
 
 

University of Birmingham

The tyrosine phosphatase CD148 is an essential
positive regulator of platelet activation and
thrombosis
Senis, Yotis; Tomlinson, Michael; Ellison, S; Mazharian, Alexandra; Lim, J; Zhao, Y;
Kornerup, Kristin; Auger, Jocelyn; Thomas, Steven; Dhanjal, Tarvinder; Kalia, Neena; Zhu,
JW; Weiss, A; Watson, Steve
DOI:
10.1182/blood-2008-08-174318

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Senis, Y, Tomlinson, M, Ellison, S, Mazharian, A, Lim, J, Zhao, Y, Kornerup, K, Auger, J, Thomas, S, Dhanjal, T,
Kalia, N, Zhu, JW, Weiss, A & Watson, S 2009, 'The tyrosine phosphatase CD148 is an essential positive
regulator of platelet activation and thrombosis', Blood, vol. 113, no. 20, pp. 4942-4954.
https://doi.org/10.1182/blood-2008-08-174318

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
American Society of Hematology

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 20. Mar. 2024

https://doi.org/10.1182/blood-2008-08-174318
https://doi.org/10.1182/blood-2008-08-174318
https://birmingham.elsevierpure.com/en/publications/29607b8b-3e1a-43ad-8d4e-9828a0c64794


doi:10.1182/blood-2008-08-174318 
Prepublished online Feb 25, 2009;
2009 113: 4942-4954
 
 
 

 
Zhu, Arthur Weiss and Steve P. Watson 
Kristin N. Kornerup, Jocelyn M. Auger, Steve G. Thomas, Tarvinder Dhanjal, Neena Kalia, Jing W. 
Yotis A. Senis, Michael G. Tomlinson, Stuart Ellison, Alexandra Mazharian, Jenson Lim, Yan Zhao,
 

 platelet activation and thrombosis
The tyrosine phosphatase CD148 is an essential positive regulator of

 http://bloodjournal.hematologylibrary.org/cgi/content/full/113/20/4942
Updated information and services can be found at: 

 (106 articles)Thrombosis and Hemostasis �
 (69 articles)Platelets and Thrombopoiesis �

 collections: BloodArticles on similar topics may be found in the following 

 http://bloodjournal.hematologylibrary.org/misc/rights.dtl#repub_requests
Information about reproducing this article in parts or in its entirety may be found online at: 

 http://bloodjournal.hematologylibrary.org/misc/rights.dtl#reprints
Information about ordering reprints may be found online at: 

 http://bloodjournal.hematologylibrary.org/subscriptions/index.dtl
Information about subscriptions and ASH membership may be found online at: 

. Hematology; all rights reservedCopyright 2007 by The American Society of 
200, Washington DC 20036.
semimonthly by the American Society of Hematology, 1900 M St, NW, Suite 
Blood (print ISSN 0006-4971, online ISSN 1528-0020), is published
 
 
 
 

 For personal use only. at UNIVERSITY OF BIRMINGHAM on October 8, 2009. www.bloodjournal.orgFrom 

http://bloodjournal.hematologylibrary.org/cgi/content/full/113/20/4942
http://bloodjournal.hematologylibrary.org/cgi/collection/platelets_thrombopoiesis
http://bloodjournal.hematologylibrary.org/cgi/collection/thrombosis_hemostasis
http://bloodjournal.hematologylibrary.org/misc/rights.dtl#repub_requests
http://bloodjournal.hematologylibrary.org/misc/rights.dtl#reprints
http://bloodjournal.hematologylibrary.org/subscriptions/index.dtl
http://bloodjournal.hematologylibrary.org/subscriptions/ToS.dtl
http://bloodjournal.hematologylibrary.org
http://bloodjournal.hematologylibrary.org/subscriptions/ToS.dtl


PLATELETS AND THROMBOPOIESIS

The tyrosine phosphatase CD148 is an essential positive regulator of platelet
activation and thrombosis
*Yotis A. Senis,1 *Michael G. Tomlinson,1 Stuart Ellison,1 Alexandra Mazharian,1 Jenson Lim,1 Yan Zhao,1

Kristin N. Kornerup,1 Jocelyn M. Auger,1 Steve G. Thomas,1 Tarvinder Dhanjal,1 Neena Kalia,1 Jing W. Zhu,2

Arthur Weiss,2 and Steve P. Watson1

1Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences,
University of Birmingham, Birmingham, United Kingdom; and 2Department of Medicine, Howard Hughes Medical Institute, Rosalind Russell Medical Research
Center for Arthritis, University of California, San Francisco

Platelets play a fundamental role in hemo-
stasis and thrombosis. They are also
involved in pathologic conditions result-
ing from blocked blood vessels, includ-
ing myocardial infarction and ischemic
stroke. Platelet adhesion, activation, and
aggregation at sites of vascular injury
are regulated by a diverse repertoire of
tyrosine kinase–linked and G protein–
coupled receptors. Src family kinases
(SFKs) play a central role in initiating and

propagating signaling from several plate-
let surface receptors; however, the under-
lying mechanism of how SFK activity is
regulated in platelets remains unclear.
CD148 is the only receptor-like protein
tyrosine phosphatase identified in plate-
lets to date. In the present study, we show
that mutant mice lacking CD148 exhibited
a bleeding tendency and defective arterial
thrombosis. Basal SFK activity was found
to be markedly reduced in CD148-deficient

platelets, resulting in a global hypore-
sponsiveness to agonists that signal
through SFKs, including collagen and
fibrinogen. G protein–coupled receptor re-
sponses to thrombin and other agonists
were also marginally reduced. These re-
sults highlight CD148 as a global regula-
tor of platelet activation and a novel anti-
thrombotic drug target. (Blood. 2009;113:
4942-4954)

Introduction

The primary physiologic function of platelets is to stop bleeding
from sites of vascular injury. In addition, it is becoming
increasingly recognized that they are involved in other physi-
ologic processes, including angiogenesis, inflammation, and
immunity. Platelets can also have deleterious effects on health,
as in the case of atherothrombosis, which can lead to myocardial
infarction and ischemic stroke, 2 of the leading causes of
mortality in the Western world. Platelets prevent excessive
blood loss from sites of vascular injury by adhering to exposed
extracellular matrix proteins and forming aggregates that plug
damaged blood vessels. Further, they regulate vascular tone
through release of secondary mediators, including serotonin,
adenosine diphosphate (ADP), and thromboxane A2 (TxA2).
Platelet-derived ADP and TxA2 act in a positive feedback loop
to amplify the initiating stimulatory signal. The surface of
activated platelets serves as a platform on which clotting factors
assemble into complexes that accelerate the localized generation
of thrombin. Thrombin directly activates platelets and converts
fibrinogen into fibrin that consolidates the platelet aggregate, making it
less susceptible to the mechanical forces of flowing blood.

