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Abstract We consider a kinetic law of mass action model for Fibroblast Growth Factor
(FGF) signaling, focusing on the induction of the RAS-MAP kinase pathway via GRB2
binding. Our biologically simple model suffers a combinatorial explosion in the num-
ber of differential equations required to simulate the system. In addition to numerically
solving the full model, we show that it can be accurately simplified. This requires com-
bining matched asymptotics, the quasi-steady state hypothesis, and the fact subsets of
the equations decouple asymptotically. Both the full and simplified models reproduce
the qualitative dynamics observed experimentally and in previous stochastic models. The
simplified model also elucidates both the qualitative features of GRB2 binding and the
complex relationship between SHP2 levels, the rate SHP2 induces dephosphorylation and
levels of bound GRB2. In addition to providing insight into the important and redundant
features of FGF signaling, such work further highlights the usefulness of numerous sim-
plification techniques in the study of mass action models of signal transduction, as also
illustrated recently by Borisov and co-workers (Borisov et al. in Biophys. J. 89, 951–966,
2005, Biosystems 83, 152–166, 2006; Kiyatkin et al. in J. Biol. Chem. 281, 19925–19938,
2006). These developments will facilitate the construction of tractable models of FGF sig-
naling, incorporating further biological realism, such as spatial effects or realistic binding
stoichiometries, despite a more severe combinatorial explosion associated with the latter.

Keywords Signal transduction · FGF · Mathematical modeling · Law of mass action

1. Introduction

Numerous signaling molecules, in the form of secreted hormones or growth factors,
exert their influence via receptor tyrosine kinases. Two key examples are Epidermal
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Growth Factor (EGF) and Fibroblast growth factor (FGF). EGF stimulates the pro-
liferation of numerous cell types, and thus plays a key role in tissue homeostasis,
as does FGF which also regulates numerous developmental processes. Their impor-
tance is highlighted by the diverse range of pathologies associated, at least in part,
with their aberrant signaling (Basilico, 2005; Wilkie, 2005; Grose and Dickson, 2005;
Eswarakumar et al., 2005; Dailey et al., 2005; Adachi et al., 2004; Augoff et al., 2005;
Krueger and Ellis, 2005), including numerous cancers (e.g. Grose and Dickson, 2005;
Eswarakumar et al., 2005; Dailey et al., 2005; Yarden and Sliwkowski, 2001; Greenman
et al., 2007; Julien et al., 2007). The motivation for the detailed investigation of these sig-
naling proteins is not only heightened by their association with malignant disease, but also
because cell signaling pathways can now be targeted in novel drug discovery programs,
as showcased with EGF signaling (Sevecka and MacBeath, 2006). In addition, the pos-
sibilities of an increased understanding of signaling pathways are highlighted by recent
observations that down regulating EGF signaling by inhibiting a tyrosine phosphatase
has therapeutic benefits in a mouse model of breast cancer (Julien et al., 2007). How-
ever, the mechanisms by which signaling molecules exert their influence on a cell, and
how these can be manipulated and controlled, are not intuitive due to multiple feedback
processes. Consequently, mathematical and computational modeling have a role in unrav-
eling and simplifying the complexity of these signaling pathways (Citri and Yarden, 2006;
Bublil and Yarden, 2007; Yamada et al., 2004; Kiyatkin et al., 2006; Schoeberl et al.,
2002); here we focus on FGF.

FGF binds to its receptor which, in complete generality, is one of four receptor tyrosine
kinases, FGFR1-FGFR4, with both ligand and receptor classified into different isoforms
with varying specificities for each other. The known downstream events arising from the
binding of FGF and its receptor is reviewed in Eswarakumar et al. (2005). Here, we will
focus on the initiation of the RAS-MAP kinase pathway; this proceeds via the binding
of the docking protein FRS2 to activated FGFR. The FRS2 subsequently phosphory-
lates with the recruitment of multiple binding molecules, including GRB2, the binding
of which initiates the desired pathway via subsequent SOS binding. However, other mole-
cules binding FRS2 act to downregulate the FGF signal by a multitude of mechanisms,
such as ubiquitination, entailing that the transduced FGF signal is transient.

Signal duration and amplitude are considered to be important features of the response
of a cellular signaling pathway (Dailey et al., 2005; Schlessinger, 2000) and yet are par-
ticularly hard to grasp intuitively in a system which is as complex and with as many
feedbacks as FGF signaling. This illustrates the need for constructing models capable of
quantitatively predicting the signal produced by FGFR activation in terms of our current
understanding and, given the architecture of FGF signaling is not yet fully defined (Li
et al., 2004), plausible hypotheses where current understanding is incomplete. Here, we
will be particularly interested in the extent to which knockouts of various binding mole-
cules, or the introduction of an FGFR kinase inhibitor such as SU5402, alter the system
dynamics; this will also indicate important and redundant features of the signal transduc-
tion process. We will additionally illustrate predictions for the complex behaviors of the
dynamics associated with the binding molecule SHP2. In turn, developing predictions for
how our model system will behave in the presence of perturbations may ultimately assist
in prioritizing which experiments can be performed to critically test our hypotheses and
increase our fundamental understanding. Such programs are already developing for EGF
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signaling (e.g. Citri and Yarden, 2006; Bublil and Yarden, 2007; Kiyatkin et al., 2006;
Schoeberl et al., 2002).

There are a number of possible modeling frameworks one can adopt. In particular,
there is the choice between a stochastic framework and a deterministic framework. Both
have their respective advantages and disadvantages. For example, stochastic simulations
are particularly apt for scenarios with low molecular numbers when the thermodynamic
limit implicit in any deterministic framework breaks down. In contrast, deterministic ap-
proaches are based upon the law (or rather assumption) of mass action (Kudryavtsev et al.,
2001; Billingham and King, 2000) and can readily predict averaged quantities for large
molecular numbers. In addition there is a large repertoire of mathematical tools already in
existence which frequently enable the simplification of deterministic models such as dy-
namical systems theory (Tyson et al., 2001) and Tikhonov asymptotics (Tikhonov, 1952),
as reviewed by Crampin et al. (2004). A critical evaluation of the choice between the two
approaches has been discussed by numerous authors, e.g. Aldridge et al. (2006), Wolken-
hauer et al. (2004), and invariably the conclusions as to which is the most appropriate is
dependent on the ultimate aims of the modeling study.

Here, one of our aims will be to compare the results of the standard deterministic
framework, based on the law of mass action, with previous stochastic simulations for
FGF signaling to see if major discrepancies emerge for a system possessing a level of
complexity moving toward that found in-situ. In particular, this additionally presents us
with the difficulty of combinatorial complexity which has already been noted as a severe
problem (Borisov et al., 2005; Aldridge et al., 2006). Thus, another aim will be to uti-
lize mathematically accurate approximations to greatly simplify the simulations, enabling
a more in-depth investigation, and also allowing the future development of models with
more biological realism despite combinatorial complexity. Hence, the model is not in-
tended to be a final, definitive representation of FGF signaling. While, mathematically
and computationally, it is very complex, it nonetheless neglects features of this signal
transduction process, such as the existence of different isoforms of ligand and receptor or
the possibility of cross-talk (Dailey et al., 2005). It also presents a simplified stoichiome-
try so that the numerical simulations of the full model are still tractable, thus allowing an
explicit testing of the simplification procedure.

We proceed by initially constructing a model of FGF signaling and then proceed to
demonstrate how it can be systematically and accurately simplified. We subsequently
compare the results of the simplified and full versions of the model with each other and
also with results from stochastic simulations. This is followed by a discussion of the in-
sight gained from our simulations, plus the observations of a sensitive dependence on the
dynamics of the binding molecule SHP2 and the relative insensitivity to alterations in the
FGFR binding rate. Finally, we conclude with a discussion of future applications of the
model and its simplifications.

2. Methods

2.1. Model formulation

In Fig. 1, we have a reaction overview. FGF and its receptor, FGFR, can bind and once
bound they can undergo phosphorylation at sites 653 and 654 on FGFR. When both these
sites are phosphorylated, other FGFR sites can phosphorylate, particularly site 766.
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Fig. 1 A summary of the signal transduction model used.

To simplify the model, we assume the FGF:FGFR complex binds to FRS2 in a very
fast reaction once phosphorylation at sites 653 and sites 654 has occurred. More gen-
eral models have allowed FRS2 to bind not only to the complex FGF:FGFR653P654P
(where “P” stands for phosphorylated) but also to singly phosphorylated and unphospho-
rylated FGF:FGFR (Heath et al., 2006; Kwiatkowska et al., 2006). Our motivation for
utilizing such an approximation is that it reduces the number of molecular states of the
FGF:FGFR:FRS2 complex by one-third. As we will see below, the number of molecu-
lar states in the model is becoming prohibitive for a mass action model; increasing the
number of states by a factor of three would make simulating the full model impracti-
cal. A justification for the validity of such an assumption is given in Section 2.3.2 and
Appendix C.

The 766 phosphorylated site on FGF:FGFR can bind PLC, whether or not FGF:FGFR
is bound to FRS2.

Numerous sites of the FRS2 complex can phosphorylate once FGF:FGFR653P654P:
FRS2 has formed. These phosphorylated sites in turn can bind SRC, GRB2, and SHP2 as
indicated in Fig. 1.

Further bindings can occur to augment the bound SRC, GRB2, and SHP2 as indi-
cated in Fig. 1. In addition, SRC binding induces a relocation of the SRC:FRS2 complex,
while bound PLC can induce a decay in FGFR. Furthermore, CBL binding leads to a
ubiquitination and degradation of FRS2, while the binding of SHP2 to FRS2 leads to
the dephosphorylation of bound phosphorylated SPRY and a dephosphorylation of FRS2
binding sites.

