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Non-Fermi liquids

A. J. Schofield

The University of Cambridge, Department of Physics,
The Theory of Condensed Matter Group, The Cavendish Laboratory,

Madingley Road, Cambridge. CB3 0HE

November 11, 1998

Our present understanding of how the interactions between electrons affect the metallic state has, for forty years,
rested on the foundations of Landau’s Fermi-liquid theory. It provides the basis for understanding metals in terms
of weakly interacting electron (-like) particles. Recent years have seen the discovery of metals which appear to fall
outside this framework—perhaps most notably in the normal state of the high temperature cuprate superconductors.
While the theory for understanding the cuprate metals remains controversial, there are a number of clear examples
where we do believe we understand the new underlying theoretical concepts. In this article I illustrate four such
routes towards forming a non-Fermi liquid metal and illustrate, where possible, how these have been realized in a
number of materials. The proximity to a quantum phase transition and reduced effective dimensionality can both
play important roles.

1. Introduction

Condensed matter physics is a subject continually in-
spired by the fabrication of new materials. With each
new generation of materials synthesized comes a new
set of challenges for the condensed matter physics com-
munity to understand and exploit. To the observer this
may seem surprising since the basic interactions gov-
erning the motion of the electrons and atomic nuclei in
a solid have long been known. While this is true, with
each new compound we see these basic forces at work
in a different local environment and the result is rarely
a trivial extrapolation of the physics we knew before.
Instead, with each level of complexity we see new types
of phenomena arising - every bit as fundamental as the
bare interactions with which we began (see Anderson
1972). Examples of such radically new behaviour in-
clude the appearance of fractionally charged objects in
the fractional quantum Hall effect, the observation of
super-massive electrons in so-called heavy fermion ma-
terials and the possibility of the electron decaying into
new types of particle in certain one-dimensional mate-
rials. One of the current areas of excitement in the field
has been motivated by the discovery of certain metallic
compounds which seem to fall outside of the framework
of our current theory of metals.

It is hard to imagine describing the physics of metals
without beginning with the electron yet, remarkably,

over the past decade there is a growing field of con-
densed matter physics devoted to understanding metals
where the electron seems to be precisely the wrong place
to start. Of course we are well aware that the basic in-
gredients of solids are atoms with their valence and core
electrons and nuclei but, as often happens in condensed
matter, in bringing such atoms together what emerges
can be very different from the constituent parts, with
the possibility of completely new types of ‘particles’.
(Two more familiar examples of new particles appearing
in condensed matter systems are phonons–quantized
lattice vibrations–and magnons–waves of spin in a mag-
net.) Yet for the understanding of the metallic state the
electron has remained the unrivaled basis since Drude’s
initial work at the beginning of this century (Drude
1900). The success of the single electron picture of met-
als rests on Landau’s seminal work in the 1950’s devel-
oping Fermi-liquid theory (Landau 1956, 1957, 1958).
Yet as this century closes we are seeing the discovery of
materials, including the cuprate superconductors and
other oxides, which seem to lie outside this framework.
In this review I will attempt to give a flavour of our
attempts to understand such ‘non-Fermi liquid’ metals.
Many of the theoretical ideas have been developed using
rather complex mathematical machinery which I make
no apology for omitting in favour of a more descriptive
approach. There are however a number of results which
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can be obtained relatively simply using Fermi’s golden
rule (together with Maxwell’s equations) and I have in-
cluded these for readers who would like to see where
some of the properties are coming from.

The outline of this review is as follows. I begin with
a description of Fermi-liquid theory itself. This the-
ory tells us why one gets a very good description of a
metal by treating it as a gas of Fermi particles (i.e. that
obey Pauli’s exclusion principle) where the interactions
are weak and relatively unimportant. The reason is
that the particles one is really describing are not the
original electrons but electron-like quasiparticles that
emerge from the interacting gas of electrons. Despite its
recent failures which motivate the subject of non-Fermi
liquids, it is a remarkably successful theory at describ-
ing many metals including some, like UPt3, where the
interactions between the original electrons are very im-
portant. However, it is seen to fail in other materials
and these are not just exceptions to a general rule but
are some of the most interesting materials known. As
an example I discuss its failure in the metallic state of
the high temperature superconductors.

I then present four examples which, from a theo-
retical perspective, generate non-Fermi liquid metals.
These all show physical properties which can not be
understood in terms of weakly interacting electron-like
objects:

• Metals close to a quantum critical point. When a
phase transition happens at temperatures close to
absolute zero, the quasiparticles scatter so strongly
that they cease to behave in the way that Fermi-
liquid theory would predict.

• Metals in one dimension–the Luttinger liquid. In
one dimensional metals, electrons are unstable and
decay into two separate particles (spinons and
holons) that carry the electron’s spin and charge
respectively.

• Two-channel Kondo models. When two indepen-
dent electrons can scatter from a magnetic impu-
rity it leaves behind “half an electron”.

• Disordered Kondo models. Here the scattering
from disordered magnetic impurities is too strong
to allow the Fermi quasiparticles to form.

While some of these ideas have been used to try and un-
derstand the high temperature superconductors, I will
show that in many cases one can see the physics illus-
trated by these examples in other materials. I believe
that we are just seeing the tip of an iceberg of new types
of metal which will require a rather different starting
point from the simple electron picture to understand
their physical properties.

Figure 1: The ground state of the free Fermi gas in mo-
mentum space. All the states below the Fermi surface
are filled with both a spin-up and a spin-down elec-
tron. A particle-hole excitation is made by promoting
an electron from a state below the Fermi surface to an
empty one above it.

2. Fermi-Liquid Theory: the electron quasi-
particle

The need for a Fermi-liquid theory dates from the
first applications of quantum mechanics to the metallic
state. There were two key problems. Classically each
electron should contribute 3kB/2 to the specific heat
capacity of a metal—far more than is actually seen ex-
perimentally. In addition, as soon as it was realized
that the electron had a magnetic moment, there was
the puzzle of the magnetic susceptibility which did not
show the expected Curie temperature dependence for
free moments: χ ∼ 1/T .

These puzzles were unraveled at a stroke when
Pauli (Pauli 1927, Sommerfeld 1928) (apparently
reluctantly—see Hermann et al. 1979) adopted Fermi
statistics for the electron and in particular enforced the
exclusion principle which now carries his name: No two
electrons can occupy the same quantum state. In the
absence of interactions one finds the lowest energy state
of a gas of free electrons by minimizing the kinetic en-
ergy subject to Pauli’s constraint. The resulting ground
state consists of a filled Fermi sea of occupied states
in momentum space with a sharp demarcation at the
Fermi energy εF and momentum pF = h̄kF (the Fermi
surface) between these states and the higher energy un-
occupied states above. The low energy excited states
are obtained simply by promoting electrons from just
below the Fermi surface to just above it (see Fig. 1).
They are uniquely labelled by the momentum and spin
quantum numbers of the now empty state below the
Fermi energy (a hole) and the newly filled state above
it. These are known as particle-hole excitations.

This resolves these early puzzles since only a small
fraction of the total number of electrons can take part
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in the processes contributing to the specific heat and
magnetic susceptibility. The majority lie so far below
the Fermi surface that they are energetically unable to
find the unoccupied quantum state required to mag-
netize them or carry excess heat. Only the electrons
within kBT of the Fermi surface can contribute kB to
the specific heat so the specific heat grows linearly with
temperature and is small. Only electrons within µBB of
the Fermi surface can magnetize with a moment ∼ µB

leading to a temperature independent (Pauli) suscepti-
bility. Both quantities are proportional to the density
of electron states at the Fermi surface.

These new temperature dependencies exactly
matched the experiments both on metals and then
later on the fermionic isotope of Helium - 3He (see, for
example, Wheatley 1970). But this in turn raised ques-
tions. Why should a theory based on a non-interacting
picture work so well in these systems where interactions
are undoubtably important? Once interactions are
present the problem of finding the low energy states
of the electrons becomes much harder. In addition to
the kinetic term which favours a low momentum, the
energy now contains a potential term which depends on
the relative position of all of the electrons. The energy
scales of the kinetic energy and Coulomb interaction
are comparable at metallic electron densities and,
if that were not enough, Heisenberg’s uncertainty
principle prevents the simultaneously definition of the
momentum and the position. How can one proceed and
still hope to retain the physics of the non-interacting
electron gas which experiment demands?

The answer provided by Landau rests on the concept
of “adiabatic continuity” (Anderson 1981): labels as-
sociated with eigenstates are more robust against per-
turbations than the eigenstates themselves. Consider
as an example the problem of a particle in a box with
impenetrable walls illustrated in Fig. 2. In elementary
quantum mechanics one learns that the eigenstates of
this problem consist of standing sine waves with nodes
at the well walls. The eigenstates of the system can be
labelled by the number of additional nodes in the wave-
function with the energy increasing with the number of
nodes. Now switch on an additional weak quadratic
potential. The new eigenstates of the problem are no
longer simple sine waves but involve a mixing of all the
eigenstates of the original unperturbed problem. How-
ever the number of nodes still remains a good way of
labelling the eigenstates of the more complicated prob-
lem. This is the essence of adiabatic continuity.

