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Abstract 

 

In the context of existing ‘quantitative’/’qualitative’ schisms, this paper briefly 

reminds readers of the current practice of testing for statistical significance in social 

science research. This practice is based on a widespread confusion between two 

conditional probabilities. A worked example and other elements of logical argument 

demonstrate the flaw in statistical testing as currently conducted, even when strict 

protocols are met. Assessment of significance cannot be standardised and requires 

knowledge of an underlying figure that the analyst does not generally have and can 

not usually know. Therefore, even if all assumptions are met, the practice of statistical 

testing in isolation is futile. The question many people then ask in consequence is - 

what should we do instead? This is, perhaps, the wrong question. Rather, the question 

could be – why should we expect to treat randomly sampled figures differently from 

any other kinds of numbers, or any other forms of evidence? What we could do 

‘instead’ is use figures in the same way as we would most other data, with care and 

judgement. If all such evidence is equal, the implications for research synthesis and 

the way we generate new knowledge are considerable. 
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Social science research and the schism 

 

In the last decade or so, there has been considerable international discussion about the 

quality and relevance of social science research, especially in applied fields such as 

education, health promotion, and crime prevention. In my experience, progress 

towards enhanced research capacity sometimes founders on the entrenched schism 

between work that is purportedly ‘qualitative’ and that which is termed ‘quantitative’. 

The barriers to improvement generated by this schism include demands for different 

kinds of criteria for judging the quality of different forms of evidence. The barriers to 

knowledge accumulation include demands for separate approaches to evidence 

synthesis for each type of data. Indeed, in some current approaches to systematic 

review, work that is less than a certain scale, or not of a particular kind, is simply 
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excluded from consideration. The outcome is that work involving large-scale numbers 

tends to be privileged in review and, at least rhetorically, in evidence-informed 

policy-making and practice. Ironically, this sense of privilege may then reinforce the 

schism for those whose work is excluded.  

 

It has not been satisfactorily explained why evidence in the form of numbers should 

be treated differently, per se, to other forms of evidence; nor why textual, archival, 

audio, visual, and other sense data are deemed so similar as to be in one silo, distinct 

to numbers. There seems to be no philosophical or theoretical basis for the schism 

(Gorard 2004a, 2004b).  As so-called ‘mixed methods’ studies show, there is no 

fundamental barrier to the successful combination of all of these data forms within or 

across studies. In fact, it is even possible to mount an argument that mixing methods 

is a natural way to conduct high quality relevant research of the kind that 

commentators have been asking for (Gorard and Cook 2007). This paper addresses 

one potential obstacle which appears to suggest that numbers should be routinely 

treated in a very different way to other forms of evidence – this obstacle is the 

domination of number-based work by a sampling theory approach derived from 

agricultural trials (Gorard 2006a). 

 

 

A reminder of the basis for statistical testing 

 

The basis of statistical testing derived from sampling theory is the calculation of a 

conditional probability. This probability becomes the p-value used for significance 

testing, and also for standard errors, confidence intervals and often in deciding which 

variables to retain in complex statistical modelling.1 The calculation of the probability 

is grounded in various assumptions, such as a random or randomised sample and 

complete measurement of all cases in the selected sample (de Vaus 2002). There are 

two different widespread uses of significance tests (based loosely on the Fisher and 

Neyman-Pearson traditions). Apart from the terminology their logic, as far as this 
                                                            
1 This paper focuses on significance testing. However, readers should recall that the same issues arise 
in calculating standard errors and confidence intervals – which are calculated on the basis of a null 
hypothesis and both of which are subject to similar misinterpretations as p-values. For example, the 
95% confidence interval is often misunderstood as a bound within which we can be 95% confident that 
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discussion is concerned, is the same. The test is intended to help decide whether two 

sets of measurements (perhaps two sub-samples) could have come from the same 

overall group (population). Here is a fairly standard summary of this process, as it 

appears in methods resources. 

 

The usual process of hypothesis testing consists of four steps.  

1. Formulate the null hypothesis (commonly, that the observations are the result 

of pure chance) and the alternative hypothesis (commonly, that the observations 

show a real effect combined with a component of chance variation).  

2. Identify a test statistic that can be used to assess the truth of the null 

hypothesis.  

3. Compute the p-value, which is the probability that a test statistic at least as 

significant as the one observed would be obtained assuming that the null 

hypothesis were true. The smaller the p-value, the stronger the evidence against 

the null hypothesis.  

4. Compare the p-value to an acceptable significance value (sometimes called 

an alpha value). If p<alpha, that the observed effect is statistically significant, 

the null hypothesis is ruled out, and the alternative hypothesis is valid. 

