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ABSTRACT

The Escherichia coli cyclic AMP receptor protein
(CRP) is a global regulator that controls transcription
initiation from more than 100 promoters by binding to
a specific DNA sequence within cognate promoters.
Many genes in the CRP regulon have been predicted
simply based on the presence of DNA-binding sites
within gene promoters. In this study, we have
exploited a newly developed technique, run-off tran-
scription/microarray analysis (ROMA) to define CRP-
regulated promoters. Using ROMA, we identified 176
operons that were activated by CRP in vitro and 16
operons that were repressed. Using positive control
mutants in different regions of CRP, we were able to
classify the different promoters into class | or class I/
lll. A total of 104 operons were predicted to contain
Class Il CRP-binding sites. Sequence analysis of the
operons that were repressed by CRP revealed differ-
ent mechanisms for CRP inhibition. In contrast, the
in vivo transcriptional profiles failed to identify most
CRP-dependent regulation because of the complexity
of the regulatory network. Analysis of these operons
supports the hypothesis that CRP is not only a regu-
lator of genes required for catabolism of sugars other
than glucose, but also regulates the expression of a
large number of other genes in E.coli. ROMA has
revealed 152 hitherto unknown CRP regulons.

INTRODUCTION

The Escherichia coli cyclic AMP receptor protein (CRP) is an
important transcription factor that regulates transcription
initiation for more than 100 genes mainly involved in catabo-
lism of carbon sources other than glucose (1). E.coli prefer-
entially utilizes glucose over other sugars and only catabolizes
other sugars when the supply of glucose has become depleted
[reviewed in (2)]. The presence of glucose prevents E.coli
from catabolizing alternative sugars by several mechanisms,
one of which is that glucose lowers the level of cAMP, the
inducer for CRP.

CRP functions as a dimer in the form of a CRP-cAMP
complex, and regulates transcription initiation by binding
to a symmetrical DNA sequence (consensus sequence

5'-AAATGTGATCTAGATCACATTT-3'), located near or
within the promoter regions. At CRP-dependent promoters,
CRP activates transcription by making direct protein—protein
contacts with RN A polymerase (RNAP). Class | CRP-dependent
promoters, e.g. lac, contain a single CRP-binding site upstream
of the DNA-binding sites for RNAP. At these promoters, CRP
activates transcription by interacting with the C-terminal
domain of the RNAP o subunit (0CTD) via a surface-exposed
patch, known as activating region 1 (AR1) (residues 156—164).
Class I CRP-dependent promoters, e.g. ga/P1 and melR, contain
a CRP-binding site overlapping the —35 hexamer for RNAP. At
these promoters, CRP makes multiple interactions with RNAP,
including between AR1 and oCTD, the activating region 2
(AR2) (residues 19, 21 and 101) and the N-terminal domain
of o subunit (adNTD) and between AR3 (residues 52-58) and
the RNAP ¢’° subunit region 4. Many promoters contain tandem
CRP sites and are known as Class III promoters. CRP activation
at these promoters involves a combination of the Class I
and Class II mechanisms. Additionally, many CRP-dependent
promoters are co-dependent on a second activator (3).

The recent completion of several bacterial genome
sequences has facilitated the development of computer-
based bioinformatic approaches and microarray techniques
to study transcription regulation at a genome-wide level.
Bioinformatic analysis has allowed the prediction of the reg-
ulon of a particular transcription factor by searching for the
consensus sequences, or by using algorithms to search for
sequence patterns within the genome. CRP-binding sites pre-
sent within the E.coli genome have been predicted using dif-
ferent computational approaches (4,5). In the latter study, Tan
et al. have predicted 161 strong (including known sites) and
285 weak candidate CRP-binding sites, using a comparative
genomic approach. However, in silico-predicted DNA-binding
sites may not be occupied in vivo, or may only function in the
presence of other factors. Conversely, operons with weak, but
functional, sites may not have been identified using these
approaches. In this study, we have utilized oligonucleotide
microarray technology to determine the CRP regulation
experimentally, and compared these data with the predicted
CRP-binding sites.