Thrombus formation and stability are regulated by the coordi-
nated action of tyrosine kinase–linked and G protein–coupled
receptors. Two of the major tyrosine kinase-linked receptors on
platelets are the collagen receptor glycoprotein VI (GPVI), which
signals through the immunoreceptor tyrosine-based activation
motif (ITAM)–containing FcR �-chain, and the integrin �IIb�3,

which binds to several matrix proteins including fibrinogen and is
essential for platelet aggregation. Although there are many similari-
ties between the GPVI and integrin �IIb�3 signaling cascades,
with critical roles for Src and Syk tyrosine kinases and the
downstream targets SLP-76, Vav, and PLC�2, only GPVI uses the
FcR �-chain to recruit and activate Syk.1 In contrast, the integrin
�IIb�3 is believed to activate Syk directly through the �3 integrin
cytoplasmic tail independent of an ITAM, although this model has
recently been questioned.2-4

The earliest identified GPVI signaling event is activation of Src
family kinases (SFKs). Previous studies using mutant mouse
models and transfected cell lines have shown that the SFKs Lyn
and Fyn are constitutively associated with the proline-rich region
of GPVI via their SH3 domains and are essential for initiating and
propagating the GPVI signaling cascade.5,6 Similarly, Src is
constitutively associated with the C-terminal region of the �3
integrin cytoplasmic tail and is activated after fibrinogen binding to
�IIb�3.1,7,8 Interestingly, the cytosolic protein tyrosine phospha-
tase (PTP) PTP-1B lies upstream of Src and is essential for
�IIb�3-mediated Src activation, but is not required to activate Lyn
and Fyn downstream of GPVI.9

The activity of SFKs is tightly regulated by tyrosine phosphory-
lation and intramolecular interactions. SFKs are maintained in an
inactive conformation by 2 intramolecular interactions, one of
which is between the SH3 domain and the polyproline sequence in
the linker region (between the SH2 and kinase domain), and the
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other between the SH2 domain and the inhibitory tyrosine residue
in the C-terminal tail.10,11 Maximal activation of SFKs requires
uncoupling of the intramolecular SH2 and SH3 interactions and
trans-autophosphorylation of the activation loop tyrosine residue,
thereby relieving the steric hindrance that impedes substrate
binding.10,12 Phosphorylation of the C-terminal tail inhibitory
tyrosine residue by Csk and the related kinase Ctk/Chk maintains
the molecule in an inactive conformation, whereas dephosphoryla-
tion of this site allows the SFK to adopt an active conformation.13-15

In the case of the B- and T-cell receptors this action is achieved
primarily through the receptor-like protein tyrosine phosphatase
(RPTP) CD45, with the structurally distinct RPTP, CD148, also
playing a minor role in B cells.16-20 In macrophages, CD45 and
CD148 play redundant roles in Fc receptor–mediated SFK
activation.16

We recently identified CD148 as the only RPTP expressed on
the human platelet surface using a global membrane proteomics
approach.21 This led us to investigate whether CD148 plays a
role in regulating platelet function using CD148 loss-of-
function mutant mice. In this study, we demonstrate for the first
time that CD148 plays a global role in platelet activation by all
of the major classes of platelet surface receptors, namely ITAM,
integrin, and G protein–coupled receptors. Moreover, CD148 is
an essential positive regulator of hemostasis and arterial throm-
bosis in vivo.

Methods

Mice

CD148 loss-of-function transmembrane-knockout (CD148 TM-KO) mice
on a C57BL/6 background were generated as previously described.16

FcR �-chain–deficient (�-chain�/�) mice on a C57BL/6 background were
kindly provided by Dr Takashi Saito (Chiba University Graduate School of
Medicine, Japan).22 All procedures were undertaken with United Kingdom
Home Office approval in accordance with the Animals (Scientific Proce-
dures) Act of 1986.

Antibodies

Anti–human CD148, anti–Src-pan, anti-SFK activation loop phospho-
Tyr, and anti-Src phospho-Tyr-529 antibodies were obtained from
Biosource (Camarillo, CA); hamster anti–mouse CD148 antibody (8A-1)
was generated in A.W.’s laboratory23; fluorescein isothiocyanate (FITC)–
conjugated anti–mouse P-selectin, phycoerythrin (PE)-conjugated anti–
mouse active �IIb�3, FITC-conjugated anti–mouse �IIb�3, FITC-
conjugated anti–mouse �2, anti–mouse GPVI, and anti–mouse GPIb�
antibodies were from Emfret Analytics (Würzburg, Germany); FITC-
conjugated goat anti–rat IgG and anti-actin antibody from Sigma-Aldrich
(St. Louis, MO); anti-phosphotyrosine antibody from Millipore (Billerica,
MA); anti-PLC�2 and anti-Syk antibodies were gifts from Dr Joseph Bolen;
anti–Lyn-pan and anti-Lyn phospho-Tyr-507 were obtained from Cell
Signaling Technology (Danvers, MA); anti–mouse �IIb antibody from
BD Pharmingen (San Diego, CA); anti–rat Alexa488 antibody from
Invitrogen (Carlsbad, CA); and DyLight 800–conjugated anti–mouse IgG
and DyLight 680–conjugated anti–rabbit IgG from Thermo Fisher Scien-
tific (Waltham, MA).

Chemicals

Monoparin heparin was obtained from CP Pharmaceuticals (Wrexham,
United Kingdom); D-Phe-Pro-Ala-chloromethylketone (PPACK), from
Calbiochem (San Diego, CA); cross-linked collagen-related peptide (CRP)
was prepared as previously described24,25; fibrillar-type I equine tendon
collagen was from Nycomed (Zurich, Switzerland); human plasma fibrino-
gen from Enzyme Research Laboratories (South Bend, IN); bovine plasma

fibronectin from Calbiochem; bovine thrombin, ADP, and FeCl3 from
Sigma-Aldrich; FITC-conjugated phalloidin and DiOC6 from Molecular
Probes (Eugene, OR); and recombinant murine SDF-1� from PeproTech
(Rocky Hill, NJ).