(Wolfram Mathworld - http://mathworld.wolfram.com/HypothesisTesting.html, 

29/5/08) 

 

I have several concerns about the way the process is described here, and everyone 

may have their own favoured way of expressing it, but that is not my main point. The 

steps are, in general terms, those agreed in resources and used in practice. An 

extended treatise of the nature and use of statistical testing says: 

 

Application of NHST [null hypothesis significance testing] to the difference 

between two means yields a value of p, the theoretical probability that if two 

samples of the size of those used had been drawn at random from the same 

population, the statistical test would have yielded a statistic (e.g., t) as large or 

larger than the one obtained. (Nickerson 2000, p.242) 

 

                                                                                                                                                                          
a specific population parameter falls, rather than the bound within 95% of sample values would fall if 
the null hypothesis is true.  
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Nickerson (2000, p.242) continues by saying of the null hypothesis that ‘Often… the 

term is intended to represent the hypothesis of “no difference” between two sets of 

data’. If the p-value calculated as above is less than a certain level, traditionally 5%, 

then the null hypothesis is rejected.2 Standard reputable texts on methods for 

statistical analysis are in agreement over the conditional nature of null hypothesis 

testing, even though they may all express this condition in different ways. Here is a 

selection of partial descriptions of the same process from a variety of sources 

 

A traditional A-level text book says: 

 

If the experiment gives results which have a high probability on the null 

hypothesis the hypothesis will not be rejected. (Brookes and Dick 1951, p.148) 

 

A more advanced text from the same period says (where H0 is the null hypothesis): 

 

In advance of the data we specify the set of all possible samples that could occur 

when H0 is true. From these, we specify a subset of possible samples which are 

so extreme that the probability is very small, if H0 is true, that the sample we 

actually observe will be among them. (Siegel 1956, p.8) 

 

A more recent, more general methods text says: 

 

The final step in the testing process is to see whether the proportion from the 

random sample is sufficiently far from the proportion assumed by the null 

hypothesis to warrant the rejection of the null hypothesis. (Fielding and Gilbert 

2000, p.248) 

 

And another says:  

 

                                                            
2 For simplicity, this paper discusses only the ‘nil’ null hypothesis of no difference, common in the 
Fisher tradition. Other kinds of null hypothesis are possible, and all would be affected by the logical 
flaws discussed here.  
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This [i.e. the standard 95% alpha level] means that if we drew 100 samples, we 

are recognizing that as many as 5 of them might exhibit a relationship when 

there is not one in the population’. (Bryman 2001, p.233) 

 

Perhaps the most widespread reference says: 

 

The null hypothesis is presumed true until statistical evidence, in the form of a 

hypothesis test, indicates otherwise — that is, when the researcher has a certain 

degree of confidence, usually 95% to 99%, that the data does not support the 

null hypothesis. (Wikipedia – 29/05/08) 

 

The (nil) null hypothesis is also variously described: 

 

The null hypothesis states that the experimental group and the control group are 

not different with respect to [a characteristic of interest] and that any difference 

found between their means is due to sampling fluctuation. (Carver 1978, p.381) 

 

 …the hypothesis that certain observed data are a merely random occurrence. 

(Borowski and Borwein 1991, p.411) 

 

What all of these and other texts like them make clear in their different ways is that 

calculation of the probability of the data/sample encountered in any new research is 

conditional upon the null hypothesis (rather than the other way around). And that the 

probability so generated is routinely used to accept or reject the null hypothesis, 

where the null hypothesis is usually one of no difference. Why does this matter? 

 

The logic is a modified form of the argument of modus tollendo tollens, or denying 

the consequent. If the null hypothesis is assumed true we can calculate the probability 

of observing data as (or more) extreme than the data we did observe. If this 

probability is very small it suggests that the null hypothesis is not likely to be true. Of 

course, the formal modus tollens is not based on probability but certainty (in a 

Platonic tradition). The argument goes: 

 

If A then B  
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Not B  

Therefore, not A 

 

This argument is indisputable, and its soundness can be proved by logic trees or truth 

tables. However, when converted to a likelihood argument (perhaps in a more 

Aristotelian tradition), the argument says: 

 

If the null hypothesis (H) is true then we can calculate the probability of 

observing data (D) this extreme 

The probability of D (given H) is very small 

Therefore, the probability of H is very small 

 

This second argument is more complex than the simple modus tollens. Unlike the 

formal logic version, it allows for a false positive result (or Type I error) when H is 

rejected incorrectly because the very small probability of observing D has occurred 

despite H (as it will on a small percentage of occasions).3 Many specific events, when 

closely described, can be deemed low probability, and the occurrence of a low 

probability event is not, in itself, any evidence of it not being due to chance (as this 

term is usually interpreted, but see Gorard 2002). Sitting down to a game, the gamer 

would not declare a die biased just because it rolled two threes in succession. Nor 

would they do so if they were dealt three cards in the same suit from a standard pack. 

Yet both of these gaming events are less likely than the 5% threshold used in 

traditional statistical analysis.  