In addition, all possible reactions are assumed to proceed in parallel, at least once any
constraints are satisfied; one example of such a constraint is the need for sites 653 and
654 to be phosphorylated on activated FGFR before FGFR–FRS2 binding can occur, as
considered above. As an illustration of this parallelism, we take it that SPRY can bind to
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SRC, and GRB2 can bind to a SRC:SPRY complex irrespective of whether SRC is bound
to FRS2. Similarly for all other possibilities.

To simplify the model initially, SOS and RAF are assumed to be absent. This does not
alter model predictions as the SOS and RAF bindings do not feedback into any upstream
dynamics of the system.

2.1.1. Use of Michaelis–Menten kinetics
It is assumed that the phosphorylation and dephosphorylation reactions are driven by
Michaelis–Menten kinetics. These can be understood as the large time asymptotic approx-
imation of an enzyme-catalyzed biochemical reaction, as considered for simple reactions
by Murray (1989). There has been recent discussion, for example Millat et al. (2007),
about the validity of Michaelis–Menten kinetics in the context of biochemical networks
and pathways, emphasizing that such approximations need not be valid when the system
is sensitive to the initial, transient, dynamics. This is observed to be especially important
within feedback loops. However, such sensitivity is not exhibited by the system behavior
here, for the timescales of the biochemical reactions considered, as further discussed in
the Appendices.

We note that the context of Michaelis–Menten kinetics required for our model is more
complicated than textbook scenarios. We additionally assume, for example, that the phos-
phorylation of the PLC binding site is such that all molecules with an unphosphorylated
PLC binding site are in competition for the same enzyme. Analogous assumptions are
made for the other phosphorylation and dephosphorylation reactions. This is sufficient to
apply the same reasoning that underlies the standard Michaelis–Menten kinetics, though
the resulting equations are more complex, as detailed in Appendix B. In particular, the
use of Michaelis–Menten approximations in our model results in an extensive coupling of
large subsets of reactants; for example, a single term in the Ordinary Differential Equa-
tions (ODEs) describing the system can depend on over 100 different molecular species.
This, in turn, makes direct numerical simulation substantially slower compared to reac-
tion schemes using first order, linear, reaction kinetics for phosphorylation and analogous
reactions, as considered by Yamada et al. (2004) for example.

2.1.2. Model motivation
A complete reaction scheme, defining the model, plus reference parameter values are
given in Appendix A. The basics of the model, such as the binding of FGF, FGFR, and
FRS2, together with phosphorylations and the recruitment of PLC to FGFR and the re-
cruitment of GRB2, SHP2 and SRC to FRS2, are commonly noted, as in Eswarakumar et
al. (2005), Dailey et al. (2005), Thisse and Thisse (2005), Li et al. (2004). Also commonly
noted is the binding of SOS to FRS2 via GRB2 and the subsequent activation of the RAS-
MAP kinase pathway (ibid) together with CBL induced degradation (Dailey et al., 2005).
It is also known that SHP2 can induce a dephosphorylation of SPRY (Jarvis et al., 2006;
Hanafusa et al., 2004) and that SPRY associates with GRB2 (Thisse and Thisse, 2005)
plus CBL (Wong et al., 2001). Signal attenuation due to SRC binding FRS2 has also been
reported, along with the observation that SPRY is a direct physiological substrate for
SRC (Li et al., 2004). One should note that although SPRY antagonism of FGF signaling
is commonly accepted, the dominant mechanism by which this is realized is unclear and
has led to controversy (Thisse and Thisse, 2005; Li et al., 2004).

The molecular details of the action of SHP2 are not clearly defined though recent
research does indicate that SHP2 exerts its influence on receptor tyrosine kinase signaling
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via its PTPase activity, and thus via inducing dephosphorylation (Agazie and Hayman,
2003). Finally, a slow production of SPRY is incorporated given that its expression is
reported to be induced by the FGF pathway (Kramer et al., 1999). Thus, the model is
essentially based upon literature reported processes.

Additional details have to be hypothesized, such as all reactions occur in parallel and
the validity of both the law of mass action and the use of Michaelis–Menten kinetics. The
presence of a slow PLC-induced degradation constitutes the reasonable hypothesis that
there is a weak negative feedback control of the PLCγ signaling pathway (as observed in
EGF signaling (Chen et al., 1996)). Further hypotheses typically have to be made concern-
ing whether binding molecules are made available following such a degradation; similarly
for other degradation events.

2.1.3. Parameter values
As discussed in detail by Wolkenhauer et al. (2004), there is a paucity of quantitative
stimulus-response time course data sets for realistic pathway models, in contrast to the
bioinformatics arena, which is characterized by extensive data. Thus, parameter estimates
are not common in the literature and can be subject to large variation. For example, there
are three orders of magnitude in variation (Mohammadi et al., 2005) among binding rates
for FGF and FGFR according to the isoform of FGF and FGFR. Numerous further com-
plications arise; for example, cytokine membrane reaction rates not need concur with
solution reaction rates (Gavutis et al., 2006). Thus, we resort to using values reflecting
our current understanding of the system. Modeling can nonetheless be extremely useful
in the face of such difficulties. It can still address the above-mentioned questions such as
whether current understanding is consistent with observation, what are the important and
the redundant features of the system according to current understanding and, ultimately,
how can we efficiently test current hypotheses.

2.1.4. Summary
The model, therefore, consists of the reactions required to build up the molecular state
depicted in Fig. 1, plus the extra details described above, i.e. ubiquitination, PLC induced
decay, SRC induced relocation and SHP2 induced dephosphorylation. All phosphoryla-
tion and dephosphorylation reactions are assumed to be of Michaelis–Menten form. A
detailed summary of these reactions is given in Appendix A. For the model considered,
we have 384 non-linear ODEs, with as many as 568 terms within an individual ODE. In
addition, the use of Michaelis–Menten kinetics entails that a single term representing the
phosphorylation dynamics can depend on over 100 different molecular species.1

2.2. Difficulties with the full model. Combinatorial complexity. Numerical methods

The key difficulty with the full model is the fact the number of equations combinatorially
explode as the number of molecular species and interactions increase. This makes an in-
tuitive understanding of the system problematic, especially in the presence of numerous
parameters which are not easily estimated. It also makes a detailed numerical study dif-
ficult. Indeed doubling the number of GRB2 and SHP2 binding sites, which is consistent
with the structural biology of FRS2 (Eswarakumar et al., 2005), would make a full mass

1A printout of the equations requires over 165 pages, font size 8.
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action model essentially intractable. A further problem arises from the fact the system is,
in the context of numerical analysis, stiff. However, numerical algorithms for the efficient
solution of stiff ordinary differential equations are not designed for large systems as the
linear algebra involved at each timestep of a stiff solver will be prohibitively slow once the
system is sufficiently large. Consequently, the numerical solver used below is an explicit
Runge–Kutta routine rather than a stiff solver.

In the following section, we simplify the model by decoupling subsets of the reacting
molecules wherever it is legitimate to do so, including scenarios where this cannot be
done exactly, but nonetheless to a high level of accuracy.

2.3. Model simplification

Throughout this section, and the rest of the paper, including the Appendices, our notation
does not distinguish between a reactant, for example, FGF, and its concentration. Noting
that all equations are in terms of concentrations, it is clear from context whether we are
referring to the molecule or its concentration.

2.3.1. Utilizing the different timescales inherent in the model
The model possesses reactions that occur at different timescales. The initial dynamics,
related to the production of FGF:FGFR653P654P:FRS2 is taken to occur on what we
shall refer to as the ultra-fast timescale. Other reactions, such as the binding of PLC, SRC,
GRB2, and SHP2 to sites on the FGFR molecule, or on the FRS2 molecule, occur on a
fast timescale. Signal attenuation events, such as PLC induced decays, are taken to occur
on a relatively slow timescale. If we can utilize these different timescales to decouple the
events occurring on each timescale, we can expect a combinatorial “implosion,” whereby
the complexity of the model decreases immensely.

Consider a system of fast variables f and slow variables s and the associated ODEs,
that is

ε
df
dt

= F(f, s),
ds
dt

= S(f, s), (1)

with ε � 1 and the components of the vector functions F,S are of order unity. The solu-
tion to these equations can exhibit a regular behavior such that, asymptotically in ε, there
is

I a fast, transient evolution, with s constant, to the manifold where F(f, s) = 0,
II a subsequent slow evolution governed, asymptotically in ε, by ds/dt = S(f, s) with f

quasi-stationary, i.e. f is such that F(f, s) = 0.

Technical details aside, this behavior simply requires that the initial condition is within
the attracting basin of F(f, s) = 0 for the initial value of s, and the trajectory in II remains
within the attracting basin of the manifold F(f, s) = 0. We note that a rigorous framework
for these observations has been developed by Tikhonov (1952) and Suckley and Biktashev
(2003).

Thus, the ODEs governing the fast variables and the slow variables effectively decou-
ple. The above ideas allow us to decouple the ultra-fast, fast, and slow dynamics.2 We

2Complicated behavior beyond the scope of the analytical techniques described here does occur if the slow
evolution equations drive the solution out of an attracting basin of F(f, s) = 0. This is the defining behavior
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proceed to decouple the ultra-fast dynamics, before considering the remaining equations
in Section 2.3.3.

2.3.2. Decoupling the initial, ultra-fast, dynamics
The detailed analysis is presented in Appendix C. Matched asymptotics and a justified use
of the quasi-steady state approximation demonstrate that the model effectively decouples
from the early FGF, FGFR, and FRS2 binding and phosphorylation events. The system
is ultimately driven only by the production of FGF:FGFR653P654P:FRS2. The amount
produced in turn is at an excellent level of approximation, equal to the minimum of the
initial concentrations of FGF, FGFR, and FRS2. Thus, the initial dynamics is effectively
very simple and very robust. This also justifies the simplifications, described at the start
of Section 2.1, as discussed further in Appendix C.