Platelet aggregation

Blood was collected from the heart or descending thoracic aorta of
CO2-asphyxiated mice into 1/10 (vol/vol) acid-citrate-dextrose anticoagu-
lant, and washed platelets (2 � 108/mL) were prepared as previously
described.26 Platelet aggregation and adenosine triphosphate (ATP) secre-
tion were measured simultaneously using a lumi-aggregometer (Chrono-
Log, Havertown, PA).

Flow cytometry

Washed human platelets were prepared as previously described.26 Surface
expression of CD148 was quantified using the Platelet Calibrator Kit
(Biocytex, Marseille, France), as previously described.27 Resting and
activated (10 �g/mL CRP or 0.06 U/mL thrombin) wild-type and CD148
TM-KO mouse platelets were stained for CD148, GPVI, P-selectin, and
resting and activated forms of �IIb�3. All antibodies were fluorescently
conjugated except for anti-CD148 and anti-GPVI antibodies, which were
detected using fluorescently conjugated secondary antibodies. Samples
were analyzed using a FACSCalibur flow cytometer and CellQuest software
(Becton Dickinson, Franklin Lakes, NJ).

Platelet biochemistry

Washed human and mouse platelet whole-cell lysates (WCLs) were
prepared and Western blotting performed as previously described.26 For
immunoprecipitations, platelets (5 � 108/mL) were pooled from 3 to
6 mice in modified Tyrodes-HEPES buffer containing 10 �M lotrafiban,
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Figure 1. CD148 is expressed in human and mouse platelets. (A) Human
platelets. (Ai) Resting and (Aii) thrombin-activated (1 U/mL) human platelets were
stained with a mouse anti–human CD148 primary antibody (CD148, gray line) that
recognizes the extracellular region of CD148, or the same amount of an isotype
control antibody (IgG, black line), followed by a FITC-conjugated anti–mouse IgG
secondary antibody and analyzed by flow cytometry. No detectable change in CD148
surface expression was observed in thrombin-activated platelets. (B) Mouse plate-
lets. (Bi) Resting wild-type (WT) mouse platelets were incubated with either hamster
anti–mouse CD148 primary antibody (CD148, gray line) that recognizes the extracel-
lular region of mouse CD148, or an isotype control antibody (IgG, black line).
Platelets were subsequently stained with FITC-conjugated anti–hamster secondary
antibody and analyzed by flow cytometry. (Bii) Whole-cell lysates (WCLs) prepared
of WT and CD148 transmembrane-knockout (KO) mouse platelets were West-
ern blotted for CD148. A 220-kDa band was detected in the WT sample but not in
the KO sample.
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10 �M indomethacin, and 2 U/mL apyrase, and stimulated with 10 �g/mL
CRP for 90 and 300 seconds with constant stirring at 1200 rpm at 37°C. The
remainder of the protocol was as previously described.26 WCLs were
prepared from fibrinogen-spread platelets, from which proteins were
immunoprecipitated, as previously described.28 WCLs and immunoprecipi-
tates were resolved on 4% to 12% gradient gels (Invitrogen, Paisley, United
Kingdom) and immunoblotted with primary antibodies and either horserad-

ish peroxidise- or fluorescently conjugated secondary antibodies. For
standard Western blots, proteins were detected by enhanced chemilumines-
cence (GE Healthcare, Little Chalfont, United Kingdom) and autoradiogra-
phy. The Odyssey Infrared Imaging System (Li-Cor, Cambridge, United
Kingdom) was used to quantify specific band intensities. Phosphospecific
bands were normalized to actin, Lyn-pan, or Src-pan on the same membrane
and presented as percentage of wild-type basal levels.
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Figure 2. CD148-deficient platelets exhibit impaired GPVI-
mediated platelet aggregation, secretion, and integrin
activation. (A) Washed platelets (2 � 108/mL) prepared
from wild-type (WT), CD148 transmembrane-knockout
(CD148 TM-KO), and FcR �-chain heterozygous-deficient
(�-chain�/�) mice were stimulated with low, intermediate,
and high doses of: (Ai) collagen-related peptide (CRP; 1,
3, and 10 �g/mL); (Aii) collagen (1, 3, and 10 �g/mL); and
(Aiii) thrombin (0.03, 0.09, and 0.3 U/mL). Platelet-rich
plasma prepared from WT and CD148 TM-KO mice was
stimulated with low, intermediate, and high doses of (Aiv)
thromboxane A2 analog U46619 (1, 3, and 10 �M) and
(Av) ADP (1, 3, and 10 �M). Platelet aggregation was
measured as a change in light transmission, and ATP
secretion was measured as luciferin/luciferase-mediated
luminescence, using a lumi-aggregometer. Representa-
tive images are shown (n � 3-6 mice per condition).
(Figure continued on next page.)
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Platelet spreading

Washed platelets (2 � 107/mL) from wild-type and CD148 TM-KO mice
were placed on fibrinogen-coated coverslips for 45 minutes at 37°C, fixed
and imaged, as previously described.29 Platelet spreading was also imaged
in real time, as previously described.29 Platelets were treated with 10 �M
indomethacin and 2 U/mL apyrase in the absence and presence of either
10 �M PP1 or 1 U/mL thrombin before being plated.

Platelet flow adhesion

Blood was collected from CO2-asphyxiated mice by cardiac puncture into
10 U/mL heparin and 20 �M PPACK, stained with 2 �M DiOC6, and
flowed through collagen-coated glass microslides (1 � 0.1 mm) at 1000 s�1

for 4 minutes at 37°C, as previously described.29,30

Megakaryocyte culture and functional assays

A highly purified population of bone marrow–derived megakaryocytes was
cultured from wild-type and CD148 TM-KO mice, as previously de-
scribed.31 Megakaryocyte chemotaxis toward a SDF-1� gradient on a
fibronectin-coated surface was measured in a Dunn chamber, as previously
described.31 Megakaryocyte spreading on fibrinogen-, fibronectin-, and
collagen-coated surfaces was measured, as previously described.31 Wild-
type and CD148 TM-KO megakaryocytes (1 � 106/mL) were lysed with an
equal volume of 2 � lysis buffer and Western blotted with an anti-SFK
activation loop phospho-Tyr antibody.