Landau applied this idea to the interacting gas of
electrons. He imagined turning on the interactions be-
tween electrons slowly, and observing how the eigen-
states of the system evolved. He postulated that there
would be a one-to-one mapping of the low energy eigen-
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Figure 2: Adiabatic continuity is illustrated in a non-
interacting problem by turning on a quadratic potential
to a particle confined in box. While the energy levels
and the details of the eigenstate wavefunctions evolve
subtly , the good quantum numbers of the initial prob-
lem (the number of nodes, N, in the wavefunction) are
still the appropriate description when the perturbation
has been applied.

states of the interacting electrons with the those of the
non-interacting Fermi gas. He supposed that the good
quantum numbers associated with the excitations of the
non-interacting system would remain good even after
the interactions were fully applied. Just as Pauli’s ex-
clusion principle determined the allowed labels with-
out the interactions through the presence of a Fermi
surface, this feature would remain even with the in-
teractions. We therefore retain the picture of Fermi
particles and holes excitations carrying the same quan-
tum numbers as their electron counter-parts in the free
Fermi gas. These labels are not to be associated with
electrons but to ‘quasiparticles’ to remind us that the
wavefunctions and energies are different from the cor-
responding electron in the non-interacting problem. It
is the concept of the fermion quasiparticle that lies at
the heart of Fermi-liquid theory. It accounts of the mea-
sured temperature dependences of the specific heat and
Pauli susceptibility since these properties only require
the presence of a well defined Fermi surface, and are
not sensitive to whether it is electrons or quasiparticles
that form it.

Retaining the labels of the non-interacting state
means that the configurational entropy is unchanged
in the interacting metal. [This also means that quasi-
particle distribution function is unchanged from the
free particle result (see Fig. 3a).] Each quasiparticle
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Figure 3: The probability that a state of a given en-
ergy is occupied at T = 0: (a) For electrons in a non-
interacting system, or Landau quasiparticles in a Fermi
liquid; (b) For electrons in an interacting Fermi liquid.
Note the discontinuity at the Fermi energy εF remains,
though reduced in size. The ‘jump’, z, is often consid-
ered as the order parameter of the Fermi liquid.

contributes additively to the total entropy of the sys-
tem. This is not true for the energy. In an interact-
ing system we must take into account that, unlike the
free Fermi gas, the energy of individual excitations will
not generally add to yield the total system energy. In
Landau’s theory, he accounted for the modified energy
through two terms. First, when a quasiparticle moves
there will now be a back-flow in the filled Fermi sea as
the quasiparticle ‘pushes’ the ground state out of the
way. This modifies the inertial mass of the quasiparticle
m→ m∗. (Note that this is in addition to the effect of
the crystal lattice—which produces a band mass which
can be included in the free electron picture—and also
the change induced by interactions with phonons.) Sec-
ond, a quasiparticle’s energy also depends on the dis-
tribution of other quasiparticles which Landau included
via his ‘f function’. The total energy of the interacting
system is now expanded as a functional of the quasi-
particle distribution δn~kσ:

E =
∑
~k,σ

pF

m∗ (h̄k−pF )δn~kσ+
1
2

∑
~k~k′,σσ′

f~kσ,~k′σ′δn~kσδn~k′σ′ ,

(1)
for an isotropic system. Using this one can then com-
pute the equilibrium properties such as the specific
heat and Pauli susceptibility we considered in the non-
interacting problem above. One finds

cv =
1
3
m∗pF

h̄3 k2
BT , (2)

χ =
m∗pF

π2h̄

1
1 + F a

0

µ2
B . (3)

These are similar to the free Fermi gas results except
for the modified mass and the F a

0 term in χ which is
related to the Landau f function and is known as a
Landau parameter. Landau’s theory also predicts new
behaviour as the interaction between quasiparticles al-
lows for collective modes of the system to develop. An

p,ε p-q,ε−ω

q,ω
k, 'ε k+q, ''ε ε

loses ω

ε'

gains ω

filled Fermi sea

quasiparticle

Figure 4: The scattering process for a quasiparticle with
energy ε above the Fermi surface involves the creation
of a particle-hole excitation.

example of these modes are the ‘zero sound’ oscillations
of the Fermi surface whose restoring force provided by
the f function.

Before proceeding further we should check, as Lan-
dau did, that this procedure is internally consistent.
Quasiparticles and holes are only approximate eigen-
states of the system. In writing Eq. 1 we have ne-
glected the possibility that measuring the energy with
the Hamiltonian could change the quasiparticle distri-
bution (δn~k,σ) itself. (That is to say that there remain
matrix elements in the Hamiltonian which, when acting
on a quasiparticle state, ‘scatter’ it into another state.)
Recall that acting the Hamiltonian on a true eigenstate
leaves the wave function unchanged up to a multiplica-
tive constant (the eigenvalue). We can estimate the
lifetime of these approximate eigenstates by consider-
ing the decay rate of a quasiparticle with energy ε above
the Fermi surface at absolute zero. We can use Fermi’s
golden rule

1
τε

=
2π
h̄

∑
f

|Vif |2δ(ε− εf) , (4)

where the sum is over the possible final states f . We
will assume, for the time being, that the scattering ma-
trix elements |Vif | are constant and we will just enforce
energy conservation and, crucially, the Pauli principle
for quasiparticles. At absolute zero the only scattering
allowed by the Pauli principle lowers the energy of the
original quasiparticle by an amount ω by making an
electron-hole pair in the filled Fermi sea. This process
is illustrated in Fig. 4. The condition that the quasi-
particle must scatter into an unoccupied state requires
ω < ε. In addition only occupied states within ω of
the Fermi surface can absorb this energy by making a
particle state above the Fermi surface. Thus our sum
over final states becomes

1
τε

∼ 2π
h̄
|V |2

∫ ε

0

gFdω

∫ ω

0

gFdε
′
∫ ∞

−∞
δ(ε−ω−ε′+ε′′)gFdε

′′,

(5)
∼ π

h̄
|V |2g3

F ε
2 , (6)

where gF is the density of states at the Fermi surface.
Thus, close to the Fermi surface where ε is small, the
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Box 1. The Kondo Model

The Kondo model gives us a paradigm for under-
standing how a Fermi liquid arises in a number of the
heavy-fermion metals. At its simplest, it describes the
behaviour of a single spin-one-half (S = 1/2) magnetic
ion in an otherwise non-interacting sea of electrons.
The model is essentially zero dimensional since all the
action occurs around the location of the ion. Typically
this magnetic ion prefers to align its magnetic moment
anti-parallel to that of any nearby electron (i.e. anti-
ferromagnetically). Passing electrons scatter from the
impurity and both can exchange their spin directions
in the process. Kondo (Kondo 1964) showed that, in
contrast to most forms of scattering in a metal which
normally reduce as the temperature is lowered, this
spin-flip scattering grows logarithmically with decreas-
ing temperature. Higher order perturbation treatments
(Abrikosov 1965) predicted that the scattering would
diverge at a finite ‘Kondo’ temperature (TK) —an im-
possibility since the most scattering a single impurity
can do is the unitarity limit when it behaves as an im-
penetrable sphere.

Understanding what really happens for T <∼ TK re-
quired ideas of scaling (Anderson and Yuval 1971) and
the renormalization group (Wilson 1975). It revealed
that the proper way to think of Kondo’s logarithm was
to view the strength of the antiferromagnetic interac-
tion between the ion and the electrons as effectively
growing with decreasing temperature. At first this just
enhances the scattering but, as the temperature is low-
ered further, the coupling becomes so strong the that
magnetic ion prefers to bind tightly to a single elec-
tron and form an inert singlet state. The susceptibility
associated with the impurity shows free-spin Curie be-
haviour at high temperatures but, as the singlet forms,
the susceptibility saturates. The impurity specific heat

peaks near TK but then falls linearly to zero as the en-
tropy associated with the impurity spin [kB ln(2S + 1)]
becomes quenched in forming the S = 0 singlet. The
scattering at T = 0 saturates at the unitarity limit
and falls as T 2 for very small temperatures. The strik-
ing emergence of the Fermi liquid forms for these low
temperature properties is due to the low energy ex-
cited states having a one-to-one correspondence with
a weakly interacting Fermi gas (Nozières 1974). The
Kondo temperature sets the effective Fermi energy of
this local Fermi liquid.

Figure B1: At high temperatures the Kondo impurity
scatters conduction electrons but as the temperature
is lowered the effective interaction between impurity
and conduction electrons grows. Eventually a singlet
bound-state is formed which acts as an inert potential
scatterer.

The physics of the Kondo model exactly parallels
asymptotic freedom and quark confinement in QCD.
At high energies we see free spins (analogous to asymp-
totically free quarks with colour) but, as the energy is
lowered, the spins become bound into singlets (analo-
gous to the baryon colour singlets more familiar to us
at terrestrial energies). The observation of Kondo type
behaviour in UPt3 and other heavy-fermion systems has
been coined ‘asymptotic freedom in a cryostat’ (Cole-
man 1993).

