to the housekeeping gene,

Glyceraldehyde 3-Phosphate Dehydrogenase (gpd-3). The primers

for this gene were; Primer Fwd – TGAAGGGAATTCTCGCT-

TACACC and Primer Rev – GAGTATCCGAACTCGTTAT-

CGTAC. We confirmed that our results were not due to variation

in gpd-3 by cross checking RT PCR levels against another

reference gene, 18sRNA, the primers for which were; Primer Fwd

- TTCTTCCATGTCCGGGATAG and Primer Rev – CCCCA-

CTCTTCTCGAATCAG. To assess the efficacy of the primers

and the sensitivity of the qPCR assay, 2-fold dilution series of the

template DNA for all the species tested were prepared and

subjected to qPCR amplification. The results obtained were

extrapolated to produce standard curves by linear regression

analysis between threshold cycle (Ct) and sample dilution that gave

coefficients of determination (r2) that exceeded 0.95 for all

template/primer combinations (Table S9). Once amplification

efficiencies of the target and the reference were determined to be

approximately equal, RT PCRs were carried out for all the

experimental conditions. These results were analysed using the

DCT method with the gpd-3 and 18S RNA levels as controls for

normalization and expressed as fold change compared to C. elegans

[51].

Bioinformatic analysis of DAF-16 downstream targets
The complete genomes of C. elegans (20,189 genes), C. briggsae

(21,976 genes) and C. remanei (31,614 genes) were downloaded

from Wormbase release WS 197 (www. wormbase.org). We

surveyed a 3000 bp upstream flanking region of each gene

(upstream of the lead ATG) for the presence of the two known

canonical DAF-16 binding sites (ttatttac/gtaaataa, ttgtttac/gtaaa-

caa; [52]). We applied a perfect match approach using the dna-

pattern tool implemented in the freely available software package

Regulatory Sequence Analysis Tools (RSAT; http://rsat.bigre.ulb.

ac.be/rsat/; [53]). Only genes with upstream flanking region

containing one or more perfect matches to the consensus sites were

included in further analyses. From this set of genes we then

retrieved a subset of genes for each species that are orthologous

either between C. elegans and C. briggsae, C. elegans and C. remanei or

between all three species. Based on these orthologous gene sets we

defined the following classes: i) a species-specific DAF-16-regulon,

consisting of orthologs that contain the consensus site in only one

of the species, ii) the species-shared DAF-16 regulon, consisting of

orthologous genes that contain the consensus site in two of the

species and iii) the core-DAF-16 regulon, consisting of orthologs

that contain the consensus site in all three species. These gene

subsets were subsequently analysed in order to identify enriched

functional gene groups. This analysis was performed using the

functional annotation tools available from the non-commercial

bioinformatic database DAVID (Database for Annotation, Visu-

alization and Integrated Discovery) [54,55].

Table 2. List and sequence of primers used for studying daf-16 expression levels using Real Time PCR.

Gene Species Forward Primer 59 Reverse Primer 39

daf-16 C. elegans GCGAATCGGTTCCAGCAATTCCAA ATCCACGGACACTGTTCAACTCGT

daf-16 C. briggsae AGAAGGCTACCACTAGAACCAACG TCCATCCAGCGGAACTGTTCGAAT

daf-16 C. remanei CGACGGCAATACTCATGTCAATGG ACGGTTTGAAGTTGGTGCTTGGCA

daf-16 C. brenneri CCTTAGTAGTGGCCTCAATGGTGT CACAACCTATCACTTCACTCTCGC

gpd-3 All species TGAAGGGAATTCTCGCTTACACC GAGTATCCGAACTCGTTATCGTAC

doi:10.1371/journal.pone.0009978.t002
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Furthermore we compared the resulting C. elegans gene list to the

available datasets of Oh [38], Murphy [14], Halaschek-Wiener

[39], Lee [16], McElwee [40] and Dong [41]. These datasets were

combined, duplicates removed and subsequently run against the C.

elegans gene list (containing all genes with a perfect match to one of

the binding motifs). The resulting gene list was then compared to

the lists obtained for C. briggsae and for C. remanei. The three

resulting lists were analysed using the functional annotation tools

in DAVID. Finally, we looked whether there was any overlap

between the dataset of Oh and the datasets of Murphy, McElwee,

Lee, Halaschek-Wiener, Dong.

We determined the number of genes that were enriched within

the functional annotation category Gene Ontology GOTERM

BP_ALL and especially enriched in GOTERM BP_2. The results

were obtained by using the Functional Annotation Chart tool. The

GOTERMS BP are available from the DAVID database. The p-

value obtained in this analysis is equivalent to the EASE score,

which uses a conservative adjustment of the Fisher’s exact

probability, and was applied to identify significantly enriched

gene categories. DAVID provides several methods to correct for

multiple testing which include Bonferroni adjustment of the p-

value, and the Benjamini-Hochberg approach to control for

family-wide false positive rate. The fold enrichment value

measures the magnitude of enrichment and is considered

significant if 1.5 or above [54]. For more statistical details and

detailed description of the annotation methods used in DAVID

please refer to the cited references above and references therein.

For all orthologs, the corresponding WormBase IDs of C. elegans

genes were used as input files. Orthologs between C. remanei and C.

briggsae but not occurring in C. elegans could not be addressed with

this approach. All orthologous genes with a duplicate output in

one of the species were counted only as one gene.