Tail-bleeding assay

Experiments were conducted on 20-32 g CD148 TM-KO and litter-matched
wild-type mice. Mice were anesthetized with isofluorane, and buprenor-

phine was used as an analgesic. A 3-mm portion of the tail tip was excised
with a razor blade. Mice were allowed to bleed until they lost either 15%
blood volume (assuming a blood volume of 70 mL/kg) or for 20 minutes.

Ferric chloride–induced vascular occlusion model

Experiments were conducted on 20-35 g CD148 TM-KO, �-chain�/�, and
litter-matched wild-type mice, as previously described.32 Mice were
anesthetized intraperitoneally with ketamine and xylazine. After a lapa-
rotamy, a mesenteric arteriole (60-75 �m diameter) was isolated. Alexa488-
labeled platelets were injected into mice intravenously via the carotid
artery. Filter paper soaked in 5% FeCl3 solution was placed on the dissected
arteriole for 1 minute. Real-time intravital brightfield and fluorescent
real-time images were captured simultaneously of the developing thrombus.

Laser-induced thrombus formation model

Experiments were conducted on 20- to 35-g CD148 TM-KO and litter-
matched wild-type mice, as previously described.32 Mice were anesthetized
intraperitoneally with ketamine and xylazine. The cremaster muscle
surrounding the testicle was exteriorized on a cover-slip. Alexa 488–labeled
platelets were injected into mice via the carotid artery. Laser-induced
thrombi were generated at the luminal surface of selected arterioles, as
previously described.32 Real-time intravital brightfield and fluorescent
real-time images of the developing thrombus were captured simultaneously.

Immune thrombocytopenia

Thrombocytopenia was induced in 2- to 4-month-old wild-type and CD148
TM-KO mice by intraperitoneal injection of anti–mouse GPIb� antibody
(2 �g/g of mouse), as previously described.31 Blood samples were collected
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Figure 2. CD148-deficient platelets exhibit impaired
GPVI-mediated platelet aggregation, secretion, and
integrin activation (continued). (B) Surface expression
of P-selectin and (C) “active” integrin �IIb�3 was quanti-
fied on resting and activated (10 �g/mL CRP or 0.06 U/
mL thrombin) platelets from litter-matched WT and CD148
TM-KO (KO) mice by flow cytometry. Resting (black
lines) and activated (gray lines) platelets were stained
with either (Bi) FITC-conjugated rat anti–mouse P-
selectin antibody or (Ci) PE-conjugated JON/A antibody
to “active” integrin �IIb�3. Data presented as (Bii) P-
selectin geometric mean fluorescence intensity (MFI)
and (Cii) fold increase in JON/A binding relative to total
�IIb�3 staining. Representative histograms are shown
(n � 3 mice per condition). Bar height and error bars
represent mean 	 SEM (*P 
 .05, **P 
 .01).
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7 days preinjection (time � 0) and at 3, 48, 72, 96, 120, 144, and 172 hours
after injection by tail bleeding. Platelet counts were measured using an
ABX Pentra 60 Hematology Analyzer (Block Scientific, Nutley, NJ).

Statistical analysis

Student t test (one sample or independent samples) and 2-way analysis of
variance were used to compare sample means and determine statistical
significance. P values of less than .05 were considered significant.

Results

Surface expression of CD148 in human platelets

We recently identified CD148 as the only RPTP expressed in
platelets through analysis of the membrane proteome.21 In the
present study, we confirmed expression of CD148 in human
platelets by Western blotting and flow cytometry. CD148 was
detected as a single band of 220 kDa in human platelets by Western
blotting (data not shown). Human platelets were found to express
2834 plus or minus 90 (mean 	 SE; n � 6) copies of CD148 on
their surface when using a flow cytometry–based assay (Figure S1,
available on the Blood website; see the Supplemental Materials
link at the top of the online article). This is comparable with the
level of the collagen receptor integrin, �2�1, and approximately
75% of that of GPVI, measured using the same assay, but is
substantially lower than integrin �IIb�3, the major platelet glycop-
rotein at more than 80 000 copies.27,33 Surface expression of
CD148 was not altered in thrombin-stimulated platelets, suggesting
the absence of an intracellular pool (Figure 1A). These studies
demonstrate that CD148 is expressed on the surface of human
platelets and that its expression is tightly regulated.

Platelets from CD148 transmembrane-knockout mice exhibit
impaired GPVI-mediated aggregation and secretion

The recent generation of a CD148 loss-of-function TM-KO mouse
provided the opportunity to probe the role of this RPTP in
platelets.16 Flow cytometry using a specific monoclonal antibody
(clone 8A-1) to the extracellular region of mouse CD148 confirmed
that the RPTP is expressed on the surface of wild-type mouse
platelets (Figure 1Bi).23 Platelets from CD148 TM-KO mice did
not express detectable CD148 by Western blotting or flow cytom-
etry (Figure 1Bii and data not shown). Interestingly, surface levels
of GPVI were reduced to 42% plus or minus 1.5% (mean 	 SE;
n � 9) of control levels, whereas integrin �2�1 and �IIb�3 levels
were found to be normal on platelets from CD148-deficient
mice (Figure S2).

The ability of CD148-deficient platelets to aggregate and
secrete ATP was tested simultaneously using a lumi-aggregometer.
Platelets from FcR �-chain heterozygous-deficient (�-chain�/�)
mice were tested in parallel as they have a concomitant 50%
reduction in GPVI levels, which is therefore similar to the
reduction in expression in the CD148-deficient platelets.34 CD148-
deficient platelets exhibited marked impairment in response to the
GPVI-specific agonist CRP (Figure 2Ai). Inhibition was observed
at low and intermediate concentrations of CRP (1 and 3 �g/mL).
Even at high concentrations of CRP (10 �g/mL), CD148-deficient
platelets exhibited reduced aggregation and secretion, demonstrat-
ing that CD148 is an essential, positive regulator of GPVI-
mediated aggregation and dense granule secretion. The magnitude
of this inhibition was much greater than that observed in �-chain�/�

platelets (Figure 2Ai). Aggregation and ATP secretion of CD148-

deficient platelets were also inhibited in response to low and
intermediate concentrations of the physiologic agonist collagen
(1 and 3 �g/mL), which acts through the receptors GPVI and �2�1
(Figure 2Aii). This effect was largely overcome at a higher
concentration of collagen (10 �g/mL), which induced almost full
aggregation and marked ATP secretion (Figure 2Aii). Moreover, as
with CRP, the defect in response to collagen was much greater than
that observed in the �-chain�/� platelets, suggesting that the defect
is due to the loss of CD148 and not the reduction in GPVI levels
(Figure 2Aii).