TK TK TK

T

const

log T
-4

1-aT2

T
-1

log T
-1

C
/k

B

χ

ρ/
ρ(

0)

(a) (b) (c)
Figure B2: Impurity contributions to the (a) specific heat, (b) susceptibility and (c) resistivity in the Kondo model
as a function of temperature. For T � TK these quantities recover the Fermi liquid forms as the impurity binds to
the conduction electrons.
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Figure 5: The spectral function: the probability that
an electron with momentum k may be found with a
given energy. (a) In a non-interacting system, electrons
are eigenstates and so the probability is a delta func-
tion centred on the electron energy, ε(k). (b) In the
Fermi liquid this probability is now spread out but re-
tains a peak at the new quasiparticle energy. This peak
sharpens as k → kF .

quasiparticle is always well defined in the sense that
its decay rate (ε2) is much smaller than its excitation
energy (ε). Far from the Fermi surface (i.e. large ε)
adiabatic continuity will break down since the quasi-
particle will decay before the interaction can be com-
pletely turned on. At temperatures above absolute zero
the ambient temperature sets a minimum energy scale
so for quasiparticles near the Fermi surface the scat-
tering rate goes like T 2 (Abrahams 1954). Landau’s
picture of the interacting electron gas was therefore
thought always to be valid provided one is concerned
with small energy excitations and at low enough tem-
peratures. This decay rate of quasiparticles is impor-
tant in determining the transport properties of a Fermi
liquid and results, for example, in a T 2 low temperature
resistivity.

So far we have just discussed the properties of the
Fermi liquid in terms of the quasiparticle. What of the
electrons themselves? Adiabatic continuity tells us that
in the quasiparticle wavefunction, there must remain
a fraction of the original non-interacting excited state
wavefunction

|ψqp(~kσ)〉 =
√
z|φel(~kσ)〉+particle − hole excitations etc .

(7)
That fraction, z, is known as the quasiparticle weight
and, in a sense, plays the role of the order parameter of
the zero temperature Fermi liquid state. A simple con-
sequence of the step in the quasiparticle distribution at
T = 0 is that, if one could analyze the electron distribu-
tion function, it too would show a discontinuous jump of
size z at the Fermi momentum (see Fig. 3). A theoreti-
cal tool for following the fate of the original electrons in
the interacting Fermi liquid is called the spectral func-
tion A(ω,~k) (see, for example, Mahan 1990). It mea-
sures the probability that an electron with momentum
~k can be found with energy ω. In the non-interacting

system single electrons are eigenstates of the system so
the spectral function is a delta function δ(ω − ε~k). In
the interacting system a given electron may take part
in many eigenstates of the system and so the spectral
function is spread out in energy. Nevertheless for mo-
menta near kF there is probability z that the electron
may be found in the quasiparticle eigenstate with mo-
mentum ~k. So at T = 0 the electron spectral function
in a Fermi liquid has a sharp peak at the new quasi-
particle energy with width proportional to (k − kF )2,
reflecting the finite lifetime, and an integrated weight
under the peak of z (see Fig. 5).

Let us pause now to summarize the main features of
Fermi-liquid theory. The success of the non-interacting
picture of electrons is understood in terms of the exis-
tence of Fermi quasiparticles as approximate low energy
eigenstates of the interacting system. We find that:

• Equilibrium properties have the free electron form
but with modified parameters.

• The low energy eigenstates are fermion quasiparti-
cles with a scattering rate 1/τ ∼ max(ε2, T 2).

• z is the ‘order parameter’ of the Fermi liquid:
the overlap of an electron and quasiparticle at the
Fermi surface.

• New collective modes can also appear.

How well does this theory perform when tested against
experiment?

Thus far it looks as though a new free parameter
has been introduced for each experiment. To test the
theory we should demonstrate that experiments over-
determine these free parameters. This is most straight-
forwardly done in 3He which is isotropic. There it turns
out that four experimental quantities (specific heat,
compressibility, susceptibility and zero sound velocity)
specify three of the Landau parameters and there is
good internal agreement (see Wheatley 1970). In the
metallic state the presence of a crystal lattice makes this
test harder since the reduced symmetry allows many
more Landau parameters. However, remarkably, recent
experiments have confirmed the picture in one of the
most strongly interacting metals known: UPt3. The
key feature of this material is the presence of Uranium
f electrons which are tightly bound to the atomic nu-
cleus and are surrounded by a sea of conduction elec-
trons. At high temperatures the f electrons behave
as free magnetic moments with the classical Curie sus-
ceptibility (Frings et al. 1983). As the temperature is
lowered the free spins start to become bound to con-
duction electrons to make up extremely heavy Landau
quasiparticles (see Fig. 6). [The Kondo model (see
Box. 1) provides our theoretical picture for how this
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Figure 6: The inverse spin susceptibility of UPt3 (after
Frings et al. 1983). At high temperatures we see the
1/T behaviour associated with free magnetic moments.
This large moment becomes bound to the conduction
electrons at low temperatures to form a heavy electron
Fermi liquid.

occurs—although in UPt3 we of course have a dense
periodic arrangement of magnetic ions rather than a
single impurity.] The resulting Fermi liquid indeed re-
covers the free electron forms for the equilibrium prop-
erties. The coefficient of the T -linear term in the spe-
cific heat (the intercept of the graph in Fig. 7 after
Stewart et al. 1984), though, is 450 mJ/mol K2—two
orders of magnitude larger than that of a free electron
gas. The effective mass of the quasiparticles has been
vastly enhanced. This is adiabatic continuity pushed
to the limits. To ‘close’ the theory one would like an
independent check on the quasiparticle mass. This can
be done from high magnetic field and low temperature
measurements of the “de Haas van Alphen effect”. At
sufficiently high magnetic fields, quasiparticles can be
driven around their Fermi surface by the Lorentz force.
The quantization of these orbits leads to oscillations of
the magnetization as a function of applied field: a kind
of spectroscopy of the Fermi surface. Using this (Taille-
fer and Lonzarich 1988, Julian and McMullan 1998) one
can map out the shape of the quasiparticle Fermi sur-
face and, from the temperature dependence, deduce the
quasiparticle effective mass. These masses and Fermi
surfaces are shown in Fig. 7. Two key observations
emerge even in this most interacting of environments:

1. The volume of the Fermi surface includes the f
electrons.

2. The measured quasiparticle mass accounts for the
enhanced specific heat.

Both these observations confirm the success of Fermi-
liquid theory.

3. The Mystery of the Cuprate Superconduc-
tors

If Fermi-liquid theory gives such a good account of the
metallic state, why look for alternatives? The reason is
the discovery of metals where the fermion quasiparticle
does not seem to reflect the character of the measured
low energy eigenstates. In this sense, the electron (or
electron-like quasiparticle) may no longer be the appro-
priate way to think of the low-lying excitations. The
prime example is the metallic state of the copper oxide
superconductors and so it seems fitting to motivate the
search for alternative theories of metals by summarizing
the puzzles presented by these materials.

The superconducting cuprates encompass almost
thirty distinct crystalline structures (Shaked et al.
1994) and contain upwards of three different elements.
They are united by the common feature of a layer struc-
ture of CuO2 planes. In their pristine state these com-
pounds are typically not metals—they are insulators
with antiferromagnetic order. (The magnetic moment
on the copper site alternates in direction as you move
from one site to its neighbour.) This in itself is a signa-
ture that the strength of the interaction between elec-
trons is important since simple electron counting in the
absence of interactions would suggest that these mate-
rials should have a half filled band and hence metallic
properties (see Box 2). In order to make these ma-
terials metallic (and superconducting at low tempera-
tures) one removes some electrons from each copper-
oxide layer by doping with another element which typ-
ically resides between the copper oxide planes. The
antiferromagnetism then disappears and the material
becomes a metallic conductor.

The metallic behaviour that arises is characterized by
significant anisotropy. The electrical resistance perpen-
dicular to the CuO2 plane direction can be up to one
thousand times greater than that for currents carried in
the planes (Ito et al. 1991, Hussey 1998). Many peo-
ple have stressed the importance of the effectively two
dimensional nature of the metallic cuprates and this is
in part what has prompted the search for unusual met-
als in low dimensions. As I have already hinted, the
metallic state itself is unusual. Space precludes a de-
tailed analysis of all of the anomalous properties so I
will concentrate on just a few observations.
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Figure 7: The consistency of the Fermi liquid descrip-
tion has been demonstrated in UPt3. The five Fermi
surface sheets (from Julian and McMullan 1998) and
effective mass of the quasiparticles have been mapped
out by de Haas van Alphen measurements (Taillefer and
Lonzarich 1988). They confirm that the 5f3 electrons
are absorbed into the Fermi liquid and that the quasi-
particle masses are consistent with the mass enhance-
ments measured in specific heat (after Stewart et al.
1984). The percentages reflect the contribution from
quasiparticles on each sheet to the total specific heat.
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Figure 8: The resistivity of La1.85Sr0.15CuO4 is linear in
the temperature (after Takagi et al. 1992) and indicates
a scattering rate for electrical currents proportional to
temperature.

The first noticed peculiarity is the extraordinary lin-
ear temperature dependence of the resistivity (Gurvitch
and Fiory 1987) at dopings which maximize the su-
perconducting transition temperature (illustrated in
Fig. 8). Optical measurements confirm that this is due
to a scattering rate which is proportional to tempera-
ture (Forro et al. 1990). While this is clearly different
from the T 2 scattering that Landau’s theory might pre-
dict, we should remember that the usual quasiparticle
scattering only becomes apparent at very low temper-
atures which, in this case, is obscured from view by
the transition into the superconducting state. Electron-
phonon scattering usually gives a linear resistivity from
moderate temperatures upwards (which is why we often
use the resistance of a platinum wire as thermometer).
However in the case of the cuprates it seems that this
scattering is purely electronic in origin since microwave
measurements show the scattering rate plummeting on
entering the superconducting state (Bonn et al. 1993).
So the measured resistivity presents us with two puz-
zles: what causes the linear T scattering and how to
explain the absence of the phonon scattering?