2.3.3. Decoupling the remaining fast and slow dynamics
Consider the above model, in the unbiological scenario, where we have turned off the de-
cay of FGFR due to PLC binding, the relocation of FRS2 due to SRC, ubiquitination due
to CBL binding and the dephosphorylation induced by SHP2 binding. While the number
of states are unchanged, the dynamics of the chains of molecules binding at various sites
of the FGF:FGFR653P654P:FRS2 complex completely decouples; consequently, there is
an enormous simplification. While this level of simplification is not present, it is clear
that the limited interaction between different molecular chains emerging from the differ-
ent binding sites of the FGF:FGFR653P654P:FRS2 complex should nonetheless enable
dramatic simplification. This is especially true when coupled with a Tikhonov procedure.

We remark that extensive decoupling of linear combinations of the underlying equa-
tions is to be expected in models of signal transduction with large docking proteins and
has been analyzed in detail by Borisov and co-workers (Borisov et al., 2005, 2006;
Kiyatkin et al., 2006). Our work extensively utilizes such simplifications, combining
them with multiple temporal scales and simplifications which accommodate the inter-
action between the molecular chains emerging from the different binding sites of the
FGF:FGFR653P654P:FRS2 complex.

Below, we initially set up our simplified model in the absence of PLC, before pro-
ceeding to incorporate the additional difficulties incurred by the presence of this binding
molecule.

2.3.4. The fast dynamics (no PLC present)
Let FRS2∗ denote FGF:FGFR653P654P:FRS2 below. A key feature coupling the various
molecular chains bound to FRS2∗ is the fact that bound SHP2 induces the dephosphoryla-
tion of the other phosphorylation sites of the FRS2∗ molecule, plus the dephosphorylation
of any SPRY bound via SRC in the model reaction scheme. This all occurs on the fast time
scale. Thus, we proceed as follows.

At each time step of the slow dynamics, we solve the quasi-steady state of the sub-
system depicted in Fig. 2 considering only the fast dynamics. This reaction scheme can
be broken down further; for example, one can decouple the SHP2 dynamics. However,

of an excitable system, and thus is observed in electrophysiological models (Suckley and Biktashev, 2003),
for example. However, for our model, we do not anticipate the presence of excitability from either a
mathematical or a biological perspective; this is confirmed by numerical simulations below.
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Fig. 2 The core of the signal transduction model, which cannot be easily subdivided. Bound SHP2 can
also dephosphorylate SPRY bound to the FGF:FGFR653P654P:FRS2 complex via SRC.

not only does this immediately feed back into the rest of the reaction scheme by the fact
that SHP2 binding alters dephosphorylation rates, we have that reducing the model to the
extent considered is more than sufficient for our (current) needs. Thus, we do not pursue
such model reductions further.

The coupling between SHP2 binding and the dephosphorylation dynamics of SPRY in
the above needs further explanation. Once SPRY is bound to FRS2∗ via SRC, the model
reaction scheme assumes that SHP2 binding will also induce SPRY dephosphorylation.
However, as can be inferred from the pictorial representation in Fig. 2, the levels of SRC-
SPRY binding are not directly tracked. Instead, we approximate η, which is defined by
the fraction of phosphorylated SPRY bound to FRS2∗:SRC:SHP2, i.e.

FRS2∗:[SRC:SPRYP]:SHP2 = η SPRYP.

Approximation of η

We take3

η ∼
(

FRS2∗:SRC:SHP2

FRS2∗:SRC

)
︸ ︷︷ ︸

Fraction of bound SRC also bound to FRS2∗:SHP2

×
(

FRS2∗:SRC:SPRYP

SPRYPtot

)
︸ ︷︷ ︸

Fraction of SPRYP bound to SRC:FRS2∗

.

To evaluate the fraction of bound SRC also bound to FRS2∗:SHP2, we consider the dy-
namics of FRS2∗:SRC:SHP2. With FRS2∗:SRC:SHP2 denoted by x11 below, and the total
amount of bound SHP2 denoted by z1, we have

dx11

dt
= λ1(y1 − x11)(SHP2tot − z1) + λ2(z1 − x11)(SRCtot − y1) − (η1 + η2)x11

− μx11

K + z1
− μ1x11

K1 + x11
,

3We remark that the use of ratios of known concentrations for estimating concentrations of specific species
is also mentioned in the supplemental material of Kiyatkin et al. (2006) for a large model of EGF signal
transduction.
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dz1

dt
= λ1(FRS2∗

tot − z1)(SHP2tot − z1) − η1z1 − μz1

K + z1
,

where y1 = FRS2∗:SRC is the total amount of bound SRC. In addition μ1, K1,μ, K,η1,

η2, λ1, λ2 are model parameters that represent reaction rate and Michaelis–Menten con-
stants. Such equations can be derived from linear combinations of subsets of the full
equations, on neglect of the slow dynamics, and given phosphorylation is fast compared
to the binding dynamics. Given y1, SHP2tot , FRS2∗

tot , SRCtot one can readily evaluate the
equilibrium level of z1, and hence x11. This in turn enables the rapid evaluation of the
ratio (

FRS2∗:SRC:SHP2

FRS2∗:SRC

)
= x11

y1

via simple algebraic relations.
Thus, we have one of the required ratios given y1, SHP2tot , FRS2∗

tot , SRCtot . All but
the first of these are known from the slow dynamics. For the value of y1 = FRS2∗:SRC,
i.e. the amount of bound SRC present, we use the value from the quasi-steady state of
the previous slow timestep; at the initial timestep, it is known from the initial conditions.
This is ultimately an approximation, though it is readily justified. In initial simulations,
an iterative procedure was used to improve this approximation of FRS2∗:SRC at each
slow timestep, but it had an imperceptible effect. The approximation can also be justified
a posteriori from the accuracy of the simplified model in the results section.

We proceed to consider the remaining ratio, i.e. the fraction of SPRYP bound to
FRS2∗:SRC. Fast phosphorylation dynamics compared to SPRY production entail that

SPRYtot ∼ SPRYPtot ;

i.e. the total amount of phosphorylated SPRY is approximated by the total amount of
SPRY. On the fast timescale, we also have the amount of SPRY is constant as its produc-
tion is on the slow timescale and similarly for the amount of SRC present. Our first aim is
to calculate SPRYP:SRC. We have

d

dt
SPRYP:SRC = λ3(SPRYPtot − SPRYP:SRC)(SRCtot − SPRYP:SRC)

− η3SPRYP:SRC − μ2SPRYP:SRC

K2/η∗ + SPRYP:SRC
, (2)

where η∗ gives the fraction of SPRYP:SRC complexes which are bound to SHP2 via
FRS2. Thus, the final term in the above represents SHP2 induced phosphorylation. In
addition, μ2, K2, η3, λ3 are model parameters and, as above, such equations can be
derived from linear combinations of subsets of the full equations, on neglect of the slow
dynamics given the above approximations. We can readily derive an expression for η∗,
namely

η∗ = FRS2∗:SRC:SPRYP:SHP2

SPRYP:SRC
= FRS2∗:SRC:SHP2

SRCtot

= x11

SRCtot

.
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Thus, the equilibrium value of SPRYP:SRC can be expressed in terms of the smallest
positive root, x, of the cubic

(SPRYPtot − x)(SRCtot − x)

(
K2SRCtot

x11
+ x

)
=

(
η3 + μ2

λ3

)
x

obtained by setting the time derivative in Eq. (2) to zero. One can readily imple-
ment a numerical solution of the above cubic, which gives us an approximation for
x = SPRYP:SRC. The required ratio, i.e. the fraction of SPRYP bound to FRS2∗:SRC is
then simply given by

SPRYP:SRC

SPRYPtot︸ ︷︷ ︸
Fraction of SPRYP bound to SRC

× FRS2∗:SRC

SRCtot︸ ︷︷ ︸
Fraction of SRC bound to FRS2∗

.

Use of η

Given η, FRS2∗
tot , SRCtot , GRB2tot , SPRYtot , SHP2tot we can then solve for the quasi-

steady state of the system of reactions represented by Fig. 2, and thus determine levels
of GRB2 bound directly to FRS2∗ and refine our estimates of any expression used in the
estimate of η, for example FRS2∗:SRC:SHP2. One can subsequently determine the levels
of bound CBL and levels of GRB2 bound to FRS2∗ via SPRY, as demonstrated in the
following.

SPRYP:SRC binding to FRS2∗ and GRB2
The SPRYP–SRC interaction is assumed independent of the FRS2∗–SRC interaction.
Hence, we have that the amount of FRS2∗:SRC:SPRYP is given via

FRS2∗:SRC:SPRYP

SPRYP:SRC
= FRS2:SRC

SRCtot

.

By similar arguments, we have that the amount of FRS2∗:SRC:SPRYP:GRB is given by

FRS2∗:SRC:SPRYP:GRB2 = SPRYP:GRB2 × FRS2∗:SRC:SPRYP

SPRYPtot

yielding the amount of GRB2 bound to FRS2∗ via SPRYP.

CBL dynamics
The CBL dynamics can be captured as follows. Let CBLf ree denote free CBL, CBLbnd

denote bound CBL and S∗ denote the SPRYP available to bind to free CBL. We have the
reaction

CBLf ree + S∗ � CBLbnd . (3)

The steady state of the equations which represents reaction (3) gives us that

λCBLbnd = μCBLf reeS∗,

where λ and μ are the forward and back reaction rate constants, respectively. We also
know that

CBLf ree + CBLbnd = CBLtot ,
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the total amount of CBL present and

S∗ = SPRYPtot − CBLbnd .

The latter entails that the amount of SPRYP available for reaction with CBL is the total
amount of SPRYP minus the SPRYP bound to CBL.

Thus, we have a quadratic in CBLbnd , with coefficients depending on λ/μ, SPRYPtot ,
CBLtot , with solution

CBLbnd

def= SPRYP:CBL = 1

2

[
η∗∗ −

√
η2∗∗ − 4CBLtotSPRYPtot

]
,

where η∗∗ = (SPRYPtot + CBLtot + λ/μ) .

