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Abstract- An investigation is conducted into the effects
of a complex mapping between genotype and phenotype
upon a simulated evolutionary process. A model of em-
bryogeny is utilised to grow simple French flag like pat-
terns. The system is shown to display a phenotypic ro-
bustness to damage and it is argued that this is a result of
a modularity forming within the mapping process which
causes a functional grouping of sections of the genotype.

1 Introduction

Traditionally, the genetic algorithm has been inspired by
the selectionist principle of survival-of-the-fittest in order
to perform directed searches towards some optima. This
is most commonly achieved through direct encoding of po-
tential solutions as genotypes. These are then exposed to
search operators which perform mutations or exchange of
useful genetic material with other genotypes. In this con-
text the most important aspect as far as an individual is
concerned is to ensure its genetic information is preserved
within the population. In order to evolve a suitable solution
this process is directed by defining a fitness function and a
set of search operators which are entirely problem depen-
dent.

More recently, research has begun to account for the dis-
tinction, often made in nature, between the representation
of an individual in the evolutionary framework (genotype)
and its representation in the context in which it performs
or is evaluated (phenotype). In essence it is the phenotype
which determines the likelihood of an individual propagat-
ing further through the evolutionary system and it is the
genotype which determines how this propagation is con-
ducted. Therefore, ensuring the survival of the phenotype
inherently results in the same for the genotype. This has
largely been ignored by the evolutionary computation field
since the genotype is often considered as the basis for rep-
resentation of a potential solution. With the introductionof
a complex mapping, for evolution to be anything more than
a blind search, it must find a way to relate useful phenotypic
traits to structures in the genotypic representation.

A representation is proposed which enables such a rela-
tionship between genotype and phenotype in the form of a
computational model of embryogeny. The effects of intro-
ducing such a mapping process are investigated and more
specifically how traits deemed useful in phenotypes can in-
fluence the behaviour of genotypes during evolution.

The general hypothesis upon which this work is based
is that for an embryogeny mapping to successfully evolve
solutions a modularity must form in the mapping process
such that it becomes easier to relate useful structures in the

phenotype with elements of the genotype.
The model of embryogeny utilised in this work is based

on the development of structured multi-cellular phenotypes
in a 2-dimensional space. Wolpert [14] used the pattern
of the French flag as an example to highlight the use of
positional information for spatial differentiation in multi-
cellular organisms. This analogy has been heavily used in
the field of developmental biology ever since and so in the
spirit of continuity the French flag has been used as a tar-
get template for evolved phenotypes in this work as it has in
others [9, 2].

2 The Embryogeny Model

The mapping from genotype to phenotype in natural evo-
lution is a developmental growth process. This work con-
siders the initial part of this process, embryogeny, which
describes the growth of an embryo from a single stem cell
to a functioning multi-cellular organism.

The concept of embryogeny is not new to the field of
evolutionary computation [6, 11, 9]. However the crossover
of knowledge from developmental biology has not been an
easy process. As with any such model a number of abstrac-
tions and assumptions are required, and these often prove to
be overly crude or inaccurate. The difficulty is in finding an
approach which simplifies a real biological system to pro-
duce something computationally feasible without losing the
essence of the original.

2.1 The Physics

A computational embryogeny mapping process requires
that the phenotype should consist of multiple independently
processed states which from this point will be referred to
as cells since this is their biological equivalent. Each cell
state consists of a set of 20 chemical concentrations and a
set of vectors describing the cell location and division spin-
dle. These are independently stored for each cell and all cell
states are updated in parallel which is termed a growth step.
The critical aspects of the model are the two ways in which
cells interact.

Firstly, the chemical concentrations stored indepen-
dently for each cell can diffuse across the simulated environ-
ment. This diffusion is modelled as a simple Gaussian dis-
tribution which is conserved to ensure consistency amongst
chemical concentrations. This ensures that the amount of
diffused chemical at any given point can be calculated for
all sources instantaneously for any point in 2-dimensional
space.

Secondly, the model consists of a real valued 2-
dimensional simulation of cell growth. At each growth step



a cell can only divide once and in the direction of its divi-
sion spindle. This results in two cells equidistant from their
original cell position and identical in every aspect bar their
position vectors. Therefore, aftern growth steps, there can
be a maximum of2n cells.

