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Summary
Functionally related brain networks are engaged even in the absence of an overt behavior. The role
of this resting state activity, evident as low-frequency fluctuations of BOLD (see [1] for review, [2–
4]) or electrical [5, 6] signals, is unclear. Two major proposals are that resting state activity supports
introspective thought or supports responses to future events [7]. An alternative perspective is that
the resting brain actively and selectively processes previous experiences [8]. Here we show that motor
learning can modulate subsequent activity within resting networks. BOLD signal was recorded during
rest periods before and after an 11 min visuomotor training session. Motor learning but not motor
performance modulated a fronto-parietal resting state network (RSN). Along with the fronto-parietal
network, a cerebellar network not previously reported as an RSN was also specifically altered by
learning. Both of these networks are engaged during learning of similar visuomotor tasks [9–22].
Thus, we provide the first description of the modulation of specific RSNs by prior learning—but not
by prior performance—revealing a novel connection between the neuroplastic mechanisms of
learning and resting state activity. Our approach may provide a powerful tool for exploration of the
systems involved in memory consolidation.
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Results and Discussion
Motor Performance and Motor Learning

To measure the modulation of resting state activity after a short period of sensorimotor learning,
we exposed two groups of participants to one of two versions of a visuomotor “center-out”
tracking task [23] (Figure 1A; see Supplemental Experimental Procedures available online).
The test group (n = 12) adapted their joystick movements to a novel relationship between cursor
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and joystick (motor learning), whereas the control group (n = 12) performed similar tracking
movements but with veridical cursor feedback of the joystick (motor performance).

In the test group, the movement of the cursor relative to the joystick was gradually rotated
about the center of the screen, increasing by 10° each minute (dashed line, Figure 1B). Thus
both groups began the task with 0° perturbation and their performance was initially comparable
(see Supplemental Results, Behavioral Results). But during the remaining 10 min, the
movements of the test group clearly reflected their progressive compensation for the
visuomotor perturbation. By the end of the visuomotor task, the mean joystick direction for
the test group was rotated by 58.7° with respect to the target direction (black line, Figure 1B).
This level of adaptation, compensating for 65% of the imposed perturbation, is similar to
performance observed in other experiments (see also Supplemental Experimental Procedures,
Behavioral Protocols) (e.g., [24, 25]).

Model-Free Whole-Brain Probabilistic Independent Components Analysis
Probabilistic independent components analysis (PICA) of the BOLD signal allowed us to
identify the networks evident during rest [26] and to measure changes in these components
after motor learning (test group, n = 12) or motor performance (control group, n = 12). We
contrasted the engagement of these networks identified by PICA before (REST1) and after
(REST2) the visuomotor task. To ensure that the second resting period was not affected by
perseverating on the motor task, we preceded each rest period by a 4 min “dummy” task, in
which the subjects observed point light displays of human movements or scrambled dots
(Figure 1A; see Experimental Procedures for details).

Baseline Analysis—To first check comparable baseline activity in the two groups,
REST1 data for both groups were combined in a single PICA analysis with a between-groups
contrast. This concatenation of data across participants allows the PICA analysis to identify
spatially consistent regions across the groups that are correlated in their BOLD signal activity,
but without the constraint that the activity in individual participants is temporally correlated
with other participants or with any external stimulus time course [26]. We identified six
previously reported RSNs (see Figures 2A–2E and 2H of [4]). None of these components
significantly varied between groups during the initial resting session (each t(22) < 0.56, each
p > 0.29).

Analysis of Learning-Dependent Change—The BOLD data from both sessions
(REST1 and REST2) were then analyzed for each group (test and control) independently,
testing for RSN components that changed in strength after motor learning (in the test group)
or motor performance (in the control group). In the test group, a fronto-parietal (Figure 2) and
a cerebellar (Figure 3) component were reliably identified across both REST sessions and
significantly increased in strength after motor learning. In the control group, the fronto-parietal
component (but not the cerebellar component) was reliably identified in both rest sessions, and
this component did not change in strength after the visuomotor task. This increase in component
strength reflects an increase in the BOLD signal variability that can be attributed to a particular
component.

The fronto-parietal component included the prefrontal cortex, the superior and inferior parietal
cortex, and Crus II of the cerebellum (see Table S1). This component was reliable across both
rest sessions in the test group (z = 1.91, p = 0.028; Figure 2A) and across both rest sessions in
the control group (z = 1.65, p = 0.01; Figure 2C), but only changed from REST1 to REST2 in
the test group (i.e., after motor learning; t(11) = 2.074, p = 0.031; Figure 2B). The fronto-
parietal component had also been reliably identified in our baseline analysis comparing
REST1 data between the two groups (Figure S1A; z = 2.28, p = 0.01), and its baseline activity
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was not significantly different between groups (Figure S1B; t(22) = −0.42, p = 0.34). Thus,
the fronto-parietal component, though similar in both groups during the initial resting scan,
was altered only after learning.