The amount of SPRYP:CBL bound to FRS2∗:SRC is given by

FRS2∗:SRC:SPRYP:CBL = SPRYP:CBL × FRS2∗:SRC:SPRYP

SPRYPtot

.

2.3.5. The slow dynamics (no PLC present)
Given FRS2∗

tot , SHP2tot , SRCtot , SPRYtot , CBLtot , y1 = FRS2∗:SRC, we can find η,
solve for the quasi-steady state of the reactions in Fig. 2, and hence determine levels of
bound GRB2, SHP2, CBL, SRC, SPRYP:CBL and similar molecules, as discussed above.
In terms of the Tikhonov procedure, we are locating the manifold F(f, s) = 0. The system
dynamics is then simply governed by the slow dynamics. This is driven by

– SRC induced relocation of FRS2 and all molecules bound to it.
– Ubiquitination via CBL and the subsequent break up of FRS2, with all molecules bound

to FRS2 released back, and available for further participation in the dynamics.
– Slow production of SPRY.

Thus numerically solving for the slow dynamics relies upon timestepping FRS2∗
tot ,

FGFRtot , SRCtot , SHP2tot , GRB2tot , CBLtot , SPRYtot and ubiquitinated protein levels
according to the above interactions. This is a very simple timestepping of a small number
of ODEs, without disparate timescales.

The results produced by the fast dynamics at the first timestep of the slow dynamics
is, in the context of matched asymptotics, the inner solution. The results produced at
each timestep of the slow dynamics is, in the same context, the outer solution; these two
solutions are numerically combined in the standard manner to generate the uniformly
valid composite solution.

2.3.6. A minor complication: incorporating the PLC dynamics
The PLC dynamics introduces an additional complication which we have deferred to after
the explanation of the basic structure of our simplification method.

The 766 site phosphorylates rapidly on the fast timescale, but the binding to PLC
is really on an intermediate timescale, at least for the reference parameters. The PLC
binding occurs much faster than the slow decays induced by CBL and analogous reactions.
However, it is significantly slower than SRC binding to FRS2∗ and other similar reactions.
Treating the PLC binding in the same manner as SRC binding, there is an early time, short
lived error, in the predicted PLC binding levels, as described in the results section.
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The above mentioned error in the early time predictions of the PLC dynamics can be
avoided as follows. On the fast timescale PLCtot , FRS2∗ are constant and the dynamics
of PLCbnd , the level of bound PLC, is governed by

dPLCbnd

dt
= λ4(PLCtot − PLCbnd)(FRS2∗ − PLCbnd) − η4PLCbnd

def= F(PLCbnd; PLCtot , FRS2∗, λ4, η4). (4)

If the PLC binding dynamics were sufficiently fast this equation would rapidly relax to its
equilibrium state, giving a Tikhonov estimate for PLCbnd as the smallest root of

F(PLCbnd; PLCtot , FRS2∗, λ4, η4) = 0. (5)

However, the timescale of the PLC binding dynamics is not sufficiently fast for this to
be very accurate at early times. To circumvent this difficulty, note that during a timestep
of the slow dynamics, PLCtot and FRS2∗ are approximately constant. One can therefore
timestep PLCbnd over the same slow timestep using the analytical solution of Eq. (4),
assuming constant PLCtot , FRS2∗ which induces only a very small error. Such errors are
also not expected to accumulate (as confirmed in the results section) since the qualitative
dynamics of the above differential equation is such that PLCbnd will always relax toward
the smaller root of Eq. (5).

Thus, to incorporate the PLC dynamics, one proceeds as follows. As previously, given
FRS2∗

tot , SHP2tot , SRCtot , SPRYtot , CBLtot , y1 =FRS2∗:SRC, one can find η, solve for
the quasi-steady state of the reactions in Fig. 2, and hence determine levels of bound
GRB2, SHP2, CBL, SRC, SPRYP:CBL, and similar molecules. In a standard Tikhonov
procedure solving for the smallest root of Eq. (5) gives PLCbnd . In the slow timestep, we
proceed as discussed above, and additionally consider

– the PLC induced break up of FGFR. Note that the FRS2 and its bound molecules are
released from this decay, and thus available for further participation in the dynamics.

To remove the early time error in the levels of PLC error one supplements the above slow
dynamics with a time-stepping of Eq. (4) above, to find the levels of bound PLC rather
than solving for the root of Eq. (5) in a standard Tikhonov procedure.

We illustrate the improvement for the full model below, and this improvement is also
implemented for the SRC knockout due to the heightened importance of the PLC dynam-
ics in this scenario. However, given the error does not in fact impact on the model’s impor-
tant predictions and the fact it can require a careful choice of the slow dynamics timestep
to ensure that the simplified model runtime is not extended to any significant extent while
retaining accuracy, it is not used universally. Nonetheless, this example specifically il-
lustrates that this simplification procedure can incorporate processes on an intermediate
timescale, thus increasing its applicability.

2.3.7. Model simplification summary
The ultra-fast dynamics of Section 2.3.2 and Appendix C govern the initial con-
ditions of the simplified model in terms of the asymptotic predictions given for
FGF:FGFR653P654P:FRS2. The ultra-fast dynamics are otherwise ignored. The remain-
ing fast and slow dynamics are considered as follows.
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Fig. 3 In the above are results for the GRB2 binding to FRS2∗ for the full numerical model (solid) and the
simplified model (dashed). In the inset is the early time behavior. Here, and for all other figures, C denotes
the reference concentration scale. In addition, Site 3 refers to the site where GRB2 binds directly to FRS2∗
while Site 2 refers to the site where GRB2 binds to FRS2∗ via SPRY. As indicated in Appendix A, if one
assumes a concentration scale of 5 × 104 molecules per cell, one has C ∼ 10−7M.

At each timestep of the slow dynamics, we approximate

η ∼
(

FRS2∗:SRC:SHP2

FRS2∗:SRC

)
×

(
FRS2∗ : SRC:SPRYP

SPRYPtot

)

using the values of FRS2∗:SRC, FRS2∗
tot , SRCtot , GRB2tot , SPRYtot , SHP2tot . Then we

solve for the quasi-steady state of the dynamics depicted in Fig. 2. Using these quasi-
steady values, all remaining quasi-steady state values can be determined as detailed above.
The slow dynamics can then be time-stepped numerically in a straightforward manner. In
addition, the levels of bound PLC are tracked as described above.

This simplified model is far more amenable to rapid numerical computation. The ODEs
on the slow timescale are neither stiff nor excessively numerous while finding the quasi-
steady state of the dynamics shown in Fig. 2 benefits from having a very good estimate,
namely the solution at the previous slow timestep.

3. Results

3.1. Representative results

In Fig. 3, plots of the predictions for GRB2 binding are given for the full model described
above (solid lines), with full details and parameter values specified in Appendix A. Also
presented are the predictions from the simplified model (dashed lines). Both for this figure,
and the subsequent analogous figures, the presence of only one solid line demonstrates
that the predictions of the simplified and full model are identical to within the resolution
of the figures presented.

In Fig. 4, plots for other concentrations are given both for the full model (solid lines)
and the simplified model (dashed lines). The discrepancy between predicted levels of free
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Fig. 4 In the above are results for the levels of FRS2∗ plus free SHP2, SRC, GRB2, SPRY, CBL, and
PLC for the full numerical model (solid) and the simplified model (dashed). See text for an explanation of
the dotted line in the lower plot for the levels of free PLC.

Fig. 5 In the above are plots of the magnitude of the difference between the simplified model on compar-
ison with the full model. The PLC differences are given for the simplified model with (black dotted line)
and without (black solid line) the PLC improvement discussed in Section 2.3.6.
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Fig. 6 In the above are results for the GRB2 binding to FRS2∗ for the full numerical model (solid) and
the simplified model (dashed), in the absence of CBL. In the inset is the early time behavior.

Fig. 7 In the above are results for the GRB2 binding to FRS2∗ for the full numerical model (blue solid)
and the simplified model (blue dashed), in the absence of SHP2. The black solid line is the prediction of
the full model and reference parameters for comparison. The early time behavior in the absence of SHP2
is inset.

SRC and free CBL observed in these plots appears to be a characteristic, but a small,
inaccuracy of the simplified model. In Fig. 4, three results are presented for the levels
of free PLC. The solid and dashed lines are the full and simplified model predictions,
respectively, where the root of Eq. (5) is used to track the PLC dynamics for the latter.
If one uses the simplified model, solving the differential equation (4) to track PLC, the
resulting prediction for the PLC dynamics is the dotted line in the lower plot of Fig. 4.
This is discernable, albeit only just, from the full model prediction. The plots of all other
concentrations are the same, at the level of resolution of the graphs presented, regardless
of whether one uses the simple PLC dynamics, i.e. the root of Eq. (5), or the more compli-
cated PLC dynamics, summarized by Eq. (4). All results for remaining figures have been
derived using the simpler PLC dynamics, unless stated otherwise.
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Fig. 8 In the above are results for the GRB2 binding to FRS2∗ for the full numerical model (solid) and
the simplified model (dashed), in the absence of SPRY (blue) and the absence of SRC (red). The curve in
black is the prediction of the full model with the reference parameters for comparison.

Fig. 9 In the above are results for the levels of FRS2∗ plus free SRC, GRB2, SPRY, CBL, and PLC for
the full numerical model (solid) and the simplified model (dashed) when no SHP2 is present.
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Fig. 10 In the above left are the simplified model’s predictions, with the reference parameters, for SOS
and RAF binding levels with GRB2 and SOS, respectively. The amounts bound to FRS2∗ via the two
different possible sites are also given. In the above right is the ratio of FRS2∗:GRB2 to FRS2∗:GRB2:SOS
(solid) and the ratio FRS2∗:GRB2 to FRS2∗:GRB2:SOS:RAF (dash). This ratio is the same (at the level
of resolution of the plots) for GRB2 bound to FRS2∗ directly at site 3 and for GRB2 bound to FRS2∗ via
SRC and SPRY at site 2.

