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Introduction

Non-alcoholic fatty liver disease (NAFLD) represents

a spectrum of disease ranging from hepatocellular

steatosis through steatohepatitis to fibrosis and irre-

versible cirrhosis. The prevalence of NAFLD has

risen rapidly in parallel with the dramatic rise in

obesity and diabetes,1,2 and is rapidly becoming

the most common cause of liver disease in

Western countries.3 Indeed, NAFLD is now recog-

nized to be the aetiology in many cases previously

labelled as cryptogenic cirrhosis.4

In Western populations, estimates of NAFLD prev-

alence vary between 20 and 30%,5,6 rising up to

90% in morbidly obese individuals.7 The more

severe, and clinically significant form of NAFLD,

non-alcoholic steatohepatitis (NASH) is less

common, affecting an estimated 2–3% of the gen-

eral population,8 and up to 37% of the morbidly

obese.7 Of particular concern, and with significant

implications for future disease burden, is the increas-

ing prevalence of NAFLD in children and young

adults. Studies have reported a 3% prevalence of

NAFLD in the general paediatric population, rising

to 53% in obese children.9,10 NAFLD has a strong

association with type 2 diabetes, with steatosis pre-

sent in 70% of type 2 diabetics screened with ultra-

sound,11 and thus it is now recognized to represent

the hepatic manifestation of the metabolic

syndrome.

NAFLD occurs in all ethnic groups although it

appears to have a lower prevalence in African-
Americans compared with Hispanic and European

Americans. This difference remains even after con-
trolling for obesity and insulin resistance (IR)5,12 and

may be related to ethnic differences in lipid

homeostasis.5

There are no laboratory, imaging or histological

findings which can accurately distinguish between

NAFLD and alcohol-induced steatosis or steatohe-
patitis, and the diagnosis can therefore only be

made in the absence of a history of significant alco-
hol intake. Other specific causes of steatosis need to

be considered and include metabolic disorders e.g.

lipodystrophy and abetalipoproteinaemia, nutri-
tional causes such as rapid weight loss, jejuno-

ileal bypass and total parenteral nutrition, and
drug-induced. Commonly implicated agents include

glucocorticoids, methotrexate, amiodarone, syn-
thetic oestrogens, tamoxifen, diltiazem and highly

active anti-retroviral drugs.13–15 Steatosis also com-

monly occurs in association with hepatitis C, partic-
ularly genotype 3, and has an increased prevalence

in women with polycystic ovary syndrome, when it
is usually associated with IR.16

In the great majority of patients NAFLD develops

in association with features of IR and the metabolic
syndrome. The metabolic syndrome comprises a

cluster of clinical and biochemical features,
namely IR, glucose intolerance or diabetes, central

obesity, hypertension and dyslipidaemia and is
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associated with significant cardiovascular morbidity

and mortality.17–19

Whilst simple steatosis in the absence of signifi-

cant fibrosis is considered to be a relatively benign

condition,20 the presence of fibrosis predicts both

disease progression and liver-related complications

over a subsequent 10-year period.21 Decreased sur-
vival in this sub-group is due to predominantly car-

diovascular causes, although there is a significant

increase in liver-related deaths.21 NASH also carries

an increased risk of hepatocellular carcinoma

(HCC)21 and thus the observation of increased inci-
dence of HCC in type 2 diabetics22 is likely to be

due to their high prevalence of NASH.21 In a recent

US study, NASH was found to account for at least

13% of overall cases of HCC.23

There are as yet few proven therapies available for
patients with NASH, and current strategies are direc-

ted towards improving aspects of the metabolic syn-

drome. Ultimately when such measures fail, liver

transplantation remains the only option for patients
with end-stage cirrhosis.

Although the pathogenesis of NAFLD/NASH is

not yet fully understood, much progress has been

made in recent years in elucidating the mechanisms

of progression from steatosis to more advanced liver
inflammation and fibrosis. In this review, we discuss

the current understanding of NAFLD pathogenesis,

and anticipate that such knowledge will eventually

translate into the development of novel treatment

strategies for this increasingly important disease.