Aggregation and ATP secretion of CD148-deficient platelets
were also tested in response to various G protein–coupled receptor
agonists, which act through distinct receptors and signaling path-
ways. Aggregation and ATP secretion were marginally reduced in
response to low, intermediate, and high doses of thrombin and
U46619 (TxA2 analog), which act through the PAR-4 receptor in
mouse platelets and the TP receptor, respectively (Figure 2Aiii,iv).
In contrast, CD148-deficient platelets exhibited normal aggrega-
tion and ATP secretion responses to ADP, which signals through the
P2Y1 and P2Y12 receptors (Figure 2Av). Together, these results
demonstrate that CD148 is essential for tyrosine kinase–linked
receptor-mediated aggregation and secretion responses, and also
plays a minor role in G protein–coupled receptor-mediated responses.

Further studies were carried out to investigate the role of CD148
in �-granule secretion and integrin �IIb�3 activation. P-selectin
expression on the surface of platelets was used as a measure of
�-granule secretion (Figure 2B). Inside-out activation of �IIb�3
integrin was detected using JON/A antibody binding, which only
recognizes the high affinity or active conformation of the integrin
(Figure 2C). As for the aggregation and ATP secretion findings,
CRP-mediated P-selectin expression and integrin �IIb�3 activa-
tion were markedly reduced in the CD148-deficient platelets
compared with wild-type platelets, whereas thrombin-mediated
responses were marginally reduced (Figure 2B,C). These findings
further demonstrate the critical role of CD148 downstream of
GPVI but also confirm that it plays a minor role in signaling
through the mouse platelet thrombin receptor, PAR-4.

GPVI proximal signaling defect in CD148-deficient platelets

We next investigated the molecular mechanism of the GPVI-
mediated functional defects in CD148-deficient platelets by
analyzing tyrosine phosphorylation in resting and CRP-
stimulated platelets. There was a striking inhibition of the
increase in tyrosine phosphorylation of most proteins to CRP in
the CD148-deficient platelets throughout a 300-second time
course (Figure 3A). This included a marked reduction in
tyrosine phosphorylation of the 12-kDa doublet that has been
previously identified as FcR �-chain, thereby suggesting a
proximal signaling defect in the GPVI pathway.35,36 Consistent
with this observation, there was a reduction in inducible tyrosine
phosphorylation of important downstream signaling molecules,
such as Syk and PLC�2 (Figure 3B,C).

We hypothesized that the signaling defect might be due to
defective SFK activation, as these kinases are responsible for
FcR �-chain ITAM phosphorylation, which was markedly reduced
in CD148-deficient platelets. We therefore turned our attention to
the GPVI-associated SFK, Lyn, which directly phosphorylates the
FcR �-chain.5,37 In the absence of agonist stimulation, Lyn exhib-
ited increased phosphorylation at its C-terminal inhibitory tyrosine
residue, Tyr-507, in CD148-deficient platelets, suggesting that a
higher proportion of Lyn was in an inactive conformation in resting
CD148-deficient platelets (Figure 3Di,ii). Phosphorylation of this
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site remained approximately 2-fold higher in CD148-deficient
platelets compared with controls after CRP stimulation. Src also
exhibited increased phosphorylation at inhibitory Tyr-529 in rest-
ing CD148-deficient platelets (Figure 3Diii,iv). In line with this,
SFKs were markedly hypophosphorylated at their respective
activation loop tyrosine residues in CD148-deficient platelets
(Figure 3Dv,vi). Because this is a trans-autophosphorylation event,

it is indicative of SFK activity and suggests a general reduction in
SFK activity in the absence of CD148. The level of phosphoryla-
tion at the inhibitory site was not substantially altered by CRP
stimulation in wild-type and mutant platelets; however, a signifi-
cant (approximately 20%; P 
 .02) increase in phosphorylation of
the activation loop tyrosine of SFKs was observed in wild-type
platelets (Figure 3Dv,vi). Together, these results demonstrate that
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Figure 3. GPVI proximal signaling is defective in CD148-deficient platelets. (A) Whole-cell lysates (WCLs) prepared of resting and collagen-related peptide
(CRP)–activated platelets from wild-type (WT) and CD148 transmembrane-knockout (KO) mice were Western blotted with an anti-phosphotyrosine antibody (p-Tyr). Platelets
were stimulated with 10 �g/mL CRP for 90 and 300 seconds (sec). Bands corresponding to Src family kinases (SFKs) and FcR �-chain are indicated. (B) Syk and (C) PLC�2
were immunoprecipitated from equal amounts of WCLs and blotted with a anti-phosphotyrosine antibody. Membranes were subsequently stripped and reblotted with anti-Syk
and anti-PLC�2 antibodies. (Di-vi) WCLs prepared of platelets stimulated for 0, 30, and 90 seconds with CRP were Western blotted for (Di) Lyn p-Tyr-507, (Diii) Src p-Tyr-529,
and (Dv) SFK activation loop p-Tyr. Blots are representative of 4 to 6 experiments. (Dii, iv, vi) Band intensities were quantified from 4 separate experiments (mean 	 SEM;
*P 
 .05, **P 
 .01).
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SFKs are in a state of reduced activation in both resting and
CRP-stimulated CD148-deficient platelets.

Impaired spreading of CD148-deficient platelets on fibrinogen

A series of experiments were undertaken to investigate whether
CD148 contributes to signaling by �IIb�3. We initially investi-
gated the ability of CD148-deficient platelets to adhere to and
spread on a fibrinogen-coated surface under static conditions.
Although several SFKs interact with the cytoplasmic tail of the �3
subunit, including Src, Fyn, Lyn, Hck, and Yes, only Src has been
shown to be essential for �IIb�3-mediated signaling and spreading
on fibrinogen.7,8,38,39 CD148-deficient platelets exhibited a marked
reduction in spreading on a fibrinogen-coated surface, comparable
with that seen when platelets were pretreated with the general SFK
inhibitor PP1 (Figure 4A). The block in fibrinogen spreading could
be overcome by preactivating CD148-deficient platelets with the
PAR-4 agonist, thrombin (Figure 4A). These findings suggest that
CD148 is a positive regulator of �IIb�3 proximal signaling, as is
the case for GPVI.