We have discussed the scattering of electric currents
but one can also measure the scattering of currents gen-
erated in a Hall effect experiment. Typically both elec-
tric currents and Hall currents should measure the same
scattering rate. In Fig. 9 we see that the scattering rate
from Hall currents rises quadratically with the temper-
ature in absolute contradiction to the resistivity exper-
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Box 2. The tJ model

In the tJ model we imagine a highly simplified view
of a CuO2 plane. It starts from a picture of the parent
insulating compounds with a square lattice of single
atomic orbitals each with exactly one electron. The
systems is said to be half-filled since the Pauli principle
would allow a maximum of two electrons in an orbital.
Normally at half-filling we would expect a metallic
state since any electron can move through the system
to carry current by hopping onto a neighbouring site.
Now we imagine turning on the inter-electron repulsion
so that it becomes energetically unfavourable for more
than a single electron to occupy a given atomic site.
Now the half-filled case is an insulator because any
electron moving to a neighbouring site already finds
an electron there and pays the price of the repulsive
interaction. There is an energy gap to make a current
carrying state and we have a “Mott insulator”. This
explains the insulating nature of the parent cuprates.
In fact no electron really likes to be fixed on a single
site—it’s like being held in a small box and its kinetic
energy is high. This can be lowered if the electron
made ‘virtual’ tunnelling hops onto the neighbouring
occupied sites and back. This the electron can only do
if the neighbouring site has the opposite spin (the Pauli
principle remains absolute). So we see that the inter-
actions also favour the antiferromagnetic arrangement
of spins seen in the parent compounds.

The tJ model describes what happens on

doping. We now remove some electrons so
that there are empty sites in the lattice:

Figure B3: The tJ model describes the competition be-
tween hole motion and antiferromagnetism in a doped
Mott insulator.

The system becomes a metal since electrons near empty
sites can move without restraint (and lower their ki-
netic energy by an amount t. The neighbouring elec-
trons would still like to remain antiferromagnetically
aligned with strength J and at no time must any site
contain more than one electron. The presence of this
constraint means that there is no small parameter in
the theory with which one can perform perturbation
theory. This is the basic physics of the tJ model and,
because the moving electrons disorder the magnetism,
we see that the t and the J represent competing inter-
actions. While there are many fascinating proposals
for understanding the physics of this model, there are
few definitive results.

iments (Chien, Wang and Ong 1991). How can a single
quasiparticle have two relaxation rates?

Furthermore there is the puzzle of how many charge
carriers there are in these metals. Some experiments,
like penetration depth in the superconducting state
(Uemura et al. 1991), suggest a number proportional
to the (small) number of holes made by doping the in-
sulating state. Yet other experiments such as angle-
resolved photo-emission see a Fermi surface containing
the large total number of conduction electrons in the
system (Campuzano et al. 1990).

The proposed solutions to these questions remain
highly controversial and have led to some very exciting
and far reaching ideas which, even if they don’t ulti-
mately find fulfillment in the physics of the cuprates,
will certainly resurface in the physics of other com-
pounds. What makes the subject exciting and at the
same time difficult is the absence so far of any solv-
able model describing how interactions give rise to the
metallic state of the cuprates. The simplest model we

have is the so called tJ model (see Box 2) for which no
solution exists outside one dimension (see later).

One might be surprised that I have underplayed the
relatively large values of the superconducting transition
temperature for which the high temperature supercon-
ductors received that epithet. This is not because the
superconductivity is not important or unusual. [These
are the first materials where the superconducting order
parameter has been established to have a symmetry
different from the usual s wave form (see Annett et al.
1996).] It is because the understanding of superconduc-
tivity usually requires an understanding of the metallic
state from which it forms. We should note that our un-
derstanding of conventional superconductivity relies on
a Fermi-liquid starting point. The pairing instability is
a consequence of the sharp discontinuity in occupation
at the Fermi surface which the fermion quasiparticle
picture provides (Bardeen, Cooper and Schrieffer 1957).
The cuprates are not alone in exhibiting superconduc-
tivity from an unusual metallic state. There is another
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Figure 9: The inverse Hall angle in La1.85Sr0.15CuO4 in
(after Harris et al. 1995). This measures the scattering
rate for Hall currents and shows it to be proportional
to T 2. This is in marked contrast to the scattering of
electric currents which is proportional to T . The puz-
zle is how can a single quasiparticle have two distinct
scattering rates?

uranium alloy, UBe13, which shows superconductivity
(Ott et al. 1983, Bucher et al. 1973) but with little
evidence of a well formed metallic Fermi-liquid state.
It is clear that the properties of new superconductors
and their unusual metallic states are intimately linked.

If the task is to find new descriptions of the metallic
state, where should we begin? There have been many
speculative suggestions, but in this article I want to
focus on examples of non-Fermi liquids which we be-
lieve we do understand at least from a theoretical view
point. In fact all four of the examples I will discuss have
been applied (loosely in some cases) to account for the
physics of the cuprates or uranium alloys. These exam-
ples show a great richness in behaviour although they
may appear at first sight to be rather artificial ‘toy’
models. This is a consequence of our lack of the math-
ematical tools with which to treat problems where the
interaction between electrons is strong and the tools
that we do have are often only applicable to systems in
reduced dimensions. However, the ingenuity of mate-
rial scientists means that these toy systems can often
be realized in nature by the clever tailoring of mate-
rials. Whereas in the past the theoretical physicist’s
job has often involved finding the simple model that
best describes the physics of a complex material, now

we have the exciting possibility of the material scien-
tist developing materials to demonstrate the theorist’s
model.

Since we are here concerned with the failure of Fermi-
liquid theory, it is as well to mention one clear example
where adiabatic continuity breaks down. Once level
crossings occur in the spectrum then it is no longer
possible to follow the labels through from the non-
interacting case. Typically this happens when there is
a phase transition in the system such as the formation
of a superconducting state when electron bound states
are favoured. In this review we will be primarily inter-
ested in how the Fermi liquid can fail within the normal
metallic state so we will not be considering such phase
transitions. However, our first example of a non-Fermi
liquid will be one where the approach to a phase tran-
sition can disrupt the Fermi-liquid state by destroying
the Landau quasiparticle.

4. Metals near a quantum critical point: de-
stroying the Landau quasiparticle

In our discussion of Landau’s approach we showed that
a quasiparticle close to the Fermi surface was a long
lived eigenstates by determining the decay rate. In do-
ing this we assumed that the matrix elements for scat-
tering were independent of the momentum and energy
transfered. The Pauli principle confines all scattering
particles to the vicinity of the Fermi surface so there is
little scope for large transfers of energy in scattering. In
the limit of small energy transfer our assumption is of-
ten valid. However, when a system approaches a second
order phase transition we know that fluctuations of the
order parameter slow down and occur over increasingly
long wavelengths. A moving quasiparticle can then eas-
ily generate a large disturbance in the medium which
can, in turn, affect other quasiparticles in the vicin-
ity dramatically enhancing the scattering cross-section.
This effect is limited by the ordering temperature which
locks the fluctuations into a long range ordered state.
Below this temperature again our initial assumptions
remain valid and the Landau quasiparticle is saved. Re-
cently much work (both theoretical and, as we will see,
experimental) has explored phase transitions occurring
at T = 0K (Hertz 1976, Moriya 1985, Millis 1993).
While the types of phase transition will be familiar (for
example from a paramagnetic to a magnetic state) they
are unusual in that Nernst’s theorem tells us that the
entropy should always be zero at zero temperature. A
zero temperature phase transition must therefore be a
transition between two ordered states. For our pur-
poses the most important feature will be that the quasi-
particle scattering-cross section can now grow without
limit ultimately destroying the consistency of Landau’s
Fermi liquid picture.
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A zero temperature phase transitions occurs at a
quantum critical point—so called because quantum me-
chanics determines the fluctuations of the order param-
eter. It turns out that some of the physical properties
near a zero temperature phase transition can be de-
termined simply by using Fermi’s golden rule, together
with the appropriate matrix elements. The matrix el-
ement encapsulates the scattering mechanism (in this
case the long range fluctuations of the order parameter
which is trying to develop at the phase transition). In
fact I use the example of the magnetic interaction be-
tween moving charges because the matrix elements can
be computed from Maxwell’s equations. (It turns out
that the matrix elements are the same as those near a
zero temperature transition to a ferromagnetic state.)
The following section is meant for those readers who
would like to see where some of the non-Fermi liquid
properties come from. However, it may be omitted if
you just want to know the final results.

Properties near a quantum critical point

To see in some detail how Landau’s original argument
is spoiled near a quantum critical point we must revisit
our Fermi golden rule expression for the decay rate. I
will now do a change of variable and express the same
quantity as Eq. 6 in terms of the momentum and energy
transferred in any scattering process. The result (valid
in dimension d) is

1
τε

=
2π
h̄

∫ ε

0

gFωdω

∫ 2kF

ω/h̄vF

qd−1dq

(2π/L)d

|D(q, ω)|2
(h̄vF q)2

. (8)

The integral over ω is simply the number of possible
hole excitations that can be created. The appearance
of ω in the lower limit of the momentum integral, q,
appears because a minimum momentum must be trans-
fered to give a change in energy of ω. The integration
over the direction of the momentum has already been
performed and gives the factor of (h̄vF q)2 in the denom-
inator reflecting the increased time available for small
deflections. Finally D(q, ω) is the matrix element for
the scattering process. If this is independent of q and
ω then the q integral is not sensitive to the value of the
lower limit and is independent of ω. The subsequent
integration over ω recovers the usual τ−1

ε ∼ gF ε
2 result

we had before.
Already at this point we can see that something inter-

esting happens in one dimension (d = 1). The singular
nature of the q integral, even when the matrix element
D(q, ω) is constant, leads to a decay proportional to
ε to this order. This is a signal of the breakdown in
adiabatic continuity since there is no limit when the
quasiparticle energy is well defined: There are no one
dimensional Fermi liquids! We will discuss the nature

of metals that do arise in d = 1 later. In higher dimen-
sions we need to make D(q, ω) more singular at low q
in order to destabilize the Fermi liquid by this route.