NAFLD pathogenesis

The ‘2-hit hypothesis’

Initial theories for the pathogenesis of NASH were
based on a ‘2-hit hypothesis’ (Figure 1a). The ‘first

hit’, hepatic triglyceride accumulation, or steatosis,

increases susceptibility of the liver to injury

mediated by ‘second hits’, such as inflammatory

cytokines/adipokines, mitochondrial dysfunction
and oxidative stress, which in turn lead to steatohe-

patitis and/or fibrosis.24,25 However, there is increas-

ing recognition of the role that free fatty acids (FFA)

play in directly promoting liver injury, which has led
to modification of this theory (Figure 1b). In obesity

and IR there is an increased influx of FFA to the liver.

These FFA either undergo b-oxidation or are ester-

ified with glycerol to form triglycerides, leading to

hepatic fat accumulation. There is now substantial
evidence that FFA can directly cause toxicity by

increasing oxidative stress and by activation of

inflammatory pathways,26 therefore hepatic

triglyceride accumulation may be a protective
mechanism by preventing the toxic effects of unes-
terified FFA.27 Additionally, a further component, or
‘third-hit’ has been added to reflect inadequate
hepatocyte proliferation (Figure 1c).28 In the healthy
liver, cell death stimulates replication of mature
hepatocytes which replace the dead cells and
reconstitute normal tissue function.28 However oxi-
dative stress, a central feature of NAFLD pathogen-
esis, inhibits the replication of mature hepatocytes
which results in expansion of the hepatic progenitor
cell (oval cell) population.29 These cells can differ-
entiate into hepatocyte-like cells, and both oval cell
and intermediate hepatocyte-like cell numbers are
strongly correlated with fibrosis stage, suggesting
that cumulative hepatocyte loss promotes both
accumulation of progenitor cells and their differen-
tiation towards hepatocytes.29 Activation of these
cells has also been implicated in hepatocellular car-
cinogenesis.29 In chronic liver injury, the develop-
ment of fibrosis/cirrhosis is dependent on the
efficacy of hepatocyte regeneration, and therefore
cell death with impaired proliferation of hepatocyte
progenitors represents the proposed ‘third hit’ in
NAFLD pathogenesis.28

Lipid accumulation/steatosis

NAFLD is characterized by the accumulation of tri-
glycerides, which are formed from the esterification
of FFA and glycerol within the hepatocyte. FFAs
arise in the liver from three distinct sources; lipolysis
(the hydrolysis of FFA and glycerol from triglyceride)
within adipose tissue, dietary sources, and de novo
lipogenesis (DNL).30 In contrast, FFA may be uti-
lized either through b-oxidation, re-esterification to
triglycerides and storage as lipid droplets, or pack-
aged and exported as very low density lipoprotein
(VLDL). Hence hepatic fat accumulation can occur
as a result of increased fat synthesis, increased fat
delivery, decreased fat export, and/or decreased fat
oxidation (Figure 2).30

To establish the relative contribution of lipid
accumulation in patients with NAFLD, Donnelly
et al. used a multiple-stable-isotope method,
demonstrating that approximately 60% of liver tri-
glyceride content derived from FFA influx from adi-
pose tissue, 26% from DNL, and 15% from diet.31

This contrasts with healthy individuals in whom
DNL contributes <5% of hepatic triglyceride
formation.32,33

Triglyceride can also be exported from the liver in
VLDL particles, which are formed by the incorpora-
tion of triglyceride into apolipoprotein B (apoB) by
microsomal transfer protein (MTP).34 Aberrant
alterations of MTP/apoB synthesis and secretion
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Figure 1. (a) The traditional 2-hit hypothesis: steatosis represents the ‘first hit’, which then sensitises the liver to injury

mediated by ‘second hits’, such as inflammatory cytokines, adipokines, oxidative stress and mitochondrial dysfunction,

leading to steatohepatitis and fibrosis. The presence of high levels of oxidative stress reduces the ability of mature hepato-

cytes to proliferate, resulting in reduced endogenous liver repair. (b) Modified 2-hit hypothesis: the accumulation of FFA

alone has been suggested to be sufficient to induce liver damage, without recourse for a second hit. Indeed, rather than being

harmful, triglyceride accumulation in the form of steatosis may actually be protective by preventing FFA-induced inflam-