Each cell is modelled physically as a circular particle
with a given radius and can exist at any real valued posi-
tion. This allows the potential for cells to overlap and so
a cell shuffle model based upon the Verlet integration al-
gorithm [13] is utilised. This models force interactions to
move cells in a realistic fashion in order to minimise over-
lap. Equation 1 shows how, for a given particle, the current
positionx and the previous positionx∗ are used to approx-
imate velocity in order to calculate a new positionx

′

. The
accumulated acceleration,a, is calculated to be proportional
to the amount of overlap with neighbouring cells.

x
′

= 2x − x
∗ + a · ∆t

2 (1)

The cost of modelling cell interactions is ofO(n2)
complexity. However, for physical interactions, only cells
within a certain distance of a given cell are relevant. A sim-
ple bucketing technique which subdivides the space can pro-
vide O(n) complexity. Irrelevant of how efficient the code
may be, computational costs increase with the number of
cells in the model and so both the number of iterations of
growth, the radius of the cells, and the size of the simulated
environment in which they grow has been fixed.

In the work presented here we specifically want to inves-
tigate patterns and shapes that cells can form. To do this
we need to have some way to visualise differences between
cells. For this reason three chemical concentrations are used
to represent, within each cell, red, green and blue colour val-
ues for visualisation purposes. Two further chemicals are
used as orthogonal morphogens in vertical and horizontal
directions by enabling the diffusion of chemicals to form a
concentration gradient. This leaves 15 chemical concentra-
tions to be freely used by evolution to store useful variables
or act as further morphogens.

Overall this approach offers significant advantages over
previous models of computational embryogeny by remov-
ing common issues such as cell overwriting and expen-
sive diffusion algorithms which often lead to serial artefacts
[2, 6, 9].

2.2 The Genetics

Biologists use models of gene interactions in order to gain
greater insight into how genes and their resultant proteins
can regulate gene expression. One such model, the Operon
model, explains how genes form networks of complex in-
teractions termed Genetic Regulatory Networks (GRN) [4].
In this work a much simplified version of the Operon model
is used as a basis for the genetic representation.

The genome can be broken down into a set of 20 genes,
each represented as a pair of integers, the first describing
the genes functionA and the second the dependent protein
B. The genome is processed as follows. The first gene is
always expressed and so its functionA is carried out depen-
dent upon the value stored for the concentration of protein

B in that particular cell. A gene’s function can be to al-
ter the local cell state and/or to control the expression of
the next gene in the genome. In this manner the genes are
linked in a chain of expression dependent upon their posi-
tion in the genome. There are 26 genes in total consisting
of the functions defined in figure 1.

Each cell in the model has an identical genome so differ-
ences in cell behaviour directly relate to differences in cell
states. Therefore two cells with identical cell states willper-
form identical actions. However, since position forms part
of the cell state and the shuffle algorithm prevents cells from
occupying the same space then all cells have the potential to
be differentiated from each other.

3 The Evolutionary Algorithm

When considering suitable genetic algorithms for a given
problem the concept of fitness landscape is often raised.
This is based on the principal that the search operators de-
fine a neighbourhood structure which can be conceived as
a multi-dimensional landscape upon which evolving indi-
viduals move. For many simple problems using a direct
encoding this results in smooth transitions across the land-
scape with minimal local optima upon which evolution can
be trapped. Introducing an embryogeny mapping process
has some fundamental effects on such a landscape approach.

From the previously described representation it is pos-
sible to infer that, for all possible genotypes, the genotype
space will have a size of the order of1054. However, when
considering the number of possible phenotype states, the
size of the phenotype space is greater than10500. Since
the genetic representation has the ability to harbour multiple
redundancies there must also exist many-to-one mappings.
Therefore it is likely that the genotype space only maps to a
very small minority of the phenotype space. In addition the
mapping does not preserve neighbourhood structure such
that neighbouring genotypes may not map to neighbouring
phenotypes. Since evaluation is conducted upon the pheno-
type then the fitness landscape in the phenotypic space will
be more likely to result in a smooth landscape with clear
transitions to fitter individuals. However, evolution is con-
ducted at the genetic level and when these fitness values are
mapped back from the phenotypic space to the genotypic
space it may result in an extremely noisy and discontinu-
ous fitness landscape. Therefore, with the introduction of a
complex mapping, the landscape analogy for evolution be-
comes weaker.

There is another impact of a complex mapping for evo-
lution since a true local optima with no neighbouring values
of equal or better individuals are extremely unlikely if re-
dundancy exists in the genome. Any individual with redun-
dancy will occupy at least one network of neutrality. It has
been argued that these neutral networks provide a way for
evolution to maintain diversity and prevent early stagnation
[5]. If the population occupies a neutral network then se-
lection pressure can no longer be fitness driven and so must
revert to a random drift.

A simple Genetic Algorithm is utilised which selects the
best50% of the population. Each of these selected indi-



Independently defines whether or
not the next gene in the genome

should be expressed.
Terminal Genes

Defines whether or not the next gene
in the genome should be expressed
dependent upon some given protein.