Singular interactions are a consequence of long
range force laws (large distances correspond to small
wavenumbers in reciprocal space). The usual Coulomb
force itself adds to the Hamiltonian a term:

ρe(~r)ρe(~r′)
4πε0|~r − ~r′| −→ Dc(q) =

ρe(q)ρe(−q)
4πε0q2

, (9)

where ρe is the density of electronic charge. This has
exactly the sort of singularity at small q one might ex-
pect to destabilize the Fermi liquid. In fact the Fermi
liquid remains stable because the collective behaviour of
the other electrons screens the long range Coulomb re-
pulsion. Any local build up of charge causes the nearby
electrons move away revealing more of the background
lattice of positive ions. This neutralizes the charge
build up beyond the Debye-Hückel screening length
ξ ∼ √

ε0/2πe2gF (Debye and Hückel 1923). Thus our
once long-ranged interaction is actually a short dis-
tance Yukawa-type potential and is perfectly innocuous
as far as the quasiparticle is concerned. The screened
Coulomb interaction no longer diverges as q → 0:

ρe(~r)ρe(~r′)
4πε0|~r − ~r′|e

−|~r − ~r′|/ξ −→ Dsc(q) =
ρe(q)ρe(−q)

4πε0(q2 + ξ−2)
.

(10)
[Strictly one needs to consider the frequency depen-
dence of the electron’s response (i.e. dynamical screen-
ing) to determine the influence of the Coulomb interac-
tion on the Fermi liquid (Silin 1957, Pines and Nozières
1966).]

It turns out, however, that the Amperean interac-
tion between moving charges (more familiar to us as
the force between two current carrying wires) is much
more dangerous to the Fermi liquid (Holstein, Norton
and Pincus 1973, Reizer 1989 and 1991). These forces
turn out to be much weaker than the Coulomb law and
their danger is only apparent at extremely low energies
and hence at inaccessibly low temperatures. However
an almost identical form of matrix element arises near a
ferromagnetic quantum critical point and this is exper-
imentally realizable. Since deriving the matrix element
at a quantum critical point is beyond the scope of this
article, I will use the Amperean interaction as my exam-
ple of a singular interaction. In this case seeing why the
force law is singular is a straight-forward application of
Maxwell’s equations.

The interaction between moving charges is due to the
local magnetization which they set up. In the case of
the Coulomb interaction the potential energy term in
the Hamiltonian is just φ(~r)ρe(~r): the charge density
times the electrostatic potential. The term we need
for the Amperean force law is the product of the local
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current density and the vector potential: ~A(~r)·~j(~r). For
the Coulomb case we know that a local charge produces
a 1/r potential. To find the vector potential from a
local current density, ~j, we consider the fields generated
by its magnetization ~m in the presence of the currents
from other electrons in the metal ~J . Using Maxwell’s
equations

~∇× ~E = −∂
~B

∂t
, ~∇× ~B = µ0

~J+µ0ε0
∂ ~E

∂t
+µ0

~∇× ~m ,

(11)
and the definition of the conductivity in the metal
~J = σ ~E, we can find the magnetic field ~B and hence
the vector potential ~B = ~∇× ~A. It is usual to Fourier
transform the result to obtain the appropriate interac-
tion term

DAmp(~q, ω) = ~A(~j) · ~J =
µ0
~j~q,ω ·~j−~q,−ω

q2 + iωσµ0 − ω2/c2
. (12)

(The ω2/c2 term does not play an important role here
and so we will drop it from now on.) By comparing the
equation for this interaction with that of the screened
Coulomb interaction (Eq. 10) we see that the appropri-
ate “screening length” for the current-current interac-
tion is the skin depth

ξ ∼ 1/
√
iωσµ0 . (13)

Unlike the Coulomb case considered previously, this
screening length diverges at low ω (i.e. low energies)
and so fails to usefully suppress the growing scatter-
ing matrix element at low energies. For the Amperean
interaction, the quasiparticle scattering cross section
grows without the limit and this destroys the Fermi liq-
uid. Since this type of interaction is always present in
a metal, why is Fermi-liquid theory a good description
of any metal? The answer lies in the overall scale of the
interaction. Comparing the ratio of the Coulomb and
Amperean interactions we see that (for currents car-
ried by quasiparticles near the Fermi surface moving
with velocity vF )

DAmp

Dsc
∼ 4πε0µ0

j2e
ρ2

e

∼ 4π
(vF

c

)2

. (14)

Thus the current-current interaction is 106 times weaker
than the Coulomb interaction which is why its effects
are only likely to be visible at micro Kelvin tempera-
tures.

We can see what behaviour might be produced,
though, by computing the quasiparticle lifetime from
Eq. 8 with Dj−j as found above. In a clean metal with
no impurities the conductivity is limited, not by the
mean-free-path, but by the wavevector: σ ∼ 1/q. The
skin depth enters the so-called anomalous regime and

behaves like
√
ω/q and this is the case we will con-

sider. Doing the integral of Eq. 8 may look tricky but
the singular nature makes everything simple. We are
only trying to extract the energy dependence of the de-
cay rate so we will neglect the prefactors. We note that
as q decreases then DAmp grows as 1/q2 until q be-
comes smaller than the inverse skin depth when DAmp

saturates. This happens when q2 ∼ ω/q (i.e. when
q ∼ ω1/3). Since ω1/3 is always greater than the lower
limit of the integral (ω) as ω → 0 we can use it as the
lower limit. We can then find the energy dependence
of the scattering rate by considering

1
τε

∼
∫ ε

0

ωdω

∫
ω1/3

qd−1dq

q2

(
1
q2

)2

, (15)

∼ ε ∼ T for d = 3 at temperature T .(16)

There is now no regime where the Landau quasipar-
ticle is sufficiently long-lived to count as an approxi-
mate eigenstate. In the language of adiabatic conti-
nuity, switching on the interaction adiabatically takes
longer than the lifetime of the eigenstate itself and so
one can never continue from the non-interacting state
to the interacting one. When the scattering rate goes
linearly to zero with the energy as in this case, we have
a ‘marginal Fermi liquid’ (Varma et al. 1989).

Surprisingly, despite the absence of quasiparticles, we
can still use this calculation to determine some prop-
erties of this non-Fermi liquid metal: the temperature
dependence of the resistivities and heat capacity. The
decay rate (which is related to the resistivity) and the
effective mass (which gives the heat capacity) are in-
extricably linked in this example. This is because the
scattering of quasiparticles can not help but produce
some back-flow which contributes to the effective mass
and the quasiparticle energy. The decay rate may be
viewed as an imaginary component of the energy in
the time evolution of the wavefunction ∼ exp(−iεt/h̄).
When the decay rate is non-analytic as ε → 0 then
one can obtain the real part from the imaginary part
through the Kramers-Kronig relation. The essence of
this is that if the quasiparticle scattering rate is Tα

(with α some fractional power), the heat capacity also
has a Tα dependence. In the case we have just consid-
ered α = 1. This is non-analytic at the origin since,
as a decay rate is always positive, it should really be
τ−1
ε ∼ |ε|. In that case the heat capacity become T lnT .

So we have a logarithmic correction to the usual linear
in T specific heat capacity.

The other quantity which we can compute is the
resistivity. One might be tempted to conclude that,
since the scattering rate is linear in temperature, then
the resistivity should also proportional to temperature.
However this fails to account for the effectiveness of
the scattering at destroying electrical current. Small q
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scattering may destroy the quasiparticle but it is not
effective at removing momentum from the net flow of
current. For that to happen large angle scattering must
occur. The transport lifetime takes this into account
and is obtained from the same expression as Eq. 8 with
an additional factor of (1 − cos θ) ∼ q2/k2

F where θ
is the scattering angle. Doing this above gives a re-
sistivity of T 5/3 - a stronger temperature dependence
than the usual T 2 in a Fermi liquid. The other quan-
tity we have discussed, the Pauli susceptibility, can not
be obtained from our Fermi golden rule expression and
requires more analysis to obtain.

Examples of quantum critical points

Summarizing these results, we have shown how the in-
teractions between currents will ultimately destroy the
Fermi-liquid state in any metal at very low tempera-
tures. The new behaviour that we expect to see in-
cludes

• a marginal quasiparticle scattering rate: τ−1
ε ∼ ε ∼

T ,

• CV ∼ T lnT ,

• χ ∼ lnT (not proved here),

• ρ(T ) ∼ T 5/3.