mation and oxidative stress. (c) The 3-hit hypothesis: oxidative stress reduces the ability of mature hepatocytes to proliferate,

resulting in the recruitment of other pathways of liver regeneration, such as HPCs. These cells have the capability of

differentiating into both cholangiocytes and hepatocytes and contributing to liver repair. It has been suggested that an

inability to mount such a ductular response, as is seen in patients transplanted for NASH who have denervated livers,

may be responsible for a more progressive pattern of liver damage. Thus, impaired proliferation of hepatocyte progenitors

represents the proposed ‘third hit’ in NAFLD pathogenesis.28
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have been proposed as potential mechanisms
underpinning the pathogenesis of NAFLD leading

to a decreased capacity for lipid export.35,36

Insulin resistance

In healthy individuals, binding of insulin to its recep-

tor leads to phosphorylation of several substrates

including insulin receptor substrates (IRS)-1, -2, -3

and -4, which propagate the insulin signal.30,37

Insulin stimulation of IRS-1 and -2 leads to activa-
tion of intracellular PI3K (phosphoinositide 3-kinase)

and AKT/PKB (protein kinase B) pathways, which

are intimately involved in mediating the metabolic

effects of insulin.30 Ultimately, AKT/PKB activation

results in translocation of glucose transporter,

GLUT4, containing vesicles to the plasma mem-

brane, thus facilitating glucose uptake. In addition,

the expression of key lipogenic genes is increased,

with a concomitant decrease in gluconeogenic gene

expression via its regulation of forkhead (FOXO)

transcription factor activity.
Insulin has a potent action to suppress adipose

tissue lipolysis. However, in situations of IR, such

as NAFLD, this suppression is impaired resulting in

an increased efflux of FFA from adipose tissue.38

The hyperinsulinaemia associated with IR leads to:

(i) up-regulation of the transcription factor sterol reg-

ulatory element binding protein-1c (SREBP-1c),

which is a key transcriptional regulator of genes

involved in DNL,15 and (ii) Inhibition of b-oxidation

of FFA thus further promoting hepatic lipid

accumulation.30

Many of the abnormalities reported in NAFLD

interfere with the insulin signalling cascade, and

thus contribute to IR. These include FFAs,

tumour necrosis factor-alpha (TNF-a), nuclear

factor kappa B (NF-kB), ceramide, jun N-terminal

kinase 1 (JNK1), SOCS (suppressors of cytokine

signalling) and cytochrome CYP2E1.39,40 Increased

lipid metabolites such as diacylglycerol (DAG) have

been implicated in a protein kinase Ce
(PKCe) dependent mechanism, to interfere with

insulin signalling through inhibition of insulin
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Figure 1. Continued
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Figure 2. Mechanisms of hepatic fat accumulation.
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receptor activity and modulation of IRS-2
phosphorylation.30 Similar processes occur in skel-
etal muscle cells, leading to a more generalized

state of IR.

Inflammation/steatohepatitis

Inflammatory cytokines and FFA

The presence of steatosis is tightly associated with
chronic hepatic inflammation,41 an effect in part
mediated by activation of the Ikk-b/NF-kB signalling
pathway. In murine models of high-fat diet (HFD)-
induced steatosis, increased NF-kB activity is
associated with elevated hepatic expression of
inflammatory cytokines such as TNF-a, interleukin-
6 (IL-6) and interleukin 1-beta (IL-1b), and activation

of Kupffer cells.41 Liver-specific NF-kB inhibition
prevents HFD-induced inflammatory gene expres-
sion, whereas HFD-induced hyperglycaemia and
IR can be reproduced by selective over-expression
of constitutively active Ikk-b in hepatocytes.41 The
Ikk-b/NF-kB pathway in hepatocytes can also be
activated directly by FFA, providing a further mech-

anism by which central obesity with consequent
increased hepatic FFA supply can contribute to
inflammation (Figure 3).26 Furthermore, the conver-
sion of FFA to hepatic triglyceride may serve as a

protective measure to prevent direct hepatic lipo-
toxicity. This is endorsed by a murine model of
NAFLD, where inhibition of DGAT2, the enzyme
that catalyzes the final step in triglyceride synthesis,
resulted in improvement of hepatic steatosis and IR
but exacerbation of injury and fibrosis.27,42