Expressive Genes

If expressed, defines whether or not
the next gene in the genome should
be expressed dependent upon some

given protein.

Evaluative Genes

If expressed performs some action
on the cell state.

Functional Genes

FunctionGene Type

Always expressed and has the effect of ending the
current chain of expression and beginning a new chain

irrespective of the previous gene or state of the cell.

Always expressed and has the effect of ending the
current chain of expression and beginning a new chain
dependent upon the previous gene and the current cell

state.

Controls the expression within a group of genes and
can be chained together with other evaluative genes to

form more complex functions.

Alters cell state such as to cause the cell to move its
division spindle, emit a given protein at a given rate,

divide or die.

Comment

Figure 1: Genes and their functions

viduals are subjected to a random two point crossover op-
eration with another of the selected individuals. The prod-
uct of this crossover is then subjected to a further random
single point mutation. The resulting offspring then replace
the worst50% of the population. This ensures a consistent
generational selection pressure during adaptive evolution
whilst also enabling random selection during neutral evo-
lution. Fitness of an individual is evaluated as the number
of cells present in a phenotype which are correctly spatially
differentiated according to a predetermined target template.

The computational cost of the embryogeny mapping is
quite high primarily due to the repeated interaction between
large numbers of cells. In order to overcome this, several
computational clusters were utilised with a simple parallel
genetic algorithm [10]. This is realised through a distributed
fitness evaluation using a simple server-client architecture in
which evolution is conducted upon the server. When a pop-
ulation evaluation is required the population is simply di-
vided into a set of sub-populations which are then passed to
and then processed by a set of client machines before being
returned and combined to recreate the original population.

4 Simulation Results

Figure 2 shows the typical population behaviour during an
evolutionary process averaged over 10 evolutionary runs.
The effects of neutrality can be clearly seen since directly
following any improvements in the fitness of the population
there is a recovery in the genetic diversity suggesting that
optima are not localised but networked across a vast diver-
sity of genotypes. Diversity is measured as the number of
differing genes between two individuals and taken as an av-
erage for each individual from the rest of the population.
It is clear that the genetic algorithm is capable of utilising
this characteristic and so maintains diversity and prevents
premature convergence without the need for niching or spe-
ciation techniques.

Figure 3 shows the behaviour of the phenotype of an
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Figure 2: Typical fitness and diversity behaviour during evo-
lution

evolved individual in terms of its robustness. In this case,
when referring to robustness of a phenotype we consider the
ability of a phenotype to repair from damage at the pheno-
typic level. This was calculated by firstly growing a pheno-
type to maturity (figure 3a-d). Cells are randomly removed
until only a small percentage of the original phenotype re-
mains (figure 3e). The growth process is then reapplied until
the previous number of cells have been reproduced (figure
3f-h). The robustness of a phenotype is then measured as
the percentage of these cells which are spatially differen-
tiated correctly according to the original template against
which the individual was evolved. The phenotype is also
robust to overgrowth, as seen in figure 3i, where cells are
forced to overlap due to the limited size of the simulated
space.

Figure 4 shows the average response, for10 evolution-
ary runs, to damage at both the genotypic and phenotypic
levels of the most optimal individual in the population dur-
ing a typical evolutionary process. Genotypic robustness is



Figure 3: Typical behaviour of optimal evolved phenotype
in response to damage

a measure of the effects of a random single point gene mu-
tation on the genotype by measuring the fitness of the resul-
tant phenotype. Phenotypic robustness is calculated from
the number of cells which match the target template after
first culling cells randomly from a fully developed pheno-
type until only a given percentage remain, in this case50%,
and then reapplying the growth process until previous cell
numbers have recovered. The robustness is a percentage
measure of similarity to the original phenotype in terms of
fitness.

Robustness(%) = 100 ∗

FitnessInResponseToDamage

OriginalF itness
(2)

Response to phenotypic damage gives the most clear re-
sults showing that a consistently high value of robustness
is achieved whilst response to genetic mutations produces
much noisier results which overall portray a much lower ro-
bustness capability. This suggests that phenotypic robust-
ness, or another characteristic of which it is a by-product,is
actively sought after by the evolutionary system.

The hypothesis upon which this work is based is that
the robustness characteristic of these phenotypes is a result
of the formation of modules in the embryogeny mapping.
In order to analyse this hypothesis the interaction between
genes and specific features of the phenotype are analysed.
This requires a set of distinct phenotypic features to be de-
fined and for the French flag pattern the most obvious are of
course the three differentiated sections of colour.