Adaptive sequence evolution
Adaptive sequence evolution along the IIS pathway was studied

in C. elegans, C. briggsae and C. remanei. Protein sequences and DNA

sequences of the coding regions ranging from daf-2, age-1, pdk-1,

akt-1, and daf-16 were obtained from WormBase WS197 (www.

wormbase.org). Protein sequences and DNA coding regions were

aligned using ClustalX2 [56]. For each gene of interest, the

presence of adaptive sequence evolution (ratio between synony-

mous [KS] and non-synonymous [KA] substitutions) was calculat-

ed between a pair of sequences (C. elegans and C. brigssae; C. elegans

and C. remanei; C. briggsae and C. remanei) using PAL2NAL [57].

PAL2NAL calculates KS and KA by the codeml program in

PAML. Briefly, pairwise protein alignments in CLUSTAL format

and the corresponding DNA sequence alignments in FASTA

format were used as input files. The following option settings were

used. (i) Codon table: ‘‘universal’’. (ii) Remove gaps and inframe

stop codons: ‘‘Yes’’. iii) Calculate KS and KA: ‘‘Yes’’. (iv) Remove

mismatches: ‘‘No’’.

Supporting Information

Figure S1 Lifespan analysis of three wild isolates for each of the

type strains of the tested Caenorhabditis species under pathogenic

(Staphylococcus aureus NCTC8532) stress.

Found at: doi:10.1371/journal.pone.0009978.s001 (0.91 MB TIF)

Figure S2 Lifespan analysis of three wildtype isolates for each of

the type strains of the tested Caenorhabditis species under heavy

metal stress.

Found at: doi:10.1371/journal.pone.0009978.s002 (0.85 MB

TIF)

Figure S3 Lifespan analysis of C. elegans feminizing mutant

(BA17, fem-1(hc17)), C. elegans wild type (N2) and C. remanei

(EM464) under pathogenic (Staphylococcus aureus NCTC8532) stress.

Found at: doi:10.1371/journal.pone.0009978.s003 (0.87 MB TIF)

Figure S4 Figure illustrating the 913 genes of the 13,015 genes

shared in common between C. elegans, C. briggsae and C. remanei that

contain DAF-16 binding sites which we define as the core DAF-16

regulon.

Found at: doi:10.1371/journal.pone.0009978.s004 (0.64 MB TIF)

Table S1 Complete list of the p values between all the type strains

for the various assays performed. P values in bold indicate significance

after testing for multiplicity using the Bonferroni correction.

Found at: doi:10.1371/journal.pone.0009978.s005 (0.02 MB

XLS)

Table S2 List of p values for all the wildtpe isolates compared to

the type C. elegans strain (N2) for the assays performed. P values in

bold indicate significance after testing for multiplicity using the

Bonferroni correction.

Found at: doi:10.1371/journal.pone.0009978.s006 (0.02 MB

XLS)

Table S3 Table represents the fold change in expression levels of

daf-16 among the tested Caenorhabditis species, including C. elegans

males.

Found at: doi:10.1371/journal.pone.0009978.s007 (0.02 MB

XLS)

Table S4 Complete list of the p values between type strains (N2

and AF16) and their daf-2 mutant counterparts (CB1370 and

PS5531) for the various assays performed. P values in bold indicate

significance after testing for multiplicity using the Bonferroni

correction.

Found at: doi:10.1371/journal.pone.0009978.s008 (0.01 MB

XLS)

Table S5 Adaptive sequence evolution of the IIS pathway in C.

elegans, C. remanei and C. briggsae.

Found at: doi:10.1371/journal.pone.0009978.s009 (0.03 MB

XLS)

Table S6 Table represents the outcome of the GOTERM BP_2

DAVID analysis performed for the DAF-16 core regulon and the

species specific DAF-16 regulon. The gene count gives the number

of genes within the tested gene sets which are found to be

associated with a GO group within GOTERM BP_2. P-value is

based on a conservative adjustment of the Fisher’s exact

probability and was subsequently coorected for multiple testing

with Bonferroni correction and the Benjamin-Hochberg method

implemented in DAVID. After correction the p-value gets larger.

The fold enrichment value measures the magnitude of enrichment.

Found at: doi:10.1371/journal.pone.0009978.s010 (0.08 MB

XLS)

Table S7 Table represents the outcome of the GOTERM

BP_ALL DAVID analysis performed for the DAF-16 core regulon

and the species specific DAF-16 regulon. The gene count gives the

number of genes within the tested gene sets which are found to be

associated with a GO group within GOTERM BP_ALL. P-value

is based on a conservative adjustment of the Fisher’s exact

probability and was subsequently coorected for multiple testing

with Bonferroni correction and the Benjamin-Hochberg method

implemented in DAVID. After correction the p-value gets larger.

The fold enrichment value measures the magnitude of enrichment.

Found at: doi:10.1371/journal.pone.0009978.s011 (0.20 MB

XLS)
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Table S8 Table representing the adjusted DAF-16 core regulon

using the GOTERM BP_ALL and GOTERM BP_2 gene

categories which revealed significant enrichment for genes

involved in the regulation of lifespan, stress response, transport,

localization and metabolism.

Found at: doi:10.1371/journal.pone.0009978.s012 (0.13 MB

XLS)

Table S9 Table represents the coefficients of determination (r2)

for all template/primer combinations. Once amplification effi-

ciencies of the target and the reference genes were determined to

be approximately equal, RT PCRs were carried out for all the

experimental conditions.

Found at: doi:10.1371/journal.pone.0009978.s013 (0.02 MB

XLS)
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