 

This likelihood version of modus tollens also allows for a false negative result (or 

Type II error) where the probability of D is found to be not very small, and so H is not 

rejected even where it is not true. In general, users and teachers of statistics tend to 

understand these limitations of the method, either formally or intuitively. They may 

reason that as long as the conditional probabilities of D and H are clearly linked, so 

                                                            
3 By definition a Type I error (incorrect rejection of the null hypothesis) is only possible if the null 
hypothesis is true. The truth of the null hypothesis itself is not derivable from p since p only exists 
assuming the null hypothesis to be true. 
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that a low value for p(D|H) means a low value for p(H|D) and vice versa, the approach 

is useful and valuable.4 As Nickerson (2000, p.251) says: 

 

Even to many specialists, I suspect, it seems natural when one obtains a small 

value of p from a statistical significance test to conclude that the probability that 

the null hypothesis is true must also be very small. 

 

There have been many criticisms of statistical testing over decades (Gorard 2006a), 

and many examples of misuse of the method such as widespread acceptance of p-

values based on non-probability samples, or dredging datasets via multiple use of a 

technique whose probability calculations are predicated on one-off use (Wright 2003). 

Several alternatives to significance tests have been suggested, such as greater use of 

effect sizes, and descriptive, graphical or everyday approaches. Perhaps the most 

obvious alternative is to treat numeric judgements as we should treat judgements 

about any of the other kinds of data available to us in social science. That is we need 

to argue clearly and logically why a specific difference, pattern or trend is valuable 

and worthy of further consideration – in such a way that readers can see why and so 

make their own judgement to agree or disagree. There is no general technique 

available that we can use which means readers must agree with our judgements. Nor 

perhaps should there be. But these alternatives are still seen by the wider field merely 

as additions to the otherwise useful and valuable process of significance testing. What 

this paper hopes to demonstrate is that the easy assumption that a low value for 

p(E|H) means a low value for p(H|D) is false. Modus tollens does not work with 

probabilities – or, expressed differently, it requires a further probability in order to 

make it work at all. To illustrate why, I present a simple example of calculating two 

conditional probabilities. 

 

 

A simple example of conditional probability 

 

                                                            
4 The format p(D|H) is used to denote the probability of D given H, or D calculated on the assumption 
that H is true. Reversing D and H leads to two statements that are clearly not equivalent in real life (or 
indeed in science, logic, maths or statistics). The probability of carrying an umbrella if it is raining is 
not, necessarily, the same as the probability of it raining if one carries an umbrella.  
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Imagine that around 1% of the population will develop a specific disease or illness, 

and that a predictive diagnostic test has been developed to help identify this 

unfortunate 1% so that remedial or palliative action can be prepared. Research has 

shown that the test is 90% accurate, in the limited sense that of the people who go on 

to develop the disease, 90% would be predicted to do so by the prior test. It is a useful 

test, even though 10% of the positive cases are likely to be missed (false negatives). 

However, as with all tests there is a downside. Of those people who do not go on to 

develop the disease, 10% would still be predicted to do so by the test (false positives). 

This could cause considerable but unnecessary distress, even though 90% of those 

who will not develop the disease are also correctly identified. Given this situation, and 

assuming that the research on the accuracy of the test is believable, consider this 

problem. If a large number of people from the general population are tested and 

someone you know obtains a positive result from the test (i.e. they are predicted to 

develop the disease) what is the probability that they will actually develop the 

disease?  

 

To make this easy to visualise, consider the average results for 1000 people being 

tested. Of these, 10 (1%) will likely develop the disease, of whom 9 (90%) will test 

positive (i.e. be correctly predicted to have the disease). Of the remaining 990 (1000-

10) who will not develop the disease, 99 (10%) will test positive for the disease 

(falsely). Thus, in any large group of randomly selected people, someone testing 

positive is only 9/108 (8%) likely to develop the disease – a high risk but much less 

likely than the 90% some might fear, and that even relevant professionals such as 

physicians and counsellors have suggested (Gigerenzer 2002). The frequencies are 

summarised in Table 1. 

 

Table 1 – Frequencies of test results and disease for 1,000 people (1% prevalence) 

 Test positive Test negative Total 

Develop disease     9     1     10 

Not develop disease   99 891   990 

Total 108 892 1000 
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What this example shows is that there is a clear difference between the probability of 

someone developing the disease having tested positive (8%) and the probability of 

someone generating a positive test result given that they will develop the disease 

(90%). Not only are these two conditional probabilities completely different, but also 

there is no way of calculating or deducing the value of one from the value of the other 

(in isolation). The conversion of one value to the other requires knowledge of the 

underlying unconditional probability of developing the disease (1%) and a 

computation like the one in Table 1.5 If we keep everything in the example the same, 

but change the prior probability of getting the disease from 1% to 50% then the 

probability of someone generating a positive test result given that they will develop 

the disease is still 90%. However, the probability of someone developing the disease 

having tested positive is now 90% as well, as explained in Table 2. 