It is a curious paradox that, while Landau’s arguments
would suggest that the Fermi-liquid description is valid
in the low temperature limit, interactions like this actu-
ally provide a low temperature bound on its stability.
The Kohn-Luttinger instability (Kohn and Luttinger
1965) to a superconducting state similarly acts in a gen-
eral way to prevent one ever obtaining a T = 0 Fermi
liquid. In most metals these effects are unobservable,
but there are a growing number of cases where new
types of singular interactions can lead to a non-Fermi
liquid state which is observed. I’ve already indicated
that metals near a quantum critical point provide us
with such examples and so too do electrons in a half-
filled Landau level and I will now discuss what can be
seen in experiment.

When a metal is on the verge of a ferromagnetic insta-
bility then one finds that the effective interactions be-
tween quasiparticles have exactly the same form as they
do in the Amperean case we’ve just considered. One ex-
ample of this is in the compound MnSi (Pfleiderer et al.
1997). It becomes an almost ferromagnetic helical mag-
net at 30K but under pressure this Curie temperature
is lowered, until at 14800 atmospheres the magnetism
has been completely ‘squeezed’ out of the system. It
has not yet been possible to measure the heat capacity
under such extreme conditions but resistivity measure-
ments can be done. In Fig. 10 we see how the resistivity
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Figure 10: MnSi: a low-temperature long-wavelength
helical magnet. (a) The phase diagram showing that
quantum critical point occurs at 14.8 kbar. (b) As the
quantum critical point as approached, the resistivity
takes on a T 5/3 temperature dependence showing that
the quasiparticles are more strongly scattered than in
a normal Fermi liquid (after Pfleiderer et al. 1997).

diverges at low temperatures when compared to the ex-
pected Fermi-liquid form until the phase transition to
the ferromagnet occurs. When this phase transition is
pushed to absolute zero we have a true quantum crit-
ical point and this divergence proceeds without limit.
The resistivity takes on the new T 5/3 form we proved
earlier. Similar behaviour has also been seen in high
pressure experiments on ZrZn2—another ferromagnet
with a low Curie temperature (Grosche et al. 1995).

There are a number of other known non-Fermi liquids
which arise from singular interactions. A very simi-
lar form of interaction occurs when a two dimensional
electron gas is subjected to high magnetic fields, but it
comes from quite a different source. This perhaps is the
most unusual Fermi liquid we know, although again the
singular interactions imply that it is not truly a Fermi
liquid at the lowest temperatures.

At high magnetic fields we see the fractional quantum
Hall effect (Tsui, Störmer and Gossard 1982). Electrons
in a magnetic field and confined to two dimensions de-
velop a discrete quantized energy spectrum where each
level can hold a macroscopic number of particles— a
number which depends on the strength of the magnetic
field. When the lowest energy level is partially filled by
a fraction with an an odd denominator (like 1/3 full),
the ground state shows unusual stability. The Hall ef-
fect develops a a plateau and becomes independent of
a field for a small range of nearby fields as the elec-
tron fluid is reluctant to move away from this stable
point. The excitations of this insulating state carry
fractions of the electronic charge (Laughlin 1983) and
are a fascinating area of active research which I won’t
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Figure 11: CePd2Si2: a low temperature antiferromag-
net. Under pressure the antiferromagnetism can be sup-
pressed to zero temperature giving a quantum critical
point. Not only do we see non-Fermi liquid behaviour
here but also there is a superconducting transition (af-
ter Julian et al. 1996, Mathur et al. 1998)

detail here as I am concentrating on metallic states.
The ground state can be thought of as being formed
from bound states of electrons with quanta of flux (Jain
1989 and 1992) making ‘composite fermions’. What-
ever magnetic field is left unbound after the compos-
ite fermions form, is the effective field experienced by
the composite fermions. They then undergo a conven-
tional integer quantum Hall effect. Between the quan-
tum Hall plateaux the electron gas passes through a
metallic phase. When the lowest energy level is ex-
actly half filled the composite fermions try to form a
metallic state where there is no effective field remain-
ing. We then have a Fermi liquid of composite fermions
(Halperin, Lee and Read 1993). The residual interac-
tions in this metal can also have a singular form and so
affect its properties. These come from an interaction
between currents and charge density which is left over
from approximations of binding magnetic flux to the
underlying electrons. This type of interaction (coupling
a vector to a scalar) is not usually allowed in a metal
but occurs here in the presence of a magnetic field. It
is the absence of a long range interaction (which would
otherwise suppress the fluctuations of density) that can
causes the effective coupling to be singular. Neverthe-
less one sees strong evidence for a well formed Fermi
liquid in the experiments (Willett 1997).

Perhaps the most puzzling of the systems with a sin-
gular interaction are antiferromagnetic quantum criti-
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Figure 12: The resistivity of CePd2Si2 at the critical
pressure (28 kbar). The observed temperature depen-
dence, T 1.2, is seen over two decades of temperature. It
has not yet been explained. (Data after Grosche et al.
1996.)

cal points. There exist a growing family of metals with
very low Neél temperatures below which antiferromag-
netic order develops. An example is CePd2Si2 where
the Neél temperature can be squeezed to zero in pres-
sures of 28000 atmospheres (see Fig. 11). Similar argu-
ments to those presented above can be used to compute
the expected temperature dependence of the resistiv-
ity: it turns out to be T 3/2. However, unlike the fer-
romagnetic case, the power law that is observed is T 1.2

(Grosche et al. 1996) (see Fig. 12). Why this should be
is presently not understood but is potentially a question
of fundamental importance. The cuprate superconduc-
tors are also systems close to antiferromagnetism as we
have seen, and it has been argued that these two puz-
zling phenomenon are linked. Tantalizingly, this system
and others close to antiferromagnetism (Mathur et al.
1998) also show superconductivity at the quantum crit-
ical point lending weight to a connection between this
type of quantum critical point and the cuprates. How-
ever the superconducting transition is at 0.4 K which
leaves this scenario needing to explain why Tc is so high
in the cuprates.

In our discussion thus far we have used only the resis-
tivity as the signature of non-Fermi liquid physics. Pri-
marily, this is because all of the above materials require
pressures so high to reach the critical point that ther-
modynamic measurements (e.g. specific heat or Pauli
susceptibility) are rather difficult. This can be over-
come by using doping rather than pressure to tune the
metal to a quantum critical point. One such exam-
ple is CeCu6−xAux (see von Löhneysen 1996) which
is paramagnetic with x = 0 but on adding a small
mount (x = 0.1) of gold, the metal develops antifer-
romagnetism (see Fig. 13). Here one can look at all the
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Figure 13: The CeCu6−xAux system shows an antifer-
romagnetic quantum critical point driven by gold dop-
ing. Using doping to tune to the critical point opens
up the possibility of doing more measurements on the
new metallic state. It comes at the price, though, of in-
creasing the sample disorder which can complicate the
theoretical understanding of the non-Fermi liquid state
(after Pietrus et al. 1995).

familiar indicators of Fermi-liquid behaviour and show
how they deviate near the critical point. The specific
heat shows a T lnT (see Fig. 14), the resistivity is linear
in temperature and the Pauli susceptibility diverges as
− lnT at low temperatures. The danger with doping
as a tuning mechanism is that the metals are now off
stoichiometry and, as such, one must wonder about the
role of disorder near the critical point. This is theoreti-
cally an open problem. Nevertheless, the experimental
situation is clear: we have a well tried route to the
non-Fermi liquid at a quantum critical point.

If all that was known about non-Fermi liquids was
how the quasiparticle could be destroyed by singular
interactions, we would seem to have found only the
exception to prove the general rule. However in one
dimension we see a radical new type of metallic be-
haviour where completely new types of particle emerge
to replace Landau’s Fermi quasiparticle.

5. Luttinger Liquid: the Bose Quasiparticle

We have already seen that our general scattering rate
argument would predict an absence of Fermi liquids in
one dimension even with a constant matrix element.
Considering higher order terms only makes matters
worse. All is not lost however, for a new type of adi-
abatic continuity has been proposed by Haldane (Hal-
dane 1981) which gives us the possibility of quantify-
ing the new metallic state that emerges in its place:
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Figure 14: The specific heat of CeCu5.9Au0.1 at the
quantum critical point. The heat capacity shows a
T lnT form indicating that the thermodynamics of the
non-Fermi liquid are totally changed by the proximity
to the critical point. (Data after von Löhneysen et al.
1996.)

the Luttinger liquid. Discussing one dimension may
seem rather esoteric when we live in a three dimen-
sional world. In fact many systems, from the “blue
bronze” molybdenum alloys to some organic Bechgaard
salts have properties which are highly anisotropic. Elec-
tron motion is essentially confined to one dimension by
the very low probability of the electron hopping in the
two remaining directions. It is in this type of system
that we have the possibility of seeing a Luttinger liquid
state develop.