Fig. 11 The effect of varying of the FGF binding rate. The black solid line is the full model with reference
parameters. The black dotted line gives the effects of reducing the FGF-FGFR binding rate by a factor of
10. This binding rate is reduced by a factor of 100 for the blue dashed line and 300 for the red dot-dash
line.

In Fig. 5, the magnitude of the difference between the simplified model and the full
model is plotted for the variables considered in Figs. 3 and 4. The agreement between
the full and simplified models is particularly noteworthy especially for bound GRB2,
excluding initial transients, which are only present on the ultra-fast timescale. In addition,
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Fig. 12 Results for total bound levels of GRB2 from a previous stochastic model of FGF signaling, with
early time results inset.

Fig. 13 Plots of (i) the maximum of total bound GRB2 (upper left), (ii) its initial decay rate (upper right),
(iii) the relative amount of free SHP2 (lower left) and (iv)

∫ T
0 dt GRB2bnd , for T = 300 seconds, as

functions of the amount of initial SHP2 present and the rate SHP2 induces dephosphorylation. The above
graphs (of approx. 400 squares) were generated from 108 simulations, using interpolation to refine the
resolution of the results.
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the full model simulation took about 5 days to complete, which was over 275 times longer
than the simplified model. Similar timescales are observed in all simulations.

3.2. Representative results for knockouts

In Figs. 6, 7, and 8 results for the levels of GRB2 binding are presented for the absence
of, respectively, CBL, SHP2, SRC, and SPRY.

The absence of CBL has a barely discernable effect on the levels of GRB2 binding to
FRS2∗. Similar comments apply for the predicted levels of FRS2∗, plus unbound levels
of SHP2, GRB2, SPRY, and PLC together with the prediction of a small decline in the
levels of free SRC (results not shown). Small discrepancies between the full and simplified
models’ predictions for levels of free SRC do occur, analogous to those observed in Fig. 4.

The absence of SHP2 is observed to have a substantial effect, with higher initial bind-
ing of GRB2 followed by a faster decay rate, again as predicted by both the full and the
simplified model. Similarly, the absence of SHP2 induces significant effects on the levels
of FRS2∗, plus the unbound levels of SPRY, GRB2, and SRC; see Fig. 9. Small differ-
ences are induced in the levels of free PLC, and a small reduction in levels of free CBL
is also predicted relative to the prediction for the reference parameters of Appendix A.
Small differences in the full and simplified models’ predictions occur, especially for the
levels of free SRC, as can be observed in Fig. 9.

The absence of SPRY also has a significant effect, in that the decay of bound GRB2
is slower; similar observations hold for the absence of SRC. Thus, not surprisingly, one
has the model prediction that both SRC and SPRY are antagonists for GRB2 binding to
FRS2∗.

In the absence of SRC, the decay of bound GRB2 proceeds via PLC degradation;
thus, the more complicated PLC estimate, based on Eq. (4) is used. Even in this situation,
the choice between the simple or complex representation of the PLC dynamics has no
discernable effect on other concentrations, and minimal effect on the PLC predictions
after initial transients, at the resolution of the figures.

Again, the level of agreement between the full model and the simplified model is highly
noteworthy for all knockouts, as is the improvement in numerical performance.

3.3. Representative results from the simplified model for SOS and RAF binding

The simplified model is readily extended to consider SOS and RAF binding, and results
are presented in Fig. 10. Strictly, the presented results will possess errors due to transients
at very early times, analogous to the PLC results. However, these errors will only be
present for very short times due to the faster reaction rates of SOS and RAF compared to
the reaction rates of PLC. From the right-hand plot, we can see that GRB2 binding levels
give an accurate measure of the downstream binding levels of SOS and RAF.

3.4. Representative results for the reduction in FGF-FGFR binding rates

We see from Fig. 11 that reducing FGF-FGFR binding rates increases the time it takes
for the rise in GRB2 binding to occur (thus decreasing peak levels of GRB2 bound di-
rectly to FRS2∗). The model is relatively robust to changes in FGF-FGFR binding rates,
taking a reduction of ×100 for a significant effect. However, once the GRB2 levels have
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peaked, the decay of bound GRB2 proceeds essentially independently of the FGF-FGFR
binding rates, as can clearly be seen in the results.4 The simplified model predicts that
reducing FGF:FGFR binding rates has no effect. This discrepancy is readily understood
as discussed below.

3.5. Representative results for a stochastic model

For reference and comparison purposes, the averages of multiple runs for a stochastic
model based on the reaction scheme detailed in Appendix A are presented in Fig. 12.
A simplification in the reaction scheme is that the phosphorylation and dephosphoryla-
tion dynamics are modeled as linear first order kinetics enabling a straightforward use
of Gillespie’s algorithm; see Heath et al. (2006), Kwiatkowska et al. (2006), Heath et al.
(2007) for further details concerning these simulations.

3.6. Representative results given alterations of the SHP2 parameters

It is apparent that the model is highly sensitive to SHP2 dynamics; only O(4%) of the
SHP2 molecules ever bind to FRS2∗ for the reference model, yet this is sufficient to
induce a substantial difference between the predictions in the presence and absence of
SHP2. Thus, we investigate in detail how the model responds to changes in the levels of
SHP2 and the rate of SHP2 induced dephosphorylation. That is, we alter both the amount
of SHP2 and the strength of its effect. The peak value and initial decay rate of the total
bound GRB2, plus the integral of total bound GRB2 over the first 300 seconds, are given
in Fig. 13. The latter is a (crude) measure of the average GRB2 signal induced during the
5 minutes following the initiation of an FGF signal. In addition, the fraction of free SHP2
is also plotted in this figure.

4. Discussion and conclusions

The first thing to note about Figs. 3 and 6, 7, and 8 is that they all show a relatively
rapid rise of GRB2 binding, due mainly to binding with FRS2∗ directly, followed by
a decay. This is the qualitative behavior observed in experiments. In addition, Fig. 10
shows that levels of bound SOS and RAF track levels of bound GRB2 demonstrating that
the concentration of bound GRB2 gives an excellent measure of the downstream effects
of the FGF signaling.

The level of agreement between the full model and the simplified model in Figs. 3, 4,
5, 6, 7, 8, and 9 is highly noteworthy.

Nonetheless, there are discrepancies, though these are readily understood. The first
discrepancy concerns errors in the early time predictions for PLC binding, except when
the simplified model uses the more complicated PLC dynamics summarized by Eq. (4).

4The details of the justification presented in Appendix C for the fact we need only consider FRS2 binding
to FGF:FGFR653P654P and not to singly phosphorylated and unphosphorylated FGF:FGFR does strictly
breakdown for a greatly reduced FGF-FGFR binding rate. However, the full model simulation is still
readily anticipated to be independent of these details due to fact phosphorylation still occurs on a fast
timescale compared to downstream reaction timescales even if FGF:FGFR binding is not.
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However, these early time errors do not impact on the rest of the model predictions be-
cause the PLC decay dynamics act on a much slower timescale compared to the timescale
characterizing the existence of these early time errors. Hence, the global error is small,
as can be seen from the fact the simplified model tracks other model variables accurately.
With the more complicated PLC dynamics, the initial transient errors in PLC levels are
eliminated; this latter observation additionally demonstrates that the simplification tech-
nique can even accurately incorporate processes occurring on intermediate timescales.

A second discrepancy concerns Fig. 11, but again this has a straightforward explana-
tion. The fact a 10-fold reduction in the FGFR-FGF binding rate does not have much of
an effect on the presented results is because the simplified model is completely insensi-
tive to reducing the FGFR-FGF binding rate. Thus, one must reduce this binding rate to a
level where the simplified model breaks down, i.e. so that the timescale of the FGFR-FGF
binding rate is no longer ultra-fast, only fast, which requires a very large change, much
greater than an order of magnitude, for the reference parameters. Also, the fact the sig-
nal attenuation dynamics is essentially unperturbed is predictable as it is governed by the
slow dynamics of the system. Given reducing the FGFR-FGF binding rate is decoupled
from the irreducible dynamics of Fig. 2, it also strongly suggests that an efficient, sim-
plified, model can be constructed for this parameter regime, though we have not pursued
this. Biologically, we have the prediction that the system can be resilient to the effects of
FGF kinase inhibitors, which will have to either completely turn off FGFR activation, or
at least reduce its timescale to a level commensurate with the timescales of FRS2∗ and
GRB2 binding, for any significant effect. In addition, this effect will act to reduce the
maximum level of GRB2 binding, and to increase the time it takes to reach this peak, with
minimal influence on the subsequent decay timescale.

The fact the ultra-fast dynamics is ignored in the simplified model, except that ultra-
fast large time asymptotes yield simplified model initial conditions, entails that initial
transient deviations of the full model, compared to the simplified model, are expected and
indeed observed in Fig. 5. Such transient deviations are known to decay on the timescale
of the ultra-fast dynamics and consequently do not affect model predictions on longer
timescales; further details are presented in Appendix C.

Finally, given the duration of the run is much larger than the (fast) reaction timescale,
even the largest of the remaining discrepancies is not inconsistent with the size of the
asymptotically small parameter, namely the ratio of timescales between the fast and slow
dynamics. Unlike the errors in the ultra-fast dynamics, which are analytically shown to
decay, there is the possibility of an accumulation of error with time for the coupled fast
and slow dynamics, and this is seen with the initial behavior of CBL in Figs. 4 and 5, for
example. Here, the peak difference between the full and simplified model, which corre-
sponds to a relative error of about 17%, is about an order of magnitude larger than the
ratio of fast and slow timescales (O(1/50)). However, this error builds up over a timescale
which is more than an order of magnitude larger than the typical fast reaction timescale.
We anticipate these cumulative errors are ultimately controlled by the global dynamics,
particularly the transient nature of the FGF signaling response. This ensures that such er-
rors do not accumulate indefinitely as all variables are slave to the fact the system relaxes
to an “unexcited” state over time. This does, however indicate that this simplification
procedure should be used with caution when the system’s response is not transient.