Both serum and hepatic levels of TNF-a are ele-
vated in patients with NASH,43,44 and levels corre-
late with histological severity.45 In addition to its
proinflammatory effects, TNF-a promotes IR.46

Conversely, inhibition of TNF-a signalling improves
IR and histological parameters of NASH.47–49

Similarly, serum IL-6 levels are also elevated in
both animal and human models of IR and
NAFLD,43,50,51 and levels correlate with increasing
liver inflammation and fibrosis.52 The key role of
hepatocyte cytokine production in the progression
of steatosis to NASH is supported by studies demon-
strating that cytokines can replicate all of the histo-
logical features associated with NASH, including
neutrophil chemotaxis, hepatocyte apoptosis/necro-
sis, Mallory body formation and stellate cell activa-
tion.25 Additionally, data suggests that inflammation
and NF-kB activation can promote carcinogen-
esis,53 and that the chronic inflammatory state asso-
ciated with hepatic steatosis may also play a key
role in HCC development.25

Inflammatory cytokines / adipokines and FFA

Local glucocorticoid excess
Gut-derived endotoxin/ bacterial overgrowth

↑ Hepatic 
FFA 

↑ FFA 
oxidation/
oxidative 

stress

IKK-B /
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Figure 3. Proposed pathogenesis of NASH. The likelihood of progression to advanced NASH/cirrhosis results from a com-

plex interplay between genetic predisposition and the mechanisms described earlier.
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Adipokines

Adipose tissue is not just an inert site of energy stor-
age, but an actively secreting endocrine organ.
The functional role of adipocyte-derived cytokines
(adipokines), is now increasingly recognized, with
leptin and adiponectin amongst the most well
described. Leptin is a 16 kDa hormone produced
mainly by mature adipocytes whose actions include
the regulation of energy intake and expenditure,54

regulation of the immune system,55,56 and promo-
tion of inflammation and fibrogenesis.56,57 Higher
leptin levels are observed in obese patients and
those with NAFLD,54,58–60 which are commonly
regarded as states of leptin resistance.58 It remains
plausible that leptin may have a functional role to
play in the pathogenesis of NAFLD.

In contrast to leptin, secretion and circulating
levels of adiponectin are inversely proportional
to body fat content,61 and are reduced in patients
with NAFLD.44,62 Adiponectin is anti-inflammatory
and increases insulin sensitivity,63 and the adminis-
tration of recombinant adiponectin improves hepa-
tomegaly, as well as the biochemical and
histological parameters of NAFLD in a murine
model.64,65 Adiponectin antagonises the effects
of TNF-a, which itself suppresses adiponectin pro-
duction.61 The importance of adiponectin in
NAFLD is supported by studies showing that
serum adiponectin levels can help to distinguish
NASH from simple steatosis.44,66,67 Other adipose
tissue derived factors found in excess in NAFLD
include TNF-a, IL-6, angiotensinogen and
resistin, all of which antagonise the lipogenic
effects of insulin,28 but their precise role in the
pathogenesis of NAFLD remains to be determined
(Figure 3).

Oxidative stress and mitochondrial dysfunction

The role of oxidative stress and mitochondrial dys-
function in NASH is well-established, with more
advanced disease correlating with greater degrees
of oxidative stress.68–71 b-oxidation within the
normal liver takes place in the mitochondria, but
in the context of NAFLD72 this process can
become overwhelmed as a result of increased FFA
load, giving rise to reactive oxygen species (ROS).71

ROS induce oxidative stress, with subsequent acti-
vation of inflammatory pathways,73 and also mito-
chondrial damage. Structural mitochondrial
abnormalities71 and a reduction in mitochondrial
respiratory chain activity have been observed in
human studies of NASH.74 Elevated expression
and activity of the hepatic microsomal fatty acid
oxidizing enzyme cytochrome P450 2E1 (CYP2E1)
has been observed in human and animal models of

NASH and represents a potent source of ROS.75,76

Importantly, transgenic over-expression of CYP2E1
activity is associated with oxidative stress, IR and
hepatic fat accumulation.77