If each gene is removed from the genome in turn, a dif-

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

Evolutionary Generations

F
itn

es
s 

(%
)

Fitness of optimal individual in population
Fitness after genotypic damage
Fitness after phenotypic damage

0 50 100 150 200 250 300 350 400 450 500
0 

20

40 

60 

80 

100

Evolutionary Generations

R
ob

us
tn

es
s 

(%
)

Robustness to genotypic damage
Robustness to phenotypic damage

Figure 4: Robustness of optimal phenotype during evolution

ferent phenotype for each gene which has been deleted can
be observed. Figure 5 shows the typical behaviour of the
phenotype, for an optimal individual, to the removal of indi-
vidual genes in this manner. For more than half of cases the
resultant phenotype shows no change (figure 5a-b) whilst
most others show alterations which can be specifically as-
sociated to these three distinct areas of differentiated colour
in the original phenotype (figure 5c-h).

For a more thorough assessment of this hypothesis it is
necessary to define a measure of modularity. A gene is de-
fined as belonging to a module if its effect on one of these
phenotypic features is greater than upon any of the others
[7]. Figure 6 shows the result of calculating the percentage
of genes in a genome which can be considered modular ac-
cording to the above definition. It is shown that, averaged
over 10 evolutionary runs, the modularity of the most opti-
mal genome increases over evolutionary time.

5 Discussion

Traditionally, simulated evolution has been implemented
around the concept of selection pressure. For this reason
neutrality is often considered to be a detrimental feature
of complex mappings since the predominant force behind



Figure 5: Phenotypes resulting from the removal of individ-
ual genes
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Figure 6: Measuring the average modularity of the most
optimal genome during evolution

evolution is disrupted. However, if selection pressure is re-
placed with random selection there is still a form of evo-
lutionary drive. If we postulated that as fitness improves
during evolution the number of individuals with greater or
equal fitness is decreasing, then we can argue that random
selection and search operators will become more damag-
ing during evolution. Therefore an individual is more likely
to survive if it is robust to damaging search operators, a
process known as canalization.

The results show that evolution causes canalization of
the genotype such that small changes to the genotype tend
to result in minimal or trait specific effects upon the phe-
notype, and that the phenotypes are themselves robust to
damage. The question is how does this canalization occur
and how does it relate to phenotype robustness?

Pleiotropy describes the ability of a gene or group of
genes to influence the behaviour of multiple phenotypic
traits [1]. It can be argued that if levels of pleiotropy are
high then search operators are more likely to affect multiple
aspects of the phenotype. However if pleiotropy is main-
tained at low levels then search operators should be limited
to affecting individual features of the phenotype. Results
shown in figure 5 seem to strengthen this argument and a
good way to maintain low levels of pleiotropy would be to

isolate specific genes to identifiable features in the pheno-
type as seems to be the case in figure 6.

This modularity in the mapping between genotype and
phenotype may explain why phenotypes are robust to dam-
age. The embryogeny mapping is a cyclic process since
the phenotype is dependent upon the genotype and vice
versa. This means that the canalizing behaviour of the map-
ping from genotype to phenotype can in effect be reversed.
Disruptions in the mapping process caused by damage to
the phenotype are localised by the modularisation and so
only affect small parts of the genotype. This minimises
the impact of damage and noise on the mapping process
which might otherwise worsen with progressive growth. In
essence, it is not the genotype or phenotype that exhibit
canalized behaviours but the mapping process itself.

6 Conclusion

This paper has demonstrated how an evolutionary system
utilising a complex mapping based on a model of embryo-
geny can produce some observable, measurable and repeat-
able effects on an evolutionary system. These effects consist
of forming a modularisation in the complex mapping which
results in specific traits in the phenotype being described by
a specific group of genes in the genotype. It is this argument
which is used as the basis for the following hypothesis. For
a complex mapping, such as a model of embryogeny, useful
traits are observed in the phenotype. For these traits to be
effectively utilised in simulated evolution it must be possi-
ble to encapsulate these traits in the genotype. If the geno-
type is represented in such a way that genes which function
together are grouped together then they become isolated in
both the genetic and phenotypic representations. We call
this a modularised mapping and how evolution attempts to
untangle this mapping could have important implications.

This work highlights a need to acknowledge the im-
portance of distinguishing between genotypic and pheno-
typic representations and how their interaction influences
simulated evolutionary systems. Such characteristics of
an evolutionary system may be fundamentally useful in
evolving more complex phenotypic structures. This ap-
proach has already been utilised for describing neural net-
works on a much lower level than most existing evolution-
ary neural network models [3, 15] and has the potential to
overcome problems already highlighted for evolvable hard-
ware [12, 8].

Future work is to produce comparative models with var-
ious forms of representations, including those which do not
bias towards modular structures.
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