We further investigated the fibrinogen-spreading defect of
CD148-deficient platelets by measuring the kinetics of spread-
ing in real time. Results from these experiments were complimen-
tary to the endpoint spreading data (above), providing a more
complete picture of the fibrinogen-spreading defect. In this
assay, CD148-deficient platelets took longer to form filopodia
and generated fewer filopodia, which tended to retract with time
(Figure 4B). Further, they rarely formed lamellipodia, compared
with wild-type platelets, which underwent lamellipodia forma-
tion, as illustrated by the surface area (Figure 4B, Figure S4
Videos S1,S2). Together, these findings demonstrated that
CD148 is a positive regulator of �IIb�3 signaling and is
essential for normal platelet spreading on fibrinogen.

�IIb�3 proximal signaling defect in CD148-deficient platelets

We next investigated the molecular mechanism underlying the
fibrinogen-spreading defect exhibited by CD148-deficient plate-
lets. We hypothesized that this is due to a signaling defect as
platelets from mutant mice expressed normal levels of integrin
�IIb�3 (Figure S2). Consistent with this hypothesis, whole-cell
lysates prepared from fibrinogen-spread platelets and subjected to
Western blotting with an anti-phosphotyrosine antibody revealed a
reduction in phosphorylation in CD148-deficient platelets, provid-
ing evidence of a proximal signaling defect (Figure 5A). Two of
these proteins, Syk and PLC�2, were hypophosphorylated in
fibrinogen-spread CD148-deficient platelets (Figure 5B,C). Both
Syk and PLC�2 are essential components of the �IIb�3
signaling cascade and lie downstream of SFKs. Because Src
interacts with the �3 subunit in platelets, is essential for
initiating and propagating �IIb�3 signaling, and has also been
shown to be a substrate of CD148,8,40 we investigated the
hypothesis that Src was in an inactive conformation in fibrinogen-
spread CD148-deficient platelets relative to controls. In line
with this hypothesis and the result for GPVI activation, Src was
hyperphosphorylated at its C-terminal inhibitory tyrosine resi-
due (Tyr-529), as was Lyn (Tyr-507), in fibrinogen-spread
CD148-deficient platelets (Figure 5Di-iv). Concomitantly, SFKs
were significantly hypophosphorylated at their activation loop ty-
rosines in BSA-nonadherent (approximately 30%; P 
 .05) and
fibrinogen-adherent (approximately 46%; P 
 .02) CD148-defi-
cient platelets compared with controls (Figure 5Dv,vi). These
findings suggest that SFKs tend to be in a closed, inactive
conformation in CD148-deficient platelets. Together, these results
demonstrate that CD148 positively regulates SFKs downstream of
�IIb�3, providing a molecular mechanism for the fibrinogen-
spreading defect exhibited by CD148-deficient platelets.
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CD148-deficient megakaryocytes do not spread or migrate

To determine whether CD148 is important in megakaryocytes, the
platelet progenitor, we investigated the ability of CD148-deficient
megakaryocytes to spread on various surfaces and migrate on
fibronectin. It is well established that integrins and SFKs are
essential for cell movement, and in light of the platelet-spreading
and �IIb�3 signaling defects observed in CD148-deficient plate-
lets, we hypothesized that megakaryocytes would exhibit similar
functional defects. Indeed, CD148-deficient megakaryocytes exhib-
ited reduced spreading on collagen-, fibrinogen- and fibronectin-
coated surfaces (Figure 6A). Spreading on collagen is mediated by
GPVI and the integrin �2�1, on fibrinogen by the integrin �IIb�3,
and on fibronectin by �5�1 and �IIb�3. Further, CD148-deficient
megakaryocytes failed to migrate toward a SDF-1� gradient over a
fibronectin-coated surface (Figure 6B, Figure S6 Videos S3,S4).
These findings raised the possibility of a general integrin functional
defect in megakaryocytes and platelets in the absence of CD148.
Biochemical data demonstrated reduced SFK activity in nonstimu-
lated CD148-deficient megakaryocytes, supporting a common
function of CD148 in regulating basal SFK activity in megakaryo-
cytes and platelets (Figure 6C).

Because SDF-1�–mediated megakaryocyte migration from the
endosteal niche to the vascular niche is essential for platelet release
into the circulation,41 we also measured platelet recovery in
wild-type and CD148 TM-KO mice made thrombocytopenic

through intraperitoneal injection of anti-GPIb� antibody. Platelet
counts were normal in unchallenged CD148 TM-KO mice but
showed a delayed recovery postinjection of anti-GPIb� antibody
compared with control mice (Figure 6D). Platelet counts eventually
returned to normal in CD148 TM-KO mice 172 hours postinjec-
tion. These defects were similar to those previously reported in
PECAM-1–deficient megakaryocytes.31

Reduced aggregate formation of CD148-deficient platelets
on collagen under flow

Further studies were performed to investigate platelet activation on
collagen at arteriolar shear, as a more physiologically relevant
model of platelet function. Platelet adhesion and aggregate forma-
tion on collagen was measured by flowing anticoagulated blood
from wild-type and CD148 TM-KO mice through collagen-coated
capillary tubes under arterial flow conditions (1000 s�1). Under
these conditions, CD148-deficient platelets exhibited impaired
adhesion and failed to support formation of large aggregates
compared with wild-type platelets, leaving primarily a monolayer
of single platelets with occasional small aggregates (Figure 7A,
Figure S7 Videos S5,S6). Moreover, at higher magnification, a
large proportion of collagen adherent CD148-deficient platelets
exhibited filopodia formation, but lacked the characteristic lamelli-
podia of collagen-activated platelets, confirming a defect in
activation (Figure 7A). The severe defect in aggregate formation on
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Figure 5. Defective �IIb�3 signaling in CD148-deficient platelets. Platelets from wild-type (WT) and CD148 transmembrane-knockout (KO) mice were plated on BSA- and
fibrinogen-coated surfaces for 45 minutes. Whole cell lysates (WCLs) were prepared of BSA (BSA) nonadherent and fibrinogen (fib) adherent platelets. (A) Equal amounts of
total protein were resolved by SDS-PAGE and Western blotted with an anti-phosphotyrosine antibody (p-Tyr). (B) Syk and (C) PLC�2 were immunoprecipitated from equal
amounts of WCLs and blotted with an anti-phosphotyrosine antibody. Membranes were subsequently stripped and reblotted with anti-Syk and anti-PLC�2 antibodies.
(Di-vi) WCLs were Western blotted with (Di) an anti-Src p-Tyr-529 antibody, (Diii) an anti-Lyn p-Tyr-507 antibody, and (Dv) an anti-Src family kinase (SFK) activation loop p-Tyr
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collagen under flow in the absence of CD148 is consistent with the
marked impairment in collagen-induced aggregation and secretion
described above. Interestingly, however, the defect is not as severe
as the almost total abolition of adhesion of GPVI-FcR �-chain
complex–deficient (�-chain�/�) platelets, as previously de-
scribed.27,42 This difference can be partially explained by the fact
that collagen signaling is markedly reduced, but not completely
abolished in the absence of CD148.