If the essence of the Fermi liquid was the Landau
quasiparticle, then the essence of the Luttinger liquid
is spin-charge separation and the appearance of spinon
and holon quasiparticles. Their existence relies on a
very special property of one dimensional systems: near
the Fermi surface all particle-hole excitations at fixed
momentum have the same kinetic energy. This is illus-
trated in Fig. 15 where we see that in two (and higher
dimensions) the energy depends both on the magni-
tude of q and on its direction relative to the local Fermi
surface. In one dimension there is only one direction
and so fixing q determines the energy completely. This
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Figure 15: One dimension has the special feature that
all particle-hole excitations with a given momentum ~q
have the same energy. (a) In high dimensions one can
make (i) a high energy excitation or (ii) a low energy
one depending on whether ~q is normal or transverse to
the local Fermi surface. (b) In d = 1 there is only one
direction in the problem and so fixing δ~q, determines
the energy change δE. This leads to density waves be-
ing the proper description of physics in one dimension.

is important because adding together the all possible
particle-hole excitations with a specific excitation mo-
mentum ~q gives the wavefunction for a density wave: a
compression and rarefraction of electron density with a
wavelength 2π/|~q|. The special property of one dimen-
sion means that here a density wave has a well-defined
kinetic energy. Now the potential energy is also usu-
ally determined by the density of particles with a given
wavelength (see for example the Coulomb interaction of
Eq. 10) and so the density wave also has a well defined
potential energy. This is enough to tell us that density
waves form the new eigenstates of the one dimensional
metal. More generally the potential energy can depend
on both the density of spin and the density of charge,
so spin density waves may have a different energy from
charge density waves. Thus the good quantum num-
bers of the system are those of spin and charge density.
So we can completely by-pass the problem of how the
electrons behave by working only with the densities.

This leads to the remarkable phenomenon of spin-
charge separation. The electron carries with it both
spin (its magnetic moment) and its electrical charge.
In one dimension these can, and generally do, become
two separate entities which move independently as they
form the spin and charge density eigenstates. The elec-
tron dissolves into its spin part (a spinon) and its charge
part (a holon). Its clearly not a Fermi liquid any more
because the good quantum numbers look nothing like
the old fermion quasiparticle labels. If we ask where the
original electron has gone by determining the spectral
function, we no longer see the single sharp quasiparti-
cle peak of the Fermi liquid. Instead we see two sharp
features characterizing the spin and charge parts of the

v k v k

Figure 16: The spectral function of a one dimensional
Luttinger liquid. Notice how, in contrast to the Fermi
liquid (Fig. 5), there are now two singular features cor-
responding to the spinon and holon and they generally
disperse with different velocities, vσ and vρ (after Voit
1993 and Dias 1996).

electron moving with differing velocities (see Fig. 16).
One can make a very simple picture of how this hap-

pens by considering a single electron in a Mott insu-
lating state. This is illustrated in Fig. 17 where we
consider the physics of the tJ model (Box 2) but now
in one dimension. Starting with the insulating state we
have an antiferromagnetic arrangement of spins. Now
we remove an electron which of course removes both a
spin and leaves behind a charged state. As the hole now
moves we note that the place where the disruption in
the spin arrangement and the position of the hole have
now moved apart. The spin and charge of the original
electron have separated and formed independent enti-
ties.

This type of picture has, for many years, seemed
no more than a näıve picture of a phenomenon whose
proper description requires the powerful mathematical
machinery of bosonization. (This is the technique which
formally expresses the problem in terms of spin and
charge densities.) However, very recently exactly the
experiment described above has been done on the an-
tiferromagnetic chain compound SrCuO2 (Kim et al.
1996). A single electron is removed from the chain by
a photo-emission process whereby an incident photon
kicks out an electron. The probability for doing so
depends on the underlying dynamics of the spin and
charge degrees of freedom we excite. Since this starts
as an insulating system the dynamics of the hole are
the dynamics of an almost empty band. The allowed
momentum of the spinon is restricted by the magnetic
order. The spectrum that is seen is shown in Fig. 18d.
For some momenta of the photo-electron, only the holon
is allowed to carry the momentum away and one sees
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spinonholon

(b)

(c)

(a)

Figure 17: A simple picture of spin-charge separation
in one dimension. Consider the 1d tJ model when an
electron is removed from the antiferromagnetic Mott
insulating state by a photon in a photo emission exper-
iment (a). This leaves behind a disruption in both the
spin and charge order. (b) As electrons move into the
vacant site, the locations of the spin and charge disor-
der separate. They have become distinct particles—a
spinon and a holon.

a well defined dispersing peak following the dispersion
of the holon. For other momenta, both the spinon
and the holon can be excited and so the momentum
is distributed between them. Instead of a sharp(ish)
quasiparticle peak in the spectrum one sees for these
momenta a broader spectrum distributed between the
band energies of the spinon and the holon (see Fig. 18).

The observant reader will perhaps have noticed that
the special property upon which all of this relies is a
consequence of the linearity of the energy spectrum near
a single Fermi point. In reality scattering from near one
Fermi surface point to the other side (Fig. 19a) or dis-
persion curvature as one moves away from the Fermi
points (Fig. 19b) means that the momentum of the
particle-hole excitation no longer uniquely determines
the energy. The Luttinger model is a simplified version
of the metallic states that does not contain these trou-
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Figure 18: Photo-emission experiments can actually re-
produce the physics of the simple picture of Fig. 17—
here in SrCuO2. (a) The removal of a single electron
creates a holon in an otherwise empty band. (b) The
magnetic order restricts the allowed momentum of the
spinon: the thick line shows the forbidden regions. (c)
For certain momenta of emitted photo-electron there
is just a single way in which the momentum can be
distributed between the spinon and holon but in other
parts of the zone there is no such restriction. (d) In the
measurements we see rather broad features where the
momentum and energy is distributed between a num-
ber of possible spinon and holons states. In other parts
of the zone a single dispersing peak is seen (after Kim
1996 and Shen 1997).

blesome processes (Luttinger 1963). Haldane’s Lut-
tinger liquid hypothesis parallels adiabatic continuity
in the interacting Fermi liquid but now using the one
branch Luttinger model as the starting point. Much
as adding interactions to the non-interacting Fermi gas
leads to renormalization of (Landau) parameters to
form the Landau Fermi-liquid state, in one dimension
the additional processes which spoil the special proper-
ties of the Luttinger model just lead to a renormaliza-
tion of the parameters in the model. In fact Haldane
showed there were just four free parameters which char-
acterize the low energy properties of one dimensional
metallic states. These properties not only set the values
of the spinon and holon velocities but also the so-called
anomalous exponents which control, among other prop-
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Figure 19: (a) Scattering from one Fermi point to the
other or (b) large energy excitations (and also Umklapp
scattering), spoil the special property of 1d illustrated
in Fig. 15. The Luttinger liquid hypothesis argues that
the density wave eigenstates are still adiabatically con-
tinuous with the true low energy eigenstates even in the
presence of these processes.

erties, the nature of the singularities seen in the electron
spectral function.

Identifying unambiguously a Luttinger liquid is made
harder by the fact that the thermodynamic probes of
specific heat and Pauli susceptibility retain their old
Fermi liquid forms even in a Luttinger liquid. Using
the resistivity to identify a Luttinger liquid is compli-
cated by the issue of how impurities control the scat-
tering (in one dimension a single impurity limits the
current by blocking the current path). In addition one
dimensional systems are typically rather unstable to
long range ordered spin- and charge-density wave forma-
tion which can completely destroy the metallic state. It
seems that the most unambiguous probe should be the
photo-emission experiment of the type performed above
which potentially could measure the spectral function
of Fig. 16 (see Gweon et al. 1996 and Voit 1998). Nev-
ertheless, from a theoretical perspective this non-Fermi
liquid state in 1D is convincingly established and has
been found relevant for experiments ranging from the
TMTSF Bechgaard salts TMTSF (Bourbonnais et al.
1984, Wzietek et al. 1993, Dardel et al. 1993 and Zwick
et al. 1997) to quantum wires (Tarucha et al. 1995
and Yacoby et al. 1996) to edge state tunnelling in the
fractional quantum Hall effect (Milliken et al. 1996 and
Chang et al. 1996).

Phil Anderson has suggested that the Luttinger liq-
uid may not only be confined to the realm of one di-
mension but may be the appropriate starting point for
understanding the two dimensional metallic state of the
cuprates (see Anderson 1997). Part of the supporting
experimental evidence which he appeals to is the two
separate scattering rates measured in the decay of elec-
trical and Hall currents. These he attributes to the

decay of holons and spinons respectively. While this
proposal remains controversial, the idea of spin-charge
separation in more than one dimension is a very active
research area at present.

6. Two-channel Kondo model: novel quasipar-
ticles

Thus far we have had Fermi quasiparticles (in the Fermi
liquid), Bose quasiparticles (in the Luttinger liquid)
and no quasiparticles at all near a quantum critical
point. That might be expected to exhaust the possi-
bilities! In fact in low dimensional systems there can
exist excitations which fall outside these classes. I have
already mentioned the possibility of particles carrying
fractional charge in the fractional quantum Hall effect.
The excitations of these systems in two dimensions have
quantum statistics that can lie in between fermions and
bosons. Under particle exchange these particles acquire
a more general phase factor (eiθ) in contrast to the usual
±1 for bosons/fermions and are known as “anyons”—
for ‘any statistics’ (Leinaas and Myrheim 1977)!

Interactions then can lead to completely new types
of state appearing at low energies. Rather than use
anyons as an example, I will discuss the appearance of
a new type of excitation in a metal in the “two channel
Kondo” problem. The strange particle in this problem
is essentially “half of a spin-half” degree of freedom.
Kondo models have for many years been a favourite
of condensed matter theorists and the single channel
Kondo model is described in Box 1.

If the physics of the single-channel Kondo model is
that of a local Fermi liquid, then the two-channel case
is the physics of the local non-Fermi liquid. In the two-
channel case, one imagines a single spin one-half im-
purity which interacts antiferromagnetically with two
conduction seas of electrons (hence the two channels)
which do not otherwise interact (Nozières and Blandin
1980). The conduction electrons are totally oblivious of
the other sea of electrons and do not even experience a
Pauli exclusion principle from them. Only the impurity
sees that there are two channels. Experimentally this is
hard to realize as described above, but there are claims
that tunneling experiments through certain two level
systems can be modeled in a very similar way (Ralph
et al. 1994).