ER stress and bacterial overgrowth

Other mechanisms implicated in NASH pathogen-
esis include endoplasmic reticulum (ER) stress and
gut-derived endotoxinaemia.25 ER stress can be
caused by a variety of biological stresses, including
hyperinsulinaemia and hyperlipidaemia,25,78 and
can result in activation of various pathways leading
to IR, inflammation, apoptosis and mitochondrial
dysfunction. ER stress is known to be important in
alcohol-induced steatohepatitis and further study of
its role in NASH is warranted.25

Evidence is also emerging for a role of bacterial
overgrowth in the pathogenesis of NASH. Bacterial
overgrowth results in production of ethanol79 and
release of bacterial lipopolysaccharides, both of
which can activate TNF-a production in Kupffer
cells and thus induce hepatic inflammation.80

Small intestinal bacterial overgrowth and increased
gut permeability have been found more frequently
in patients with NASH when compared with con-
trols.81,82 This has led to the suggestion that this may
explain the onset of NASH and liver fibrosis as a
complication of jejunoileal bypass surgery.83,84

This hypothesis is further supported by evidence
that alteration of gut flora with antibiotics85 and pro-
biotics49,86,87 can reduce hepatic inflammation in
both animals and humans.

Glucocorticoids

GCs from both exogenous and endogenous sources
are a well-recognized cause of NAFLD. Patients
with Cushing’s syndrome, who have increased cir-
culating GC levels develop a characteristic meta-
bolic phenotype of central obesity, IR and
diabetes. Importantly, a significant proportion of
these patients will also develop hepatic steatosis.88

The mechanisms by which GCs promote hepatic fat
accumulation include inhibition of fatty acid
b-oxidation and promotion of hepatocyte DNL.
However most patients with NAFLD have normal
circulating cortisol levels, suggesting that tissue-
specific mechanisms are driving the metabolic
dysfunction.

This has led to emerging interest in two enzyme
systems which play a key role in local GC metabo-
lism and consequent GC availability to bind and
activate the GC receptor. 11b-hydroxysteroid dehy-
drogenase type 1 (11b-HSD1) converts inactive cor-
tisone to the active GC cortisol,89 and thus increases
local GC levels and amplifies GC action. Inhibition
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of 11bHSD1 has been shown to lower body weight
and lipid levels and improve glucose tolerance in
animal models,90 and increase hepatic insulin sen-
sitivity in humans.91,92

In parallel, the A-ring reductase enzymes, 5-a-
and 5-b reductase, are responsible for the metabo-
lism of cortisol to its inactive tetrahydrometabolites.
Increased hepatic 5-a reductase (5aR) activity
has been demonstrated in patients with IR89 and
NAFLD,93 which may represent a compensatory
mechanism to decrease local GC availability in an
attempt to prevent development or progression of
NAFLD. In animal models, both pharmacological
and transgenic inhibition of 5aR activity has been
shown to increase susceptibility to development of
IR and fatty liver.94 Hence reduction of local hepatic
GC exposure by modulation of 11bHSD1 and the A-
ring reductases may represent a potential therapeu-
tic intervention for preventing the development and
progression of NAFLD.

Fibrosis

Fibrosis, and its more advanced form cirrhosis,
represents the final common pathway of almost all
chronic liver diseases including NASH. Advanced
fibrosis results in liver failure and portal hyperten-
sion with its associated complications of ascites and
life-threatening variceal bleeding, as well as an
increased risk of HCC. The pathogenesis of fibrosis
is not within the remit of this review and is well
covered elsewhere.95

There are certain aspects of liver fibrosis and
repair which are relatively specific to NASH and
are worth considering here. In most conditions of
liver injury repair arises by replication of mature
hepatocytes,96 however the presence of ongoing
injurious factors such as NASH or viral infection, is
associated with high levels of oxidative stress which
reduce the ability of these mature hepatocytes to
proliferate. In this situation, other pathways of liver
regeneration, hepatic progenitor cells (HPCs), are
recruited. HPCs are transit-amplifying cells which
reside in the Canal of Hering, and which on prolif-
eration form a complex of small ductules and cho-
langiocytes known as a ductular reaction. This term
was first used to identify the expanded population of
epithelial cells at the interface of the biliary tree and
the hepatocytes, and refers to proliferation of pre-
existing ductules, progenitor cell activation and
appearance of intermediate hepatocytes.97

Subsequently these cells have the capability of dif-
ferentiating into both cholangiocytes and hepato-
cytes and contributing to liver repair. An inability
to mount such a ductular response, as is seen in
patients transplanted for NASH who have

denervated livers, may be responsible for a more
progressive pattern of liver damage.