 

Table 2 – Frequencies of test results and disease for 1,000 people (50% prevalence) 

 Test positive Test negative Total 

Develop disease 450   50   500 

Not develop disease   50 450   500 

Total 500 500 1000 

 

The probability of someone developing the disease having tested positive – p(D|T) - 

can be very small even when the probability of testing positive given that they will 

develop the disease – p(T|D) – is very large. These instances of inverse relationship 

happen when the unconditional prior probability of D is small. Or the two conditional 

probabilities can be identical (when the prior probability of D is 50%). Or they can be 

positively related, with p(D|T) even greater than p(T|D) when the unconditional prior 

probability of D, or p(D), is large.  

                                                            
5 Bayes’ Theorem 
The more general relationship between two conditional probabilities of the sort discussed in this paper 
is (where A and B are events, p signifies probability, | signifies given, and ‘ denotes the inverse of an 
event): 
p(A|B) = p(A).p(B|A)/(p(A).p(B|A)+p(A’).p(B|A’) 
In the example in the paper, if we substitute developing the disease for A and testing positive for B, the 
relevant probabilities are A=1%, B|A=90%, A’=99%, B|A’=10%. Therefore: 
p(A|B) = 90 / (90 + 990) 
Or 8%, which is the same answer as obtained by considering Table 1. Since we know the overall 
probability of developing the disease, p(A), we can convert the probability of getting a positive test 
result if one was going to develop the disease into the much more useful diagnostic probability of 
developing the disease if one gets a positive test result. 
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The flaw in statistical reasoning 

 

What is the relevance of this to statistical testing? I hope that readers are already 

seeing the link between this example and the modified modus tollens argument in 

statistical reasoning. As shown above, the p-value underlying all statistical tests is 

calculated as the conditional probability of observing data as extreme (or more 

extreme) as was actually observed in the sample assuming that the sample and 

population (or two sub-samples) are identical in terms of the measured characteristic. 

Put in a similar way to the disease example above, a p-value for a statistical test is the 

probability of getting the data we did given that the null hypothesis of no difference 

between sample and population (or two sub-samples) is true. For the p-value to be 

calculated the null hypothesis must be assumed as true. By definition, therefore, the p-

value by itself cannot be used to judge or even help judge the likelihood of the truth of 

the null hypothesis. Yet what analysts seem to want from statistical testing is precisely 

that ability to judge the probability of the null hypothesis. And this is what they 

usually report the p-value as being, and how they use the p-value in practice. 

 

[Statistical significance is] ‘the likelihood that a real difference or relationship 

between two sets of data has been found’ (Somekh and Lewin 2005, p.224). 

 

These countless analysts over generations are making the same mistake as someone 

believing that a positive result in the diagnostic test above means a 90% chance of 

developing the disease. What these analysts want is the probability of the null 

hypothesis given the data they found, but what they actually calculate is the 

probability of finding that data given the null hypothesis. As the disease example 

above shows, these two figures are different and one cannot be calculated or even 

guessed from the other. The widespread practice of significance testing rests on a 

crucial confusion between these two conditional probabilities.  

 

The assumptions of significance testing only really work when the prior probability of 

the null (and alternate) hypothesis is 50%. In this unlikely circumstance the 

probability of the data observed given the null hypothesis - p(D|H) - is the same as 
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p(H|D) and so the null hypothesis could be plausibly retained or rejected with 

likelihood p(D|H).6 In other circumstances this is not possible, which means that 

statisticians not only have to claim a series of rather unrealistic assumptions such as a 

perfect random sample with full response, no dropout and no measurement error, they 

also have to claim that all of their null hypotheses have a 50% likelihood before any 

data is collected or analysed. In other words, statistical analysis must assume no prior 

knowledge of any kind! 

 

Nickerson (2000, p.247) provides numerous examples of specialists in statistics 

routinely ignoring this distinction between pD|H and pH|D, and shows that false 

beliefs about these conditional probabilities are ‘abundant’ in the literature. These 

examples include social scientists and statisticians ‘of some eminence’, such as Fisher 

himself.7 Any reader who has worked in this area will be able to add more examples 

(including, of course, from my own work when I started out as an academic in 

1996/97). This ‘belief that p is the probability that the null hypothesis is true’ 

(Nickerson 2000, p.247) is an even more fundamental error than the less common but 

still prevalent mistaken belief that 1-p is the probability of any specific alternate 

hypothesis being true.  