The extra complication of two conduction channels
does little to affect the physics at high temperatures.
For weak coupling one has a free spin one-half object
which scatters both channels of electrons and results
in the same logarithmically growing scattering as the
temperature is lowered. However, as the coupling con-
stant grows, the impurity spin has a problem. It would
like to form a singlet but the symmetry of the problem
forbids it from favouring any one of the channels for
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Figure 20: In the two-channel Kondo problem, a single
magnetic impurity interacts with two orthogonal elec-
tron wavefunctions. The magnetic ion can no longer
make the usual non-magnetic singlet state at low tem-
peratures because the symmetry of the problem makes
favouring one electron over the other impossible. A
magnetic state can still undergo further Kondo scatter-
ing. The resulting ground state bears no resemblance
to a non-interacting gas of electrons and is a local non-
Fermi liquid.

making that singlet. The other possibility is to make a
linear superposition of a singlet with each channel, but
this leaves the unbound spin of the spectator channel
carrying a two-fold spin degeneracy. It turns out that
this then would behave like a new spin-half impurity
which in turn wants to undergo another Kondo effect
(see Fig. 20). There is no simple solution to the impu-
rity spin’s dilemma. Solving the problem requires the
application of conformal field theory techniques (Af-
fleck and Ludwig 1991) and the ‘Bethe Ansatz’(Andrei
and Destri 1984, Tsvelik and Wiegmann 1985)—a class
of wave functions which solve a number of interacting
low dimensional problems. The mathematical complex-
ity of these solutions forbids detailed discussion of them
here. There do exist a number of ‘simplified’ treatments
(Emery and Kivelson 1992, Sengupata and Georges
1994, Coleman Ioffe and Tsvelik 1995) which reformu-
late the two-channel Kondo model (see Schofield 1997)
and make the physical properties obtainable from per-
turbation theory. What emerges can be seen from
the calculated temperature dependence of the impu-

rity spin’s entropy. In the single-channel Kondo model
this falls smoothly from ln 2 reflecting the two degrees
of freedom of the free spin, to 0 at very low temper-
atures. In the two-channel case the entropy also falls
from ln 2. However it saturates at 1

2 ln 2 at low temper-
atures as if a

√
2 degree of freedom is left. It transpires

that this object can be represented rather simply as the
real part of the normally complex electron—a so-called
Majorana fermion named after Majorana’s purely real
representation of the Dirac equation (Majorana 1937).
It remains free at low temperatures and disrupts the
local Fermi liquid one had in the single-channel case.

New power laws emerge for the impurity spin contri-
bution to the low temperature properties: heat capacity
∼ T lnT , Pauli susceptibility ∼ lnT and the resistiv-
ity has a

√
T correction. While it is hard to make a

straightforward application of this model to a physical
system, there have been a number of proposals suggest-
ing that this physics can be realized in certain uranium
alloys (Cox 1987) as well as in the various tunnelling
problems mentioned before. In fact strange power laws
are seen in a number of uranium alloys (see , for exam-
ple, Maple at al. 1996), but the two-channel Kondo
interpretation remains controversial. Nevertheless it
provides us theoretically with the intriguing possibil-
ity that the physics of non-Fermi liquids may lead to
completely new kinds of low energy particle controlling
the behaviour of exotic metals.

7. The disordered Kondo scenario

In our survey of non-Fermi liquids I have deliberately
tried to choose examples which are stoichiometric - that
is where a pure crystal exhibits an unusual metallic
state. The reason for doing this has been to isolate the
role of disorder which further complicates our picture
of non-Fermi liquid alloyed materials. Although there
exist many powerful techniques for dealing with dis-
order in condensed matter physics, they unfortunately
are not easily extended to include the effect of interac-
tions. Having said that, there are in fact many more
examples of non-Fermi liquid metals which one might
claim to be disordered. Almost all of the cuprates are
made by partially substituting one atom for another in
the process of doping the Mott insulating state. (The
reason that we believe that these are in fact clean ma-
terials is because the copper oxide planes—where the
action is taking place—are left unscathed by the dop-
ing except for a change in carrier density.) There exist
also a growing number of diluted alloys of uranium and
cerium which also exhibit non-Fermi liquid behaviour.
Some have been interpreted in terms of the two-channel
Kondo scenario mentioned above. There is, however, at
least one other possibility, namely that the non-Fermi
liquid behaviour is coming from single channel Kondo



Non-Fermi liquids A. J. Schofield 20

impurities but the disorder creates a distribution of
Kondo temperatures (Bernal et al. 1995, Miranda, Do-
brosavljević and Kotliar 1997). One such example is
UCu5−xPdx (Bernal et al. 1995) where one imagines
the magnetic uranium ions sitting in a random envi-
ronment of a Cu/Pd alloy.

I have argued that one such impurity favours a Fermi
liquid (see Box 1) so why is it that a distribution of
such impurities can lead to anything different? The
answer lies in the fact that even relatively weak dis-
order yields a fraction of the impurity spins with ex-
tremely low Kondo temperatures and these magnetic
moments remain unquenched and strongly scatter the
conduction electrons even at low temperatures. This
is a consequence of the exponential dependence of the
Kondo temperature on the local properties of the im-
purity spin:

TK = D exp(−λ) , (17)

where D is the bandwidth of the conduction electrons
and λ is a measure of the local density of conduction
electronic states at the magnetic site and of the coupling
between the moment and the conduction electrons.

We can perform a crude calculation of the non-Fermi
liquid properties by assuming that the Kondo temper-
atures in the alloy are uniformly distributed between 0
and an arbitrary scale, To. By using approximate forms
for the specific heat, the resistivity and the suscepti-
bility of a single Kondo impurity, we can then simply
average over the distribution of Kondo temperatures to
obtain the bulk response. Our approximate forms will
be

Cimp ∼ kB
TKT

T 2 + T 2
K

, (18)

χimp ∼ µ2
B

T + TK
, (19)

ρimp ∼
{

0 T > TK ,
ρo T ≤ TK ; (20)

These have been chosen to capture the essence of
the results for the Kondo model shown graphically
in Box 1 while obeying certain important constraints
(such as the total impurity entropy

∫ ∞
0 Cimp/TdT be-

ing independent of TK .) Using a uniform distribu-
tion of Kondo temperatures (P (TK)dTK = 1/To) we
can straight forwardly calculate the expected proper-
ties by averaging over the impurity distribution (eg.
C(T ) ∼ Nimp/To

∫ To

0
CimpdTK). One finds that

C(T ) ∼ NimpkB
T

2To
ln

(
1 +

T 2
o

T 2

)
, (21)

χ(T ) ∼ Nimp
µ2

B

To
ln (1 + To/T ) , (22)

ρ(T ) ∼ ρo (1 − T/To) for T < To . (23)

We see at once that the specific heat and the suscepti-
bility immediately adopt non-Fermi liquid forms at low
temperatures with C/T ∼ χ ∼ − lnT instead of T in-
dependent. The rising resistivity as the temperature is
lowered suggests disorder in the system as well as a low
energy scattering mechanism. Of course these results
depend to some extent on the distribution of Kondo
temperatures but, provided this distribution tends to a
finite number (not zero) at low temperatures, the low
temperature forms are robust. In fact this type of be-
haviour has been seen in many alloyed materials (see
Miranda, Dobrosavljević and Kotliar 1996 for a table).

To be sure that disorder is driving the non-Fermi
liquid physics we would like some independent signa-
ture of it. This can come from nuclear magnetic res-
onance (NMR) and muon spin rotation (µSR) studies
(MacLauglin, Bernal and Lukefahr 1996). These mea-
surements probe very precisely the local environment
at particular atomic sites. What is found is that in
UCu5−xPdx the copper atoms appear to sit in a variety
of local environments strongly suggesting the presence
of disorder. These authors are even able to extract the
distribution of Kondo temperatures and show that it
does satisfy the requirement of being finite at low tem-
peratures, and is consistent with the measured heat ca-
pacity and susceptibilities. While this interpretation is
not universally accepted in this particular material (see,
for example, Aronson et al. 1996) it does serve as the
simplest example for a new route to non-Fermi liquid
physics when interactions and disorder combine.

8. Conclusions

The discovery of the cuprate superconductors has
sparked a widespread interest in materials which do not
seem to lie with in the traditional Fermi-liquid frame-
work which we have relied on for understanding the
effect of interactions in metals. What is emerging from
this is a striking richness in the types of metallic be-
haviour that can appear. We see metals where the
electron dissolves into its magnetic and electric com-
ponents and systems when no quasiparticle excitation
is left. We also see the possibility of unusual states
appearing which have no simple analogue outside in-
teracting systems.

In this article I have attempted to give a flavour of
some of the ideas which are currently being explored
both to understand the cuprates but, often more fruit-
fully, in understanding equally fascinating problems in
other metallic compounds. It may well be that the so-
lution to the mystery of the cuprate metals also lies in
some of the physics discussed here. However my suspi-
cion is that nature is playing stranger tricks and that
there is a new theory of interacting metals just as pro-
found as Landau’s picture of the metallic state that will
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apply to these compounds.
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