The qualitative behavior of the model is the same as a stochastic model based upon
the Gillespie algorithm; see Fig. 12. For example, the absence of SHP2 results in a more
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extensive rise in GRB2 binding levels followed by a faster decay, while the absence of
SPRY or SRC results in a slower decay. From such observations, it is clear that despite
the complexity of the full model, it is extremely robust; even different modeling frame-
works give the same qualitative behavior, with no indication that this behavior exhibits
sensitivity to fluctuations. This is, in fact, is not surprising. There are multiple redundan-
cies in the model to ensure the slow signal attenuation dynamics. The ultrafast dynamics
is extremely robust as shown in Appendix C. The qualitative behaviors are also insensitive
to the details of the fast dynamics, in that GRB2 binding will take place in the core model
of Fig. 2, given the outcome of the ultra-fast dynamics. The accuracy of the simplified
model, compared to the full model, also clearly demonstrates that an enormous amount of
detail in the full model is redundant and not required, even for quantitative predictions.

However, the quantitative details of signal growth and attenuation can be sensitive to a
number of details of the modeling. For example, one has to be precise in the definition of
the parameter, η, in Section 2.3.3, when capturing the effect of SHP2 on SPRY within the
simplified model. Errors in this parameter lead to substantial quantitative discrepancies
between the simplified model and the full model (not shown) especially as small errors
in the decay rate are magnified into substantial errors at large times. The sensitivity of
quantitative predictions is also illustrated by comparing the predictions for GRB2 binding
levels in the absence of SRC to predictions in the absence of SPRY. The deterministic
model shows the levels of GRB2 binding will cross as in Fig. 8, in contrast to the stochas-
tic model; see Fig. 12.

The investigation of the sensitivity of GRB2 dynamics with respect to the initial levels
of SHP2 and the rate SHP2 induces dephosphorylation also reveals a sensitive, compli-
cated, and non-intuitive, system dynamics. From Fig. 13 we can see that simply varying
one of these parameters at a time in a sensitivity analysis risks missing much of this com-
plex behavior if one’s starting position is toward the lower left of the graphs depicted.
We also see sensitivity as either the initial amounts of SHP2 or its induced dephospho-
rylation rate tends to zero. In addition, at relatively high levels of SHP2 there emerges
a non-linear, non-monotonic, dependence on SHP2 induced dephosphorylation rates. In
particular, one can readily extract counter-intuitive predictions; for example, increasing
the SHP2 dephosphorylation rate can act to either increase or decrease levels of GRB2
binding depending on parameter values.

This complexity ultimately arises because SHP2 induces a negative signal not only
on GRB2 binding, but also on its own phosphorylation and other negative regulators of
GRB2, such as SPRY and SRC; the detailed behavior thus depends on the relative im-
portance of all these effects. In particular, such observations imply a modeling prediction
that the control of FGF signal transduction, via the modulation of the level of SHP2 or
its effects, would be difficult due to complex feedbacks. It also indicates that the overex-
pression of SHP2 may have minimal effect, or a very strong influence on GRB2-binding,
depending on the rate of SHP2 induced dephosphorylation, with maximal influence at in-
termediate dephosphorylation rates. More generally, this illustrates the difficulty of gain-
ing a systems level understanding and of using intuition in the presence of feedback loops
within a signal transduction system.

Nonetheless, despite the complexity of the SHP2 dynamics, inspection of Fig. 13 can
also reveal robust predictions. For example, the observed increase in both the GRB2 decay
rate and the maximum level of GRB2 binding on removing SHP2, as depicted in Fig. 7, is
essentially universal. A similarly robust increase in the initial mean level of GRB2 binding
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over the first 300 seconds is also observed; the robustness of such predictions entails that
they are potentially testable.

The notion of key sets of equations decoupling for models of signal transduction was
first raised by Borisov et al. (2005). This, together with a Tikhonov procedure, has al-
lowed an enormous reduction in the complexity of the model. Further simplifications have
been implemented allowing, for example, the incorporation of the influence of SHP2 on
the dephosphorylation of SPRY bound to FRS2∗ via SRC, and the competition between
SPRY and FRS2∗ for GRB2. While Michaelis–Menten kinetics have been used for the
phosphorylation and dephosphorylation dynamics, this is not a pre-requisite for applying
the presented simplification techniques to the current model. It is anticipated one could
analogously simplify the modeling equations that would arise if the assumed underlying
enzyme dynamics of phosphorylation and dephosphorylation were not approximated a
priori with Michaelis–Menten kinetics.

We remark that there is no natural way to speed up the numerical algorithms of the
full model due to the combination of stiffness and very large system size. Thus, the fact
the simplified model can be simulated hundreds of times faster for only a small loss of
accuracy is highly noteworthy. The model simplification not only expedites numerical
simulation; it also simplifies one’s understanding of the key features of the model. The
effects of the ultra-fast dynamics are clear, as are the effects of the slow dynamics. Much
of the fast dynamics is simply governed by the equilibrium state of simple interactions
plus the core reaction depicted in Fig. 2. This core is still too complicated to solve ana-
lytically in general. Nonetheless, it does allow one to see the underlying mechanisms and
feedbacks are extremely robust, at least at a qualitative level. It also allows one to see how
this signal transduction model can be reduced to distinct modules of interaction. One can
also immediately see where the most complicated dynamics will lie, namely in the effects
of SHP2 within the core reactions of Fig. 2.

The improved numerical performance of the simplified model allows detailed analyses
of parameter variations; the production of Fig. 13 would have been impractical with the
full model, for example. It also means that one has much more freedom in investigating
different possible biological models, with additional binding molecules and/or additional
binding sites despite the further combinatorial explosion this would induce. Similarly, the
simplified model gives one the flexibility to start considering modeling downstream of
GRB2, SOS, and RAF. It is also sufficiently manageable to allow the future investigation
of spatial aspects of signal transduction, while retaining the biological realism of the full
model. Similarly, such techniques should be applicable for the process calculi models
of FGF signaling (Heath et al., 2006; Kwiatkowska et al., 2006; Heath et al., 2007), as
illustrated by the work of Borisov et al. (2006) on stochastic systems. In turn, this may
facilitate the further development of stochastic models to more complicated biological
scenarios.

There is also the question of whether the simplification process can be automated.
A discussion of the difficulties in automating a Tikhonov reduction are discussed in Val-
labhajosyula and Sauro (2006) while finding subsets of equations which decouple is an-
ticipated to reduce to a well-posed problem in linear algebra. However, the process of
automating the estimation of a parameter such as η in Section 2.3.3 to allow one to deal
with interactions between different chains of binding molecules on a large docking protein
may prove more challenging. Nonetheless, an automatic simplification procedure which
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could generate a simplified model from a suitable template, for example, but not exclu-
sively the Systems Biology Markup Language (Hucka et al., 2003), would be incredibly
useful.

In summary, we have extensively simplified a mass-action model of FGF signal trans-
duction, enabling a reduction of over two orders of magnitude in the numerical runtime,
while retaining accuracy. We have seen an overall agreement at the qualitative level with
stochastic models but there are discrepancies between the detailed predictions of the two
modeling frameworks. The model of the signal transduction mechanism, despite its ap-
parent enormous complexity, can be decomposed into units, the most complex of which
is relatively straightforward and illustrated in Fig. 2. This in turn yields substantial insight
into the behavior of this complex system, illustrating why and how the SHP2 dynamics
will be particularly complex. It has also enabled a detailed numerical investigation il-
lustrating, for example, the robustness of model predictions for the effects of removing
SHP2, which are thus potentially testable. There is also enormous potential for the further
application of the simplified model, especially as a template for other, more complicated,
models of FGF signal transduction. This could include the development of models of the
complexity studied by Schoeberl et al. (2002) for EGF signal transduction, while incorpo-
rating Michaelis–Menten kinetics, a starting point for spatially distributed models or the
inclusion of more realistic stoichiometries.
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Appendix A: Complete specification of the model

The reference concentration scale is C; the reference timescale is T = 1 second. All con-
centrations in the results section are in units of C and all times are in units of seconds.
A typical value of C, assuming 5 × 104 molecules per cell and a mean cell volume of
10−15 m3 would be C = 10−7 M (1SF). Please refer to Fig. 1 for a pictorial representation
and summary of the following reactions. All reactions are assumed to occur in parallel.
As an illustrative example, the ubiquitination of FRS2:SRC:SPRYP:CBL is assumed to
proceed whether or not GRB2 is bound to the phosphorylated SPRY molecule.

Note in the following that once FRS2:FGF:FGFR:653P654P has formed, which is
the endpoint of the ultrafast dynamics, the Michaelis–Menten phosphorylation and de-
phosphorylation dynamics never occur on a slower timescale than the binding dynamics.
Furthermore, Michaelis–Menten kinetics constitute the large time, outer solution, of a
matched asymptotic expansion (Murray, 1989) of the assumed underlying enzyme cat-
alyzed biochemical kinetics. Thus, the binding dynamics is only ever considered to occur
on a sufficiently slow timescale to allow accurate neglect of the associated, small time,
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inner solution of this enzyme dynamics. Consequently, use of the Michaelis–Menten sim-
plification for phosphorylation and dephosphorylation in the fast dynamics is internally
consistent (though an assumption nonetheless).

The model reactions are:

Reaction 1. FGF binds FGFR

FGF + FGFR � FGFR:FGF, Ka = 8 sec−1/C, Koff = 6 × 10−4 sec−1.