Controversy continues to exist in the literature
about the interplay of the ductular reaction and
fibrosis in NAFLD. Initial work demonstrated a
close association between the expansion of HPCs
and the ductular reaction in liver biopsy specimens
of NASH. The extent of ductular reactions in turn
strongly correlated with the degree of fibrosis, sug-
gesting that HPC expansion/ductular reaction may
be responsible for stimulating a progressive peripor-
tal fibrosis.98 Possible mechanisms for this include
the secretion of profibrogenic cytokines (TGF-b, IL6,
IL8 and MCP1) by the ductular reaction,99 as well as
direct epithelial mesenchymal transition of the cho-
langiocytes to myofibroblasts.100 This hypothesis is
attractive in that it provides a rationale for the gen-
eration of portal fibrosis in NAFLD which is a key
feature of progressive disease. More recent work in
the CDE model of murine NAFLD has suggested that
liver fibrosis precedes the proliferation of HPCs, sug-
gesting that fibrosis does not occur purely as a result
of HPC expansion.101 The timing of the presence of
the differing histological findings is less clear on fur-
ther evaluation,102 raising the possibility of an alto-
gether more complex interaction between fibrosis
and HPC expansion, in which both cellular pro-
cesses can stimulate each other respectively.
Indeed, the creation of a progenitor cell niche,
with deposition of matrix, may act not only as a
migratory pathway for HPCs to migrate along
from the portal tract into the parenchyma, but also
provide trophic factors for the survival of these
cells.103

Genetic predisposition

Although hepatic steatosis is common in patients
with obesity and IR only a minority progress to
NASH and cirrhosis, suggesting an important inter-
play between genetic predisposition and environ-
mental factors.72 Polymorphisms in genes related
to lipid metabolism, IR, oxidative stress, cytokines/
adipokines and fibrogenesis may all increase sus-
ceptibility to NASH development.104 Several studies
have identified single nucleotide polymorphisms
(SNPs) which influence fibrosis development in
other liver diseases, particularly chronic hepatitis
C.105–107 Studies in NASH have so far demonstrated
polymorphisms in the angiotensinogen and TGF-b1
genes to be associated with advanced hepatic fibro-
sis in obese patients.108 In addition, SNPs in the
angiotensin II type 1 receptor are associated with
an increased risk of NAFLD and NAFLD-related
fibrosis.109 Further studies are needed to identify
more candidate genes which will undoubtedly be
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informative not only as to the pathogenesis and
prognosis of the disease, but also may represent
novel treatment targets.

Current and emerging therapies

Current therapies

Despite an increasing understanding of the mechan-
isms of NAFLD pathogenesis, there are few effective
therapies available. Current treatments are primarily
directed towards improving the metabolic para-
meters which contribute to disease pathogenesis,
such as weight loss and exercise, reducing IR and
improving diabetic control.

In addition to lifestyle changes, current therapies
utilized for patients with NAFLD include insulin sen-
sitizers, e.g. metformin and the thiazolidinediones,
weight loss drugs, e.g. orlistat and sibutramine, and
consideration of bariatric surgery for morbidly obese
patients. Liver transplantation remains the only cura-
tive treatment option for end-stage cirrhosis.

The urgent need for specific treatments for NAFLD
has rendered this a critical area of research, with
particular focus on developing treatments which
can reverse or prevent the more advanced and clin-
ically relevant stages of NASH. The presence of
fibrosis predicts likelihood of liver related complica-
tions and therefore therapies which can prevent or
reverse fibrosis are important goals.