Delayed thrombus formation in CD148 TM-KO mice

The physiologic role of CD148 in thrombosis and hemostasis was
investigated using 3 complimentary in vivo assays: (1) the tail
bleeding assay, which measures blood loss after excision of a small
portion of the tail tip; (2) the ferric chloride–induced vascular
occlusion model, which measures the time until a thrombus
occludes a chemically induced injury to an arteriole; and (3) the
laser-induced thrombus formation model, which measures throm-
bus formation as a function of time. In the tail-bleeding assay,
blood loss was measured as a percentage of the permitted
maximum. In this assay, CD148-deficient mice bled significantly
more than litter-matched wild-type mice (wild-type: 26.2 	 10.3%
permitted blood loss in 10 minutes [mean 	 SEM] vs CD148
TM-KO: 55.5 	 10.2%, P 
 .03; Figure 7B). Further, CD148

TM-KO mice exhibited a bimodal distribution of bleeding, with
some mice bleeding excessively while others bled to the same
extent as wild-type mice (Figure 7B). This distribution was similar
to the tail bleeding phenotype exhibited by GPVI-deficient mice
and suggests the possible contribution of a modifier locus.43

In the ferric chloride–induced vascular occlusion model, throm-
bus formation was visualized in real time by fluorescent intravital
microscopy. We initially tested �-chain�/� mice, which also do not
express GPVI, in this assay to confirm a role for platelets in
contributing to thrombus formation after treatment with ferric
chloride and also to aid comparison to the result obtained in the
absence of CD148.22,27,36 As expected, �-chain�/� mice exhibited a
significantly longer time to vessel occlusion compared with
litter-matched wild-type mice (wild-type, 28.3 	 10 minutes
[mean 	 SEM] vs �-chain�/�, 55.4 	 7.4 minutes, P 
 .001;
Figure 7Ci). The time to vessel occlusion was also significantly
increased in CD148 TM-KO mice compared with litter-matched
wild-type mice (wild-type, 20.2 	 2.9 minutes vs CD148 TM-KO,
36.5 	 4.2 minutes, P 
 .01; Figure 7Cii).

Laser-induced vessel injury performed in this study generates
less tissue damage than ferric chloride, normally ablating a
relatively small number of endothelial cells lining the lumen of the
vessel. The Furie group have shown this model to be heavily
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Figure 6. CD148-deficient megakaryocytes do not spread or migrate. (Ai) Cultured bone marrow–derived megakaryocytes from wild-type (WT) and CD148
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96, 120, 144, and 172 hours after injection (n � 3-4 mice per time point). Mean platelet count (	 SEM) was plotted as a function of time (**P 
 .01).
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dependent on thrombin generation and PAR-4,44,45 but we and
others have found the model to be dependent on GPVI and its
downstream signaling proteins,32,46,47 possibly due to different
severities of injury between different groups. In our model, we
found that thrombus formation was severely delayed, peak throm-
bus size was significantly reduced, and thrombi receded more
rapidly in CD148 TM-KO mice (Figure 7D, Figure S7 Videos
S7,S8). This suggests that thrombus formation and stability were
compromised in mutant mice. Together with the bleeding and ferric
chloride–induced vascular occlusion data, these results demon-
strate that CD148 is an essential positive regulator of hemostasis
and thrombosis.

Discussion

This is the first study of the functional role of CD148, the only
RPTP expressed in platelets, in hemostasis and thrombosis in
vivo.21 The present study shows the following: (1) CD148 is a
global regulator of SFKs in platelets. (2) CD148 plays a critical role
in signaling through GPVI and the major platelet integrin, �IIb�3.
(3) CD148 contributes to signaling by the G protein-coupled
receptors for thrombin and TxA2, PAR-4, and TP, respectively.
(4) CD148 is required for megakaryocyte spreading and migration
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Figure 7. CD148 positively regulates platelet aggregate formation on collagen under flow and thrombus formation in vivo. (Ai) Anticoagulated blood from wild-type
(WT) and CD148 transmembrane-knockout (KO) mice was flowed through collagen-coated capillary tubes at 1000 s�1. Platelets were fluorescently labeled with DiOC6 before
being flowed. Representative images were taken in real time by fluorescence microscopy (10 �m scale bar). (Aii) Differential interference contrast (DIC) images of fixed
platelets on collagen fibrils after being flowed through collagen-coated capillary tubes at 1000 s�1 for 4 minutes (10 �m scale bar). (Aiii) High magnification DIC images of
adherent platelets from panel (Aii) (5 �m scale bar). Results are representative of 3 WT and 3 KO mice. See also Figure S7 Videos S5,S6. (B-D) The functional role of CD148 in
thrombosis and hemostasis was investigated using 3 different in vivo assays: (B) the tail bleeding assay, (C) the ferric chloride injury model, and (D) the laser injury model.
(B) CD148 transmembrane-knockout (CD148 TM-KO) mice exhibited prolonged bleeding compared with litter-matched WT mice, after excision of a small portion of the tail tip.
Symbols represent individual mice. Horizontal lines intersecting datasets represent the mean. (Ci) FcR �-chain–deficient (�-chain�/�) and (Cii) CD148 TM-KO mice exhibited
delayed vascular occlusion after ferric chloride–induced injury of mesenteric arterioles compared with litter-matched WT mice. (Di) Platelets from WT and CD148 TM-KO mice
were fluorescently labeled ex vivo with rat anti–mouse �IIb primary antibody and Alex488-conjugated secondary antibody before being reintroduced into recipient mice.
Arterioles in cremaster muscles of recipients were subsequently injured by laser, and the accumulation of platelets (green) into the thrombi was assessed. Representative
images from 5 WT and 5 CD148 TM-KO mice are shown. (Dii) Each curve represents the median integrated thrombus fluorescence intensity in arbitrary units (a.u.) for
25 thrombi induced in 5 mice of each genotype. See also Figure S7 Videos S7,S8.
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on a variety of surfaces. (5) CD148 plays a vital role in mediating
platelet aggregation under flow and in hemostasis and thrombus
formation in vivo, with the latter being shown using 3 distinct
models. These findings, in addition to the absence of pathologic
hemorrhaging in mice lacking cell surface expression of CD148,
make this RPTP an attractive novel antithrombotic drug target.