Additionally, a component that encompassed the majority of the cerebellum was identified in
the analysis across both rest sessions in the test group (Figure 3A; z = 1.78, p = 0.038), and
this component also significantly increased after learning the novel motor skill (t(11) = 1.880,
p = 0.043; Figure 3B). This component had not been identified in our combined baseline (i.e.,
test and control group) analysis of REST1, however, suggesting that it may be qualitatively
different from conventional RSNs. No other components were identified by the PICA analysis
that significantly increased or decreased in strength between REST1 and REST2.

The ICA approach identifies regions with correlated patterns of resting activity. To explore
whether the learning-dependent changes we identified have additional, within-component
structure, we additionally performed within-subject, within-session whole-brain correlations
against the time-course of BOLD signal recorded within small “seed” regions of interest (see
Table S1). The 48 resulting covariance maps for each seed ROI (2 groups of 12 subjects, two
sessions) were then tested for significant group × session interactions. Detailed description is
beyond the scope of this short report, but we found significant group × session interactions
between (1) inferior frontal gyrus, middle frontal gyrus, and cerebellar lobule IX, (2) superior
frontal gyrus and fusiform cortex, (3) the angular gyrus and hippocampus, and (4) the precentral
gyrus and the middle frontal gyrus and inferior frontal cortex (see Supplemental Results). Thus
the main group × session interactions are within the components identified by the PICA
analysis; however, there are small but significant regions lying outside of the fronto-parietal
and cerebellar components that are affected by motor learning.

Our results demonstrate that motor learning, but not motor performance, modulates subsequent
resting activity in specific task-relevant networks. The fronto-parietal network was identified
in both groups within their initial resting brain activity (see Figure S1) but was modulated in
the test group only after the acquisition of a novel motor skill (see Figure 2). In contrast, when
there was no motor skill to learn (i.e., in the control group), there was no change in the
spontaneous activity after motor performance. Thus, neuroplastic changes, driven by learning
a novel motor skill, shaped subsequent spontaneous activity within the resting brain. This
demonstrates a link between neuroplastic processing and resting brain activation, which has
implications for both our understanding of memory processing and the functional interpretation
of resting brain activity.

Changes in resting state activity were induced specifically by learning. The tasks performed
by the two groups were virtually identical, with the exception that the test group learned to
compensate for gradually shifting visuomotor feedback. We found no evidence of any change
in movement direction, peak velocity, or latency in the control group, and the performance
measure of interest—the direction of their joystick motion—was stable throughout.
Accordingly, the significant changes observed in the two resting state components in the test
group (Figures 2 and 3) are attributable to learning. This is an important distinction from an
earlier report of offline persistence of memory-related activity [27]. That work was not able to
test whether the activity measured in an auditory odd-ball task, modulated by exposure to one
of two different learning tasks, was influenced by task performance or by learning.

Changes in resting activity were not limited to the time immediately after learning, but were
measured after conscious processing has been redirected to an unrelated dummy task for a
period of 4 min. Consequently, our results should not be confounded by processing attributable
to ruminating about the tracking task. This is a critical feature of the data reported here, because
the persistence of neural activity across unrelated tasks would be necessary of any process that
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could lead to memory consolidation, which takes place over several hours (or overnight) after
exposure to learning [28].

The networks affected by visuomotor adaptation, including the fronto-parietal (Figure 2) and
cerebellar circuits (Figure 3), are known to be active during visuomotor adaptation [14, 15,
18–21] and are necessary for the long-term retention of motor skills [16, 17, 22]. In fact, there
is a striking overlap between the areas identified with PICA in this experiment and areas
involved in motor learning (see [29] for review) and areas that represent consolidated motor
skills (see [30] for review).

Because a global cerebellar RSN has not been previously reported and because this component
was not identified across the two groups during the baseline REST1 session, it is important to
scrutinize this result in greater detail. It may be the case that the learning task for the test group
so strongly engaged this network in REST2 (Figure 3B) that its increased strength after learning
significantly contributed to the overall variability across both rest sessions. Hence we suggest
that it has been identified only in the test group data because of its activation by learning.
Previous imaging reports suggest widespread cerebellar activation during active performance
of motor learning tasks [10, 12, 17], but as far as we are aware, no others have searched for
cerebellar resting state components after a period of motor learning. In other words, global
engagement of the cerebellum may not be typical during rest. Rather, its engagement may
require recent cerebellum-dependent learning and its engagement would not be expected
without such learning.