In the above Ka and Koff are the dimensional rate constants associated respectively with
the above forward and backward reaction; similarly, for the use of Ka and Koff in all sub-
sequent reactions. Using C as a concentration scale and T = 1 second as a timescale,
we have non-dimensional parameters Knon-dim

a = 8, Knon-dim
off = 6 × 10−4 in a non-

dimensional model.

Reaction 2. Phosphorylation. While FGFR:FGF exists:

FGFR653 → FGFR653P, Km/C = 1, Vmax/C = 0.5 sec−1,

FGFR654 → FGFR654P, Km/C = 1, Vmax/C = 0.5 sec−1.

Note for these parameters Michaelis–Menten saturation effects are important for reactant
levels around the concentration scale C. Using C as a concentration scale and T = 1
second as a timescale, we have non-dimensional parameters Km = 1, Vmax = 0.5. Anal-
ogous comments apply below. Thus, the results presented are valid for a two parameter
family of models, obtained by varying C and T , which is a standard advantage of non-
dimensionalizing.

Reaction 3. Phosphorylation. When FGF:FGFR653P654P exists then:

FGFR766 → FGFR766P, Km/C = 1, Vmax/C = 0.5 sec−1.

Phosphorylation at other FGFR sites does occur, though only the 766 site has downstream
consequences in this model, and hence it is the only one included.

Reaction 4. FGF:FGFR653P654P binds FRS2

FGF:FGFR653P654P + FRS2 → FGF:FGFR653P654P:FRS2, Very Fast.

For the model, the timescale of this reaction is taken to be 0.01 seconds, which is sufficient
for the reaction to be considered asymptotically fast. The model is robust to the details of
such ultra-fast reactions; see Appendix C for further details.

Reaction 5. Phosphorylation of FRS2 once bound to FGFR

FRS2196 → FRS2196P, Km/C = 1, Vmax/C = 0.5 sec−1,

FRS2306 → FRS2306P, Km/C = 1, Vmax/C = 0.5 sec−1,

FRS2471 → FRS2471P, Km/C = 1, Vmax/C = 0.5 sec−1.
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Phosphorylation does occur at other FRS2 sites, but only the above sites have downstream
consequences in this model.

Reaction 6. Dephosphorylation of FRS2 when SHP2 bound to FRS2471P

FRS2196P → FRS2196, Km/C = 10−2, Vmax/C = 0.1 sec−1,

FRS2306P → FRS2306, Km/C = 10−2, Vmax/C = 0.1 sec−1,

FRS2471P → FRS2471, Km/C = 10−2, Vmax/C = 0.1 sec−1.

Reaction 7. FRS2 effectors bind phosphorylated FRS2

FRS2196P + SRC � FRS2196P:SRC, Ka = [5 × 10−2] sec−1/C,

Koff = 10−3 sec−1,

FRS2306P + GRB2 � FRS2306P:GRB2, Ka = [5 × 10−1] sec−1/C,

Koff = 10−2 sec−1,

FRS2471P + SHP2 � FRS2471P:SHP2, Ka = [1 × 10−1] sec−1/C,

Koff = 10−3 sec−1.

Reaction 8. FRS2196P:SRC causes the whole molecule to be relocated out

FRS2196P:SRC → ∅, Half life 900 sec−1.

Note the symbol ∅ refers to the fact that this relocation is, in terms of the modeling
equations, equivalent to decay with no product.

Reaction 9.1. PLC Dynamics

FGFR766P + PLC � FGFR766P:PLC, Ka = 10−2 sec−1/C,

Koff = 10−3 sec−1,

FGFR766P:PLC:FRS2 � FRS2 + PLC, Half Life 3600 sec−1.

The FRS2 produced by the latter decay (and any molecules attached to it) can subse-
quently influence the system if there is free phosphorylated FGFR with which the FRS2
can bind.5

Reaction 9.2. Spry appears in time dependent manner

∅ → SPRY inverse exponential growth rate λ = 900 sec;
Saturation level σ = C.

5To facilitate the numerical solution of the equations in the full model (by avoiding extreme stiffness once
the initial ultra-fast dynamics has completed), the binding of any released FRS2 decay products to any free
phosphorylated FGFR does not happen quite as fast as in reaction 4. The timescale used is nonetheless
asymptotically fast compared to any other timescale present in the model by the time such decays are sig-
nificant and thus this still is a very accurate approximation in the numerical scheme. Analogous comments
apply for the decay products of reaction 11.
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Note the “∅” refers to the fact that this appearance of SPRY is equivalent, in terms of the
modeling equations, to production with no reactant. The appearance of SPRY is modeled
as σ(1 − exp[−t/λ]).
Reactions 10. Spry binds SRC. Phosphorylation of SPRY. SPRYP binds other effec-
tors.

SRC + SPRY � SRC:SPRY, Ka = 10−1 sec−1/C,

Koff = 10−3 sec−1,

SPRY → SPRYP, Km/C = 10−2,

Vmax/C = 1.0 sec−1,

SPRYP + GRB2 � SPRYP:GRB2, Ka = 10−1 sec−1/C,

Koff = 5 × 10−3 sec−1,

SPRYP + CBL � SPRYP:CBL, Ka = 10−1 sec−1/C,

Koff = 5 × 10−3 sec−1.

Reactions 11. SRC:SPRYP:CBL, when bound to FRS2, degrades FRS2 via ubiqui-
tination

FRS2:SRC:SPRYP:CBL → FRS2:SRC:SPRYP:CBL:UBI, Half life 900 sec−1,

FRS2:SRC:SPRYP:CBL:UBI → decay products, Half life 300 sec−1.

The decay products are the released chains of molecules when FRS2 is degraded. Given
FRS2 is bound to phosphorylated FGFR, a phosphorylated FGFR molecule is an example
of a decay product; it can subsequently bind FRS2 if the latter is available. Similarly, for
a SHP2 molecule, or any chain of molecules headed by SHP2, which are bound at the
phosphorylated site FRS2471P. Analogous comments apply for the binding of GRB2 to
site FRS2306P and SRC at FRS2196P.

Reactions 12. SPRYP, bound to FRS2, is dephosphorylated by SHP2

FRS2:SRC:SPRYP with FRS2 also bound with SHP2 → FRS2:SRC:SPRY,

Km/C = 10−2, Vmax/C = 0.1 sec−1.

The SHP2 and SPRY molecules stay bound to the FRS2 complex, while any effector
which binds to SPRYP is released back into the reacting compartment on dephosphoryla-
tion.

Reactions 13. GRB2 binds SOS which binds RAF

GRB2 + SOS � GRB2:SOS, Ka = 10−1 sec−1/C, Koff = 5 × 10−3 sec−1,

SOS + RAF � SOS:RAF, Ka = 10−1 sec−1/C, Koff = 5 × 10−3 sec−1.

However, in this work, we often do not explicitly include SOS or RAF to reduce the
combinatorial explosion of possible molecular states.

The initial conditions
In our reference model, without knockouts, the initial conditions are

FGF = FGFR = FRS2 = PLC = SHP2 = GRB2 = CBL = SRC = C,
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with all other concentrations zero with one possible exception: if SOS and RAF are
present, as in the results presented in Fig. 10, their initial concentrations are also C.

These initial conditions reflect an implicit assumption that the key molecular players
are present in approximately equal quantities. While this is a restriction, in Section 4, we
motivate the observation that altering the levels of SHP2 is the key change that will have
a complex and counter-intuitive impact on the system dynamics and this is investigated in
detail; see Fig. 13. We also consider the effects of dramatically reducing SHP2, SRC, and
CBL in the modeling of knockouts; see Figs. 6, 7, and 8, for example. Even under such
extreme initial condition alterations, the model simplification procedure remains valid,
clearly demonstrating that it does not require unreasonable restrictions on the initial con-
ditions. Similarly, the qualitative behavior of the levels of GRB2 binding in the presence
of knockouts is still that of an initial fast rise with a slower decay and much higher levels
of GRB2 binding at site 3 rather than site 2. All other simulations performed with dif-
fering initial conditions, given significant initial levels of GRB2, FGF, FGFR, and FRS2
and at least one signal down-regulator, constituting a necessary pre-requisite for transient
FGF-induced GRB2 binding, have been entirely consistent with these statements. Conse-
quently, the above constraints on the initial conditions do not constitute overly restrictive
assumptions in terms of our purpose of understanding and simplifying this system plus
extracting its qualitative trends.

Appendix B: Michaelis–Menten kinetics

It is assumed that the phosphorylation and dephosphorylation reactions are driven by
Michaelis–Menten kinetics, which is the large time asymptotic approximation of an
enzyme-catalyzed biochemical reaction (Murray, 1989). Here we assume, for example,
the phosphorylation of the PLC binding site is such that all molecules with a unphospho-
rylated PLC binding site are in competition for the same enzyme. We thus need to derive
the appropriate large time asymptotic approximation.

Let the substrates be denoted by Sp , where p indexes substrate number. The enzyme
is denoted by E, while the complex formed by substrate Sp and the enzyme is denoted by
SpE and finally the product of the enzyme action on the pth substrate is denoted by Qp .
The concentration of SpE is denoted by cp while the concentrations of Sp, E, Qp are
sp, e, qp, respectively. From the standard enzyme reaction scheme for the Sp, we have6

Sp + E

k1

�
k−1

SpE
k2→ E + QP .

Thus, for each p, we have the law of mass action ordinary differential equations

dsp

dt
= −k1esp + k−1cp,

dcp

dt
= k1esp − (k−1 + k2)cp,

dqp

dt
= k2cp,

6The fact the reaction rate constants are independent of p reflects an implicit assumption that the phospho-
rylation and dephosphorylation rates of sites are not affected by bindings elsewhere. However, the model
can, and does, incorporate the fact binding molecules at one site can alter phosphorylation or dephospho-
rylation at other binding sites, as with the dynamics of SHP, for example. The effects of such binding
molecules is taken to supplement base levels of phosphorylation or dephosphorylation. It is these base
levels that are taken to be independent of other bindings and are the focus of this Appendix.
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with

de

dt
=

∑
p

[−k1esp + (k−1 + k2)cp

]
.