 

The situation for statistical analysis is equivalent to the diagnostic test earlier. We can 

convert the probability of getting the data we did given the null hypothesis into the 

more useful probability of the null hypothesis given the data we obtained, as we did 

above using frequencies, or by using Bayes’ Theorem. But the problem for analysts is 

that to do this requires us to know p(H) – the unconditional probability of the null 

hypothesis being true in the first place. So, apparently tautologically, in order to find 

the empirical probability of the null hypothesis we must know how likely it is 

beforehand. Analysts might reasonably use their a priori subjective judgement of the 

null hypothesis being true to substitute for p(H). In which case the new p-value is an 

estimate of how far that subjective view of the null hypothesis might be affected by 

the new empirical evidence (see Gorard et al. 2004a). But none of the training texts 

quoted above, and almost none of the material published in mainstream social science 

                                                            
6 Although of course it is still not clear that one study leading, however convolutedly, to p(H|D)<0.05 
should be able to over-ride a prior p(H) of 0.50 in this manner. 
7 Despite being a great pioneer of agricultural trials, Fisher has been known to err (see Gorard 2005). 
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research journals, follow such a procedure. They simply appear to misinterpret the 

conditional probability of the new data as though it were the probability of the null 

hypothesis conditional upon the new data. Falk and Greenbaum (1995) claim that the 

lack of a clear relationship between pD|H and pH|D discredits the whole logic of 

significance testing, which answers a question we would never knowingly ask, but 

leads to us to conclude we have some kind of answer to the questions we might 

actually want answered – such as how probable is the hypothesis, how reliable are the 

results, and what is the size of the effect found? 

 

 

Reprise of argument 

 

In order to clarify this flaw in statistical testing, before moving to some of the 

implications, I repeat the argument in what I hope is a clear and simple form.  

 

1. In general, the probability of event A given event B is not the same as the 

probability of event B given event A. 

 

2. The values p(A|B) and p(B|A) can be very different – with one near 100% and 

another near 0 for example – or they can be similar.  

 

3. It is not possible, generally, to deduce or calculate p(B|A) from p(A|B), without 

also knowing an a priori prevalence figure – the unconditional value p(B). 

 

4. Significance testing in statistics is based on calculating the probability of the 

finding the evidence/data (D) observed assuming the null hypothesis (H). 

 

5. p(D|H) is not the same as p(H|D). 

 

6. The values p(D|H) and p(H|D) can be very different – with one near 100% and 

another near 0 for example – or they can be similar. 

 

7. It is not possible, generally, to deduce or calculate p(H|D) from p(D|H), without 

also knowing the a priori unconditional value p(H). 
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8. If we had a good and reliable figure for p(H) we would presumably not bother to 

calculate p(H|D) anyway in many situations where we currently use significance tests. 

 

9. We do not generally know the a priori figure p(H) when conducting a significance 

test, and it is almost never used in the literature. There would rarely be a good 

argument for using the implied underlying value of 50%, since something is almost 

always known about any topic prior to the research. 

 

10. In these circumstances, therefore, we cannot use p(D|H) to assess the likelihood 

p(H|D). 

 

11. In summary, with a good prior figure p(H), significance testing is largely 

pointless. Without p(H), significance testing cannot be defended as logical.  

 

What are the implications? 

 

 

Conclusions 

 

I have argued here that p(D|H) is not the same as p(H|D), that significance testing 

involves the probability of findings given the null hypothesis, and so that to treat a 

statistical test as leading to an estimate of the probability of the null hypothesis being 

true must be a logical error. I believe that this conclusion is inescapable. The p-value 

from a statistical test is the probability of such an extreme finding if the null 

hypothesis is true. If the null hypothesis is not true then the p-value clearly has no 

meaning. It also follows that purportedly standard thresholds for statistical 

significance, such as 5%, are not really standard at all. The import of any p-value for 

the likelihood of any null hypothesis depends, as I have shown, on an a priori 

probability – p(H). Where p(H) is small, as it was in the disease example, a value of 

5% or less for the data-generated p-value is less remarkable, and so less suspicious, 

than if p(H) is nearer 100% at the outset, such as when p(H) is at the 50% level that 

statisticians are forced by their own arithmetic to imply. As with so many things in 

social science research, we need an essential base comparator before we can judge the 
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security of any results. We cannot and should not use statistical tests, in isolation, to 

make judgements about the likelihood of the null hypothesis. What we would also 

need to make such a judgement is the a priori probability of the null hypothesis being 

true – which we generally do not know and hardly ever use (but see Gorard et al. 

2004). 

 

Of course, significance testing has many other defects as well, many of them well-

known. It is very rare to have a full random sample with complete measurement, and 

yet researchers routinely ignore these assumptions and publish statistical tests 

anyway, for example. But this further issue of mistaken conditional probability is so 

serious that, in my opinion, the practice of teaching, using, and publishing statistical 

tests, in isolation from p(H), should cease altogether and immediately. There really is 

no sensible alternative to that step, as has long been argued by a number of 

commentators. Since at least the writing of Jeffreys (1937) it has been well 

established that a small value of p(D|H) (such as less than 0.05) can be associated 

with a probability of H that is actually near 1. This problem is the skeleton in the 

cupboard for traditional statistics.8 A null hypothesis significance test is: 

 

…based upon a fundamental misunderstanding of the nature of rational 

inference, and is seldom if ever appropriate to the aims of scientific research. 