Activity within the resting brain may reflect the on-going “off-line” processing of information
gained from earlier learning [8, 27, 31]. Short-term memories for past experiences are
consolidated over time [31–35] and the processing and metabolic demands of consolidation
must be met by the resting brain [8]. It is possible that these processes might also be reflected
in the slow fluctuations of BOLD signal that are detected as RSNs. Moreover, consolidation
processes would be expected to modulate the strength of cortico-cortical interactions [36], and
thus be evident as the increase in strength of spatio-temporal patterns identified by PICA
analysis. Thus, strengthening of PICA components, which indicates an increase in the
proportion of BOLD signal variability explained by that component, may reflect greater
correlated activity within the brain areas comprising the component. This was confirmed by
correlational analysis briefly described above (see Supplemental Results) suggesting localized
changes within these networks that will require additional research.

In conclusion, we have shown that motor learning, but not motor performance, can modulate
particular resting state networks. This reveals a novel connection between neuroplasticity and
subsequent resting state activity, which may in part arise because the off-line processing of
memory during consolidation is supported by task-specific resting state activity. Our results
add a new dimension to our understanding of the resting brain and potentially provide a
powerful new technique to examine the neuronal machinery of off-line processing.

Experimental Procedures
Participants

We recorded BOLD signal from 24 right-handed participants over five consecutive conditions
within a single scanning session (Figure 1A; see Supplemental Experimental Procedures for
full details). Participants were randomly assigned to either the test (6 men and 6 women; age:
mean = 27.0 years, SEM = 2.77 years) or the control (5 men and 7 women; age: mean = 24.6
years, SEM = 1.39 years) group. Informed consent was obtained from each participant, and
the experiment was approved by our local ethical committee. Participants received financial
compensation for their time.
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Behavioral Protocol
A 4 min dummy task immediately preceded each rest session, in which the participant passively
viewed dynamic point light displays of human whole-body movements or scrambled versions
that showed the same individual dot motions, but with random positions [37]. Individual stimuli
lasted 3 s and were blocked into 30 s interleaved runs of 10 human and 10 scrambled motion
stimuli. The participant was instructed to attend to the stimuli, discriminating human and
scrambled movements, but had no active task to perform.

The visuomotor task [23] (see Supplemental Experimental Procedures) interleaved between
the two rest sessions required the participants to use their nonpreferred left hand to move an
MR-compatible joystick. In the test group, there was a novel angular displacement of 10°
between the cursor and joystick position introduced every minute over 10 min, which produced
a final 90° displacement. In the control group there was no novel relationship between the
cursor and joystick position. Tracking performance was assessed in both groups by calculating
the direction of the joystick with respect to the target during the first 100 ms of each movement,
averaged across each block of 24 movements.

fMRI Analysis
Resting state analysis was carried out with PICA [26] as implemented by MELODIC
(Multivariate Exploratory Linear Decomposition into Independent Components) Version 3.05,
which is a part of FSL (Functional Magnetic Resonance Imaging of the Brain Software Library,
http://www.fmrib.ox.ac.uk/fsl). Correlational analysis was performed with a GLM model
within FEAT (FMRI Expert Analysis Tool, also within the FSL package). See Supplemental
Experimental Procedures for further details.

Supplemental Data
Refer to Web version on PubMed Central for supplementary material.

Supplemental Data
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Experimental Design and Performance during the Visuomotor Task
(A) The experiment began with a dummy task and a baseline rest condition (REST1, 11 min)
followed by the visuomotor task (11 min). Then participants completed a second dummy task
before the final rest condition (REST2, 11 min). The dummy task display was of point light
displays of human whole-body movements, or scrambled versions that showed the same
individual dot motions, but with random positions. The visuomotor task display shows the
central start location, a target and the cursor.
(B) In the visuomotor task the relative angle of the cursor motion compared to the joystick
gradually increased with each block, for the test group (dashed group), but remained veridical
for the control group. The mean direction of joystick movement with respect to the target (solid
line, ±1 SEM) steadily increased for the test group (black) and remained constant for the control
group (gray).
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Figure 2.
A Fronto-Parietal Resting State Network that Increased in Strength after Exposure to the
Visuomotor Adaptation, but Not Performance
This independent component was identified as reliable across the participants in each group
and across both rest blocks. The fronto-parietal network (A, C) closely corresponds to a
previously identified RSN [3, 4]. The strength of the fronto-parietal network during rest was
increased after motor learning (B), but not after motor performance (D).
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Figure 3.
Resting State Activity within the Cerebellum Increased in Strength after Exposure to the
Visuomotor Adaptation Task
This independent component (A) was reliably identified across the combined data for both rest
sessions in the test group across, and significantly differed between the two rests (B). The
absence of this network in previous reports on resting state networks and its absence in the
control group suggests that activation of this network may have been driven by the motor
learning experience.
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