Platelet functional responses are regulated by a diverse reper-
toire of tyrosine kinase–linked and G protein–coupled receptors.
SFKs are essential for initiating and propagating signaling from
several major platelet tyrosine kinase-linked receptors. They also
contribute to signaling downstream of several stimulatory G protein–
coupled receptors.48,49 SFK activity is tightly regulated by tyrosine
phosphorylation and intramolecular interactions that constrain the
kinase domain.10,11 Phosphorylation of the C-terminal inhibitory
tyrosine maintains the SFK in an inactive conformation, whereas
dephosphorylation of this site in parallel with trans-autophosphor-
ylation of the activation loop tyrosine renders it maximally
active.15,50,51 One of the main findings of this study was that global
SFK activity, as detected using phosphospecific antibodies, was
significantly lower in both resting and activated CD148-deficient
platelets compared with wild-type platelets, demonstrating for the
first time that CD148 is required for maintaining a pool of active
SFKs in resting platelets and increasing SFK activity upon platelet
activation. We hypothesize that the pool of active SFKs in resting
platelets is to maintain essential constitutive biologic processes and
to initiate a rapid response to a stimulatory signal.

Until now, the earliest characterized signaling event down-
stream of GPVI is the activation of constitutively associated
SFKs.5,6,37 It has yet to be elucidated, however, how SFKs become
activated after GPVI-collagen engagement.6 Our biochemical data
demonstrated a GPVI proximal signaling defect in the absence of
CD148 as tyrosine phosphorylation of the FcR �-chain, Syk, and
PLC�2 were all substantially reduced in response to CRP. Consis-
tent with a major signaling defect, functional and biochemical
defects exhibited by CD148-deficient platelets were substantially
more severe than those observed in platelets from FcR �-chain
heterozygous-deficient mice, which express a similar reduction in
the GPVI-FcR �-chain complex.27,34 Additionally, SFKs exhibited
significantly reduced phosphorylation of their activation loop
tyrosines in parallel with increased phosphorylation of their
C-terminal inhibitory tyrosines in the absence of CD148. These
findings demonstrate that CD148 plays a critical role in activating
SFKs downstream of GPVI. CD148 would therefore appear to play
a similar role to that of the structurally distinct RPTP CD45 in
B- and T-cell receptor signaling.16,20

The reduction in the signaling response to engagement of
integrin �IIb�3 in the absence of CD148 is similarly explained by
the altered tyrosine phosphorylation of the SFKs. Interestingly, the
group of Shattil has also demonstrated a role for the nontransmem-
brane tyrosine phosphatase, PTP-1B, in signaling by the major
platelet integrin, although it does not play a role in platelet
activation by the snake venom toxin, convulxin.9 Thus, CD148 and
PTP-1B appear to work together to regulate �IIb�3 integrin signaling.

Results from this study demonstrate a critical role of CD148 in
regulating global SFK activity in platelets and suggest that SFKs
may be direct physiologic substrates of CD148. In support of this
hypothesis, CD148 has previously been shown to interact directly
with Src and to dephosphorylate both of its regulatory phosphoryla-
tion sites in vitro.40 The interaction was also observed in transfected
cells; however, CD148 only dephosphorylated the inhibitory site
and not the activation site in transfected cells.40 Other potential
physiologic substrates of CD148 in platelets and other cells

include: the tyrosine kinase-linked receptors Met and PDGF�, the
adapter proteins LAT and Gab1, the adherens junction protein
p120catenin, PLC�1, and more recently the p85 subunit of PI
3-kinase, although the latter is not tyrosine phosphorylated in
platelets.52-57 Interestingly, LAT, PLC�1 and PI 3-kinase all lie
downstream of SFKs in the GPVI signaling cascade; therefore, CD148
may be regulating multiple points of the GPVI signaling pathway.58-61

Residual GPVI signaling in CD148-deficient platelets raises the
possibility that one or more other PTPs partially compensate for the
absence of CD148. Because we were unable to identify another
RPTP in platelets using a proteomic approach, we hypothesize that
a nontransmembrane PTP may fulfill the role as has been shown to
be the case for signaling by �IIb�3.7-9,21 Possible candidates
include the SH2 domain-containing PTPs, Shp1 and Shp2, as they
have been previously shown to regulate ITAM receptor signaling in
immune cells. Shp1 has also been shown to interact with Src in
platelets and to positively regulate Src activation by preferentially
dephosphorylating inhibitory Tyr-529.62 In support of this model,
Shp1 was demonstrated to play a positive regulatory role in
GPVI-mediated platelet activation.63 This was shown through the
use of naturally occurring motheaten viable mice, which have
reduced Shp1 activity.63

A question that arises from our proposed mechanism is how
approximately 2800 copies of CD148 molecules can regulate the
pools of SFKs associated with approximately 4000 copies of GPVI
and more than 80 000 copies of �IIb�3.33,64 We hypothesize the
explanation lies in the high catalytic activity of PTPs, which have
kcat values up to 3 orders of magnitude greater than those of
protein tyrosine kinases.65 Regulation of CD148 activity and
localization in the platelet plasma membrane are now critical to
understanding how CD148 regulates both GPVI and �IIb�3
signaling. This might be mediated by interaction with a ligand or
through compartmentalization into membrane microdomains. The
ligand for CD148 is presently not known. One report, however,
suggests that it may be an extracellular matrix protein.66 Moreover,
work done in Jurkat T cells has shown that CD148 can be regulated
by membrane compartmentalization, as it is excluded from the
immunologic synapse by mechanical forces.18,19

Both our ex vivo flow adhesion studies and in vivo analysis of
hemostasis and thrombosis indicate that CD148 plays a novel
physiologic role in preventing blood loss from sites of vascular
injury. The lack of evidence for a severe bleeding diathesis in
CD148 mutant mice makes it a potentially exciting antithrombotic
drug target. Structural and functional features of CD148 also lend it
to drug targeting, including its large extracellular domain that could
be targeted by small molecule inhibitors without the need to cross
the plasma membrane. These features, together with its unique
function in platelets, make it an ideal target for development of a
new class of antiplatelet agents.
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