(Rozeboom 1960, p.417) 

 

…essential mindlessness in the conduct of research. (Bakan 1966, p.436) 

 

…not only useless, it is also harmful because it is interpreted to mean something 

it is not. (Carver 1978, p.392). 

 

[and 27 years later] - Surely the most bone-headedly misguided procedure ever 

institutionalized in the rote training of science students. (Rozeboom 1997, 

p.335) 

 

                                                            
8 The fact that a low posterior probability of H can come from a high pD|H and vice versa is sometimes 
referred to as Lindley’s paradox (even though it is not a paradox) - 
http://en.wikipedia.org/wiki/Lindley_paradox 
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Readers may be thinking – ‘If a small value of p does not provide a basis for this 

conclusion, what is the purpose of doing a statistical significance test?’ (Nickerson 

2000, p.251). This is a very common response to strong criticism of NHST, and one 

that I have encountered many times when arguing that a significance test may not be 

suitable in a specific situation (such as when dealing with high non-response or with 

census data). The first response is often that surely the process must be alright 

because so many other people are doing it.9 Even when convinced that this is not a 

sound argument people ask what should be done instead of NHST with poor samples 

or populations, as though implying that we should continue with an invalid process 

unless I (or others) can devise a perfect replacement. This even happened in the 

reviewing of this paper, where an otherwise positive reviewer was nonetheless 

concerned with what happened instead, and wanted the paper to focus more on the 

incomplete alternatives to NHST. My view is that if what appears in this paper were 

taken seriously and acted upon then the impact for social science methods training 

and use (particularly in education and psychology) would be so great that this alone 

would provide justification for the paper and the argument it portrays.10 We are in a 

peculiar position that those few who see the logical flaws in NHST as currently 

conducted are, quite properly, moving on to consider what happens instead. But a 

large number of users, including a less positive reviewer of this paper, still believe 

that NHSTs are logically sound and that any problems can be written off as merely 

poor use by a sub-set of users.  

 

The conclusion here should not be confused with an argument against numeric 

analysis, rather the reverse. We all use numbers successfully and relatively 

unproblematically everyday but do not need a significance ‘test’ to decide which of 

two products in a supermarket is the cheaper or which of two students got the higher 

mark in a test, for example (Gorard 2006b). Rejecting significance tests makes the use 

                                                            
9 Actually the first (irrelevant) response is usually that I do not have a good understanding of whatever 
issue is being discussed. A reviewer for this paper said ‘It is fairly clear that the author does not have a 
very clear grasp of basic statistical theory’. Such a comment is irrelevant in that if it were true it would 
be obvious in what I wrote and so a reviewer could mount an easy counter-argument comprehensible to 
all readers without adding the insult as well. This is a further example of the lack of intellectual 
engagement I have previously noted in this field, where reviewers are even prepared to misquote what I 
have said in order to make the point easier to argue with (see Gorard and Fitz 2006). 
10 For example, standard methods texts in social science statistics and research methods do not warn 
their readers that a low p-value is very, very weak evidence (if it is evidence at all) against the truth of 
the null hypothesis. 
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of numbers less problematic and so encourages their use in research. We should 

continue where possible to randomise our cases to treatment groups in trial designs, 

and to select samples at random in passive designs where population figures are not 

possible.11 12 We do this because it helps minimise systematic bias, not because it 

means we can then use significance tests. We could adopt the Bayesian approach and 

decide on a subjective synthetic value for the null hypothesis at the outset and use 

each new finding merely to modify it (although this is neither a complete nor a 

straightforward solution).13 Or we could adopt much clearer reporting and judgement 

of numeric results. Either way, we end up treating numeric data in pretty much the 