With the initial condition cp(t = 0) = 0 for all p and e(t = 0) = e0, we have e = e0 −∑
p cp . In addition, one can readily find that

d

dt

(∑
p

cp

)
= k1

(
e0 −

∑
p

cp

)∑
p

sp − (k−1 + k2)
∑

p

cp.

With the usual Michaelis–Menten approximation that the complexes are in quasi-steady
equilibrium (see Murray, 1989 for further details and justification), we have that

∑
p

cp = e0
∑

p sp

KM + ∑
p sp

, e = e0KM

KM + ∑
p sp

, KM

def= k−1 + k2

k1
,

and thus

dsp

dt
= −k2e0

sp

KM + ∑
q sq

,
dqp

dt
= k2e0

sp

KM + ∑
q sq

.

Hence, we see subtleties in the term arising from the Michaelis–Menten approximation
when there are multiple molecular states, but each being phosphorylated by the same
enzyme. In particular, the denominator must contain the sum

∑
q sq . These expressions

are used for all phosphorylations and dephosphorylations in the model presented in this
paper. Finally, note when there is only one molecular state undergoing a reaction the
indices p, q are limited to a single value, without loss of generality q = p = 1. Then∑

q sq = s1 = sp and the above expressions reduce to the standard Michaelis–Menten
approximation.

Appendix C: The ultra-fast initial dynamics of the model

In the following, we investigate the model’s ultra-fast dynamics. For notational conve-
nience, let the reactants concentrations R1 . . .R12 be defined by

R1 FGF
R2 FGFR, unphosphorylated
R3 FGF:FGFR, unphosphorylated
R4 FGF:FGFR, 653P
R5 FGF:FGFR, 654P
R6 FGF:FGFR, 653P654P, site 766 unphosphorylated
R7 FGF:FGFR, 653P654P, site 766 phosphorylated
R8 FGF:FGFR, 653P654P, site 766 phosphorylated, PLC bound
R9 FRS2

R10 FRS2:FGF:FGFR, 653P654P, site 766 unphosphorylated
R11 FRS2:FGF:FGFR, 653P654P, site 766 phosphorylated
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R12 FRS2:FGF:FGFR, 653P654P, site 766 phosphorylated, PLC bound

with Rq , q > 12, systematically counting through all remaining molecular states. The
(non-dimensionalized) equations for R10, R11, R12 are of the form

Ṙ10 = 1

ε1
R6R9 + f10(R10, . . .), Ṙ11 = 1

ε1
R7R9 + f11(R10, . . .),

Ṙ12 = 1

ε1
R8R9 + f12(R10, . . .),

where f10, f11, f12 are functions representing all but the very fastest dynamics and
ε1 � 1. The asymptotic smallness of ε1 is due to the fact the timescale associated with
the influence of R6R9, R7R9 and R8R9 on R10, R11 and R12 is much faster than any other
timescale. A matched asymptotic expansion (e.g. Chapter 7 (Bender and Orszag, 1991))
reveals that the composite solutions at leading order in ε1 are

R10+v = Router
10+v + 1

ε1

∫ ∞

t

ds R6+vR9,

where Ṙouter
10+v = f10+v(R10, . . .), lim

t→0
Router

10+v = 1

ε1

∫ ∞

0
ds R6+vR9, v ∈ {0,1,2}

and

Rw = Router
w , where Ṙouter

w = fw(R10, . . .), lim
t→0

Router
w = R0

w, w > 12.

The quantity R0
w is the initial condition for Rw in the full model. If we are only interested

in downstream quantities, such as levels of GRB2 binding, then the only quantities from
the first stage of the reaction scheme which could be important are

∫ ∞

0
ds R6R9,

∫ ∞

0
ds R7R9,

∫ ∞

0
ds R8R9,

as these provide initial conditions in the outer equations for R10, R11, R12. Also, the
above outer solutions are highly accurate for a sufficiently large time compared to the
timescale of the ultra-fast dynamics as then

∫ ∞

t

ds R6R9,

∫ ∞

t

ds R7R9,

∫ ∞

t

ds R8R9,

are small. Thus, we investigate these integrals.
As we will conclude below, R8 is effectively negligible in the ultra-fast dynamics, and

thus we do not consider its dynamics explicitly in the following. The non-dimensionalized
model equations for R1 to R7, R9 are as follows:

Ṙ1 = −q1R1R2, Ṙ2 = −q1R1R2,

Ṙ3 = q1R1R2 − q2R3

K + R3 + R4
− q2R3

K + R3 + R5
, (C.1)
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Ṙ4 = q2R3

K + R3 + R5
− q2R4

K + R3 + R4
, Ṙ5 = q2R3

K + R3 + R5
− q2R5

K + R3 + R5
,

Ṙ6 = −q3R6R9 + q2R4

K + R3 + R4
+ q2R5

K + R3 + R5
− O

(
q4

q3

)
,

Ṙ7 = −q3R7R9 + q4R6

K + R6 + · · · + O

(
q2

q3
,

q4

q3

)
, Ṙ9 = −q3(R6 + R7)R9

with the initial conditions

R1 = R0
1, R2 = R0

2, R3 = R4 = R5 = R6 = R7 = 0, R9 = R0
9 .

The parameters q1, q2, q3
def= ε−1

1 , q4 are such that q2/q3, q4/q3 � 1. Typically K ∼
O(1). As we are only interested in R6R9, R7R9, we consider these equations only while
R6R9, R7R9 are non-negligible, and thus we can neglect the O(q2/q3), O(q4/q3) terms
in the above.

After solving for R1, R2 the equations for R3 . . . R6 reduce to:

Ṙ3 = q1R
0
1R

0
2(R

0
2 + R0

1)
2

(R0
1 − R0

2e
q1(R0

2−R0
1 )t )(−R0

2 + R0
1e

−q1(R0
2+R0

1 )t )
− 2q2R3

K + R3 + R5
,

Ṙ5 = q2R3

K + R3 + R5
− q2R5

K + R3 + R5
, (C.2)

Ṙ6 = −q3R6R9 + 2q2R5

K + R3 + R5
− O

(
q4

q3

)
,

with R4 = R5.
Solving an equation of the form

dx

dt
= −q3g(t)x + f (t), q3 � 1, q3g(t) � 1, g(t) > 0,

dg

dt
> 0, |df/dt | � q3|dg/dt |

and implementing Watson’s lemma (e.g. Chapter 6 (Bender and Orszag, 1991)) re-
veals that the leading order solution, in an expansion with respect to q3, is given by
x = f (t)/[q3g(t)]. Thus, while q3R9 � 1, we have the quasi-steady state hypothesis
holds at leading order in q−1

3 � 1 for the R6 equation. Hence, the flux into the R10 com-
partment is simply

q3R6R9 = 2q2R5

K + R3 + R5

at leading order. Note this implies that R5 � R6, R6 � 2q2, and hence q3R6R9 � q3R7R9

(at least for q3R9 sufficiently large). Thus, the total flux into the R11 compartment is
sub-leading compared to the total flux into the R10 compartment. Hence, the dominant
influence of the early stage dynamics on the rest of the model is via

∫ ∞

0
q3R6R9.
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Given the effects of R7 are thus essentially negligible in the ultra-fast dynamics, even
on neglect of the production of R8 from R7, the levels of R8 must also negligible in the
ultra-fast dynamics.

If the initial levels of R9, i.e. FRS2, is sufficiently small, then levels of FRS2 will limit
the reaction and we have R9(∞) = 0, R6(∞) > 0. Integrating the equations in (C.2) over
the positive real line and utilizing the above leading order approximations then yields

∫ ∞

0
dt q3R6R9 ∼ R0

9 .

Conversely, for abundant FRS2, we have R9(∞) > 0, R6(∞) = 0. Integrating
Eqs. (C.2) over the positive real line then quickly reveals that

∫ ∞

0
dt q3R6R9 ∼

∫ ∞

0
dt

q1R
0
1R

0
2(R

0
2 + R0

1)
2

(R0
1 − R0

2e
q1(R0

2−R0
1 )t )(−R0

2 + R0
1e

−q1(R0
2+R0

1 )t )
= min

(
R0

1, R0
2

)
.

Note these results, though contingent on leading order asymptotic approximations, respect
conservation principles exactly, i.e. the molecules that enter the initial reaction phase leave
the initial reaction phase.

There is sufficient R9 to prevent R9(∞) = 0 if R0
9 > min(R0

1, R0
2). Hence, the above

can be summarized by
∫ ∞

0
dt q3R6R9 ∼ min

(
R0

1, R0
2, R0

9

)
.

Thus, we have the immediate modeling prediction that the amount of FGF:
FGFR653P654P:FRS2 produced in the initial stages of the reaction scheme is simply
dependant on the initial levels of FGF, FGFR, and FRS2 at leading order in ε1 � 1.
Neither the details of the phosphorylation and dephosphorylation Michaelis–Menten dy-
namics nor how the constituents of the early reaction phase interact are important for
the initial dynamics. We also have the prediction that solving for Router

k , k ≥ 10 with
the above initial conditions will give accurate predictions for sufficiently large timescales
compared to the timescales of the initial, ultra-fast dynamics. Thus, the initial dynamics
effectively decouples.

We have seen the robustness of the model’s predictions for the formation of
FGF:FGFR653P654P:FRS2, given FRS2 binds to FGF:FGFR653P654P but not FGF:
FGFR653P, FGF:FGFR654P or FGF:FGFR. However, consider a model which allowed
these possibilities with similar reaction rates. We would still anticipate that the amount
of FGF:FGFR bound to FRS2 in the initial dynamics again simply depends on the ini-
tial levels of FGF, FGFR and FRS2. Thus, the modeling predictions would be unaltered
on all but the very fastest of timescales, thus motivating our simplification of the initial
dynamics.
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