New and emerging therapies

Therapies currently undergoing evaluation in NASH
include antioxidants, such as vitamins C, E110,111

and betaine,112 iron depletion,113 ursodeoxycholic
acid,114,115 statins116–118 and pentoxifylline.47,119

Whilst none of these treatments has yet shown con-
vincing evidence of benefit, further trials are
ongoing.

Glucagon-like peptide-1 (GLP-1)-based therapy
may represent a novel therapeutic option for slow-
ing the progression of NAFLD. In diabetic patients
GLP-1 analogues, such as Exenatide, have been
shown to increase insulin secretion, suppress gluca-
gon secretion, slow gastric emptying and increase
satiety in association with modest weight loss,120

and in animal models GLP-1 agonists reduced IR,
markers of oxidative stress and hepatic steatosis.121

Antifibrotic therapies

Hepatic fibrosis is the product of hepatic myofibro-
blasts which predominantly arise from activation of
hepatic stellate cells (HSCs), that reside in the space
of Disse.122 HSCs express the nuclear peroxisome

proliferator activated receptor gamma (PPARg).
Studies have demonstrated that PPARg ligation by
PPARg agonists, such as the thiazolidinediones
(Rosiglitazone and Pioglitazone), leads to reduced
HSC activation. Encouraging results with these
agents have been demonstrated in patients with
NAFLD with improvements in both liver biochemis-
try and histology.123–125 However side-effects
including congestive cardiac failure,126 osteoporo-
sis127 and weight gain125 are of concern. Benefits
also appear to be reversed on discontinuation of
therapy.128

Angiotensin has been shown to promote myofi-
broblast survival and liver fibrosis,129 and thus the
beneficial effects of ACE inhibitors and angiotensin
receptor blockers (ARBs) are likely to include anti-
fibrotic properties. Several clinical studies of antiox-
idants such as vitamin E, which have been shown to
suppress fibrosis in vitro, have so far failed to dem-
onstrate that dietary supplementation of vitamin E
improves histological fibrosis in humans.110,111 A
large number of cytokines are intimately involved
in the proliferative, contractile and fibrogenic activ-
ities of HSCs, antagonism of which represents
another potential target for antifibrotic therapies.130

Potential candidates include platelet-derived growth
factor (PDGF), transforming growth factor beta-1
(TGFb-1),130 connective tissue growth factor
(CTGF),131 endothelin-1 (ET-1), thrombin, vascular
endothelial growth factor (VEGF), fibroblast growth
factor and insulin-like growth factor, which also
exert their effects through tyrosine-kinase recep-
tors.130 Consistent with this, studies in animal
models of liver fibrosis have demonstrated antifibro-
tic effects using tyrosine kinase inhibitors such as
imatinib132,133 which is currently licensed for use
in chronic myeloid leukaemia and gastrointestinal
stromal tumours.

Other potential targets alluded to earlier include
inhibiting ER stress,134 and modulation of the gut
liver axis using pre- and probiotics.49,85–87,135

Conclusions

NAFLD now represents one of the commonest
causes of liver disease in the Western world, and
the rising levels of obesity, diabetes and metabolic
syndrome will ensure that it remains a major cause
of morbidity and mortality. Although simple steato-
sis carries a relatively benign prognosis, a significant
proportion of patients will progress to NASH and
later cirrhosis with risk of HCC.

The traditional ‘2-hit’ hypothesis of NAFLD patho-
genesis has been modified several times; in most
patients however NAFLD does appear to begin
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with lipid accumulation, or steatosis, which is

in turn driven by obesity and IR. Progression to stea-

tohepatitis and fibrosis depends on additional fac-

tors such as FFAs, inflammatory cytokines and

adipokines, oxidative stress and mitochondrial dys-

function in a complex interplay with genetic

predisposition.
Current treatment strategies for NASH focus on

improving components of the metabolic syndrome,

such as obesity and IR, with no liver-specific agents

yet available. However, modulation of any of the

multiple mechanisms involved in NASH pathogen-

esis could provide useful targets to prevent the

development of fibrosis and its associated complica-

tions. This knowledge, and the significant advances

that continue to be made in our understanding of

the pathogenesis of NASH, are required to inform

the development of novel therapeutic strategies

for this increasingly important condition.
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