                                                            
11 A reviewer for this paper claimed that, ‘contrary to what the author seems to believe’, use of 
population data is ‘rare’. It will probably surprise this reviewer to learn, therefore, that in the previous 
year of Oxford Review of Education at time of writing (issues 33, 5 to 34, 4), there were 11 papers 
presenting numeric analyses of which six used population data, two used convenience samples for 
which no probabilistic calculations are possible, two used existing large-scale survey data such as 
PISA, and one was a new study based on a kind of probability sample. Thus, the majority of pieces in 
this snapshot were based on population figures and hardly any would or should require tests of 
significance. Perhaps also of relevance to this paper is the finding that only one paper based on 
population figures presented these as census data (Gorard 2007). The papers by Allen and Vignoles 
(2007), Evangelou et al. (2007), Flouri and Ereky-Stevens (2008) and Tooley et al. (2007) all present 
p-values or tests of significance but invalidly based on population data with no probabilistic element. A 
further paper by Snell et al. (2008) used a convenience sample with no probabilistic element but still 
invalidly presented p-values.  
12 The same reviewer for this paper also claimed that ‘many data analysts would often use’ ‘interval 
estimates’ ‘instead of or in addition to significance tests’. It would presumably also surprise this 
reviewer to learn that none of these 11 papers used interval estimates in the way the reviewer had 
suggested. On both of these peculiar claims I believe that the reviewer is wrong – at least for education 
– and I base this belief on the multiple methodological reviews I have conducted of education literature 
(including, for example, Gorard et al. 2004b). 
13 Imagine conducting a systematic review of the available evidence on the viability of a particular 
approach to teaching the understanding of fractions in secondary school mathematics. We would set 
out to assemble as much of the literature as possible of relevance to the question. We could divide all 
of these results into those susceptible to conversion for a meta-analysis of effect sizes and those which 
were more impressionistic. The former we could assess in terms of relatively standard quality checks, 
such as respondent refusal or drop-out, measurement error and so on. The latter we would present to a 
mixed panel of relevant experts for detailed reading. We would ask them to use their prior knowledge 
and experience, coupled with what they have learnt from reading the evidence to rate, in an overtly 
subjective way, the likelihood that this approach to teaching is effective. We can then either continue 
with each subjective probability separately or find their overall mean. This figure(s) becomes the prior 
probability for a calculation using successive numeric studies in sequence as posterior probabilities. 
Bayes' theorem allows us to adjust the subjective judgements of the experts, using the additional 
information generated by future studies. For example, the expert opinion based on classroom 
experience and observations may be that this approach to teaching fractions is very effective. A meta-
analysis of randomised controlled trials may show no discernible in using this technique compared to a 
control. In current procedures, the meta-analysis results would be published separately and used to 
argue that this approach to teaching is ineffective. The prior expertise would be largely ignored, while 
practitioners may ignore the important results of the synthesis because it does not accord with their 
own experience in the classroom. In this version everybody loses. What a synthetic analysis does, more 
properly, is to weigh the two versions of the evidence in terms of the common `currency' of subjective 
probabilities. It asks: is the posterior evidence so strong that it should substantially change the minds of 
the experts? This is a much tougher proposition for the evidence than the more usual question: is the 
result `significant'. For discussion of some of the practical problems that such an approach faces, see 
Gorard with Taylor (2004).  
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same way as we should also treat text, visual or auditory data, by judging patterns, 

trends or exceptions and then reporting them in such a way that readers have enough 

information to attempt the same judgement. I repeat – this is not an argument for not 

using numbers in research. In fact, it is part of a plea for numbers to be used more but 

more simply, as they often are in everyday life, by a much wider range of researchers 

than at present. 

 

The error of confusing two different conditional probabilities could be part of the 

reason why social science statistical results so often lead to non-effective treatments 

and ‘vanishing breakthroughs’ (Harlow et al. 1997). Because the real results depend 

on a value, p(H), not available for the standard calculation. It could be why some 

newcomers to research have such a hard time understanding statistics as it is practiced 

(because it does not actually make sense).14 And so it could be partly why we end up 

with a methods schism based on a confused and wary majority eschewing numeric 

analysis, while a minority routinely misuses complex statistical procedures but largely 

escapes rigorous critique by peer-reviewing each others work. Ceasing the illogical, 

unjustified and largely useless practice of statistical significance testing may thus 

yield several quick benefits. 

 

Research methods training would be less threatening, as statistical testing and analysis 

is frequently reported as the most off-putting aspect of research methods for most 

students. The apparent need to learn about different kinds of logic for use with 

different kinds of data would be reduced. This might lead to a more general and 

widespread use of simple numbers, as students realise that setting the context with a 

table of frequencies, or explaining a problem to be researched in terms of a numeric 

difference between social groups, does not entail entering some kind of ‘quantitative’ 

paradigm. Instead of starting each new study or analysis from a position of feigned 

ignorance, as we are forced to do when conducting a significance test as currently 

envisaged, we can estimate a subjective prior probability for any hypothesis (or idea) 

and use future evidence to modify rather than replace that probability. This quasi-

                                                            
14 Of course, part of the reason for the generally acknowledged difficulty faced by students and new 
researchers when dealing with statistics is that the logic of NHST ‘does not seem to accord with what 
would be the mode of reasoning in ordinary rational discourse’ (Berkson 1942, p.267). Perhaps 
because, as this paper argues, NHST is not logical or rational.  
 



 19

Bayesian approach to knowledge accumulation, as well as using past evidence 

efficiently, also has the advantage that it is independent of the scale and type of 

evidence. A small study with a certain effect size would modify our existing 

knowledge to a lesser extent than a large study with the same effect size. But we do 

not need to ignore small scale work, and so student and practitioner research can be 

included easily in future syntheses of evidence. In fields like education and social 

work, it also means that professional experience and judgement can rightly be 

included in helping to form the prior (or underlying) probability. More generally, this 

prior probability can be based on existing evidence of all types. Like several other 

purported barriers to mixing methods, significance testing is a rhetorical illusion, 

hindering scientific progress for no clear gain. 

 

 

References 

 

Allen, R. and Vignoles, A. (2007) What should an index of segregation measure?, 

Oxford Review of Education, 33, 5, 643-668 

Bakan, D. (1966) The test of significance in psychological research, Psychological 

Bulletin, 66, 423-437 

Berkson, J. (1942) Tests of significance considered as evidence, Journal of the 

American Statistical Association, 37, 325-335 

Borowski, E. and Borwein, J. (1991) The Harper Collins dictionary of mathematics, 

New York: Harper Collins 

Brookes, B. and Dick, W. (1951) Introduction to statistical method, London: 

Heinemann 

Bryman, A. (2001) Social research methods, Oxford: Oxford University Press 

Carver, R. (1978) The case against statistical significance testing, Harvard 

Educational Review, 48, 378-399 

de Vaus, D. (2002) Analyzing social science data: 50 key problems in data analysis, 

(London: Sage) 

Evangelou, M., Brooks, G. and Smith, S. (2007) The Birth to School Study: evidence 

on the effectiveness of PEEP, Oxford Review of Education, 33, 5, 581-609 

Falk, R. and Greenbaum. C. (1995) Significance tests die hard: the amazing 

persistence of a probabilistic misconception, Theory and Psychology, 5, 75-98 



 20

Fielding, J. and Gilbert, N. (2000) Understanding social statistics, London: Sage 

Flouri, E. and Ereky-Stevens, K. (2008) Urban neighbourhood quality and school 

leaving age, Oxford Review of Education, 34, 2, 203-216 

Gigerenzer, G. (2002) Reckoning with risk, London: Penguin 

Gorard, S. (2002) The role of causal models in education as a social science, 

Evaluation and Research in Education, 16, 1, 51-65 

Gorard, S. (2004a) Scepticism or clericalism? Theory as a barrier to combining 

methods, Journal of Educational Enquiry, 5, 1, 1-21 

Gorard, S. (2004b) Three abuses of ‘theory’: an engagement with Nash, Journal of 

Educational Enquiry, 5, 2, 19-29 

Gorard, S. (2005) Revisiting a 90-year-old debate: the advantages of the mean 

deviation, The British Journal of Educational Studies, 53, 4, 417-430 

Gorard, S. (2006a) Towards a judgement-based statistical analysis, British Journal of 

Sociology of Education, 27, 1, 67-80 

Gorard, S. (2006b) Using everyday numbers effectively in research: Not a book about 

statistics, London: Continuum 

Gorard, S. (2007) What does an index of segregation measure?, Oxford Review of 

Education, 33, 5, 669-677 

Gorard, S. and Cook, T. (2007) Where does good evidence come from?, International 

Journal of Research and Method in Education, 30, 3, 307-323 

Gorard, S., with Taylor, C. (2004) Combining methods in educational and social 

research, London: Open University Press  

Gorard, S., Roberts, K. and Taylor, C. (2004a) What kind of creature is a design 

experiment?, British Educational Research Journal, 30, 4, 575-590 

Gorard, S., Rushforth, K. and Taylor, C. (2004b) Is there a shortage of quantitative 

work in education research?, Oxford Review of Education, 30, 3, 371-395 

Harlow, L., Mulaik, S. and Steiger, J. (1997) What if there were no significance 

tests?, Marwah, NJ: Lawrence Erlbaum 

Jeffreys, H. (1937) Theory of probability, Oxford: Oxford University Press 

Nickerson, R. (2000) Null hypothesis significance testing: a review of an old and 

continuing controversy, Psychological Methods, 5, 2, 241-301 

Rozeboom, W. (1960) The fallacy of the null hypothesis significance test, 

Psychological Bulletin, 57, 416-428 



 21

Rozeboom, W. (1997) Good science is abductive not hypothetico-deductive, in 

Harlow, L., Mulaik, S. and Steiger. J (Eds.) What if there were no significance 

tests?, New Jersey: Erlbaum 

Siegel, S. (1956) Nonparametric statistics for the behavioural sciences, Tokyo: 

McGraw Hill 

Snell, M., Thorpe, A., Hoskins, S. and Chevalier, A. (2008) Teachers’ perceptions and 

A-level performance, Oxford Review of Education, 34, 4, 403-423 

Somekh, B. and Lewin, C. (2005) Research Methods in the Social Sciences, London: 

Sage 

Tooley, J., Dixon, P. and Gomathi, S. (2007), Oxford Review of Education, 33, 5, 

539-560 

Wright, D. (2003) Making friends with your data: improving how statistics are 

conducted and reported, British Journal of Educational Psychology, 73, 123-136 

 