The DNA microarray technology allows thousands of genes
to be studied simultaneously in a single experiment, and thus
provides a powerful tool to investigate gene function at a
genomic level. Transcription profiles of E.coli in different
media (6,7), under various stress conditions (8,9) and between
different strains (10,11), have revealed the roles of many
regulatory factors. However, the interference of other
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regulatory networks makes it difficult to distinguish direct
effects on transcription from indirect effects, and therefore
it is hard to directly link the results to a specific transcriptional
factor. Recently, Helmann and co-workers (12) have
developed a novel technique, which combined in vitro run-
off transcription with macroarray analysis (ROMA), to define
the direct effects of 6" on Bacillus subtilis promoters. Run-off
transcription reactions in this experimental system used geno-
mic DNA as template. The resulting >*P-labelled RNA pro-
ducts, transcribed by either 6% holoenzyme or core enzyme,
were hybridized to macroarray membranes. Direct visual com-
parison of the core versus holoenzyme experiments allows the
ready identification of genes targeted by 6" . The result from
ROMA for 6" from B.subtilis was consistent with those
determined by promoter consensus searching and in vivo
transcriptional profiling. In this study, the term ‘in vitro’ refers
to experiments completed with purified DNA and protein
components, whereas ‘in vivo’ refers to experiments in
E.coli cells grown in planktonic culture.

In this study, the ROMA procedure was modified so as to
exploit oligonucleotide arrays on glass slides and ROMA was
then used to identify CRP-regulated operons in vitro.

MATERIALS AND METHODS
Strains and growth conditions

E.coli K-12 MG1655 (CGSC 7740) was used in this study
(13). A Acrp derivative of MG1655 was constructed using
the gene disruption method of Datsenko and Wanner (14).
Primers: CRP P1: 5-GCTCTGGAGAAAGCTTATAACA-
GAGG ATAACCGCGCGTGTAGGCTGGAGCTGCTTC-3’
and CRP P2:5-TGGCGCGCTACCAGGTAACGCGCCAC-
TCCGACGGGACATATGAATATCCTCCTTAG-3  were
used to amplify a chloramphenicol resistance gene cassette
from plasmid pKD3 (14). The bases underlined in the primer
sequences shown above represent the short regions of homol-
ogy to genomic sequences flanking crp, which were used in
Red-mediated recombination of the chloramphenicol resis-
tance cassette into the chromosome. Transformants were
grown on Luria—Bertani (LB) agar (15) containing 0.2% glu-
cose and 50 pg/ml chloramphenicol. PCR was used to screen
chloramphenicol resistant transformants, for replacement of
crp with the chloramphenicol resistance cassette, using the
primers CRPSCREEN 1: 5-GGATGCTACAGTAATACA-
TTGATG-3', and CRPSCREEN2: 5-GACCGAATCGTAA-
TTCGCCAAG-3'. Amplicons generated by the screening PCR
were sequenced using a BigDye™ version 3 sequencing kit
(Applied Biosystems, Warrington, UK) and analysed on an
ABI 3700 sequencer (Applied Biosystems). MG1655 Acrp
strains were grown on Maconkey agar containing maltose
(1% w/v) to confirm the phenotype.

For in vivo microarray experiments, both wild-type and
Acrp strains were grown in M9 minimal media (14) containing
0.2% fructose at 37°C to ODggq 0.8. Glucose (0.2%) was then
added to the cultures, which were grown for a further 15 min,
prior to harvesting. The cell samples for RNA preparations
were collected before and after the addition of glucose. Two
volumes of RNAProtect (Qiagen Ltd, Crawley, UK) were
added per volume of bacterial culture, prior to centrifugation.
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E.coli oligonucleotide array

E.coli oligonucleotide arrays were produced by the UBEC
group (University of Birmingham E.coli group). The oligonu-
cleotides were designed and synthesized by Qiagen Operon
Ltd as the E.coli Array ready oligo set vs 1.0 (Qiagen) and
represented 4289 E.coli K12 strain (MG1655) open reading
frames (ORFs); 1416 ORFs designed to the O157:H7
(EDL933) strain; and 273 ORFs unique to the O157:H7
(Sakai) strain (http://oligos.qiagen.com/arrays/oligosets_ecoli.
php). In addition, 110 oligonucleotides representing ORFs
from the EDL933 and Sakai plasmids were added to the oli-
gonucleotide array set. Also included within the array set were
12 positive and 12 negative control oligonucleotides, which
were printed within each subarray. The average size of each
oligonucleotide used in the array was a 70mer, with a
T =75 £ 5°C. The position of each oligonucleotide within
the ORF was more than 40 bases away from the 3’ end. The
oligonucleotides were arrayed on Corning CMT-GAPS 11
slides in 48 blocks, each containing 324 spots (18 rows by
18 columns) using a MicroGrid II robot (BioRobotics, UK).
Each oligonucleotide was printed in duplicate on the array, and
Amersham Lucidea™ Universal Scorecard™ (Amersham,
UK) controls were printed within each subarray.

Genomic run-off transcription for ROMA

Genomic DNA was isolated from the E.coli MG1655 (CGSC
7740) wild-type strain using phenol/chloroform extraction
(http://www.research.umbc.edu/~jwolf/m1.htm), digested
with EcoRI overnight and purified by phenol/chloroform
extraction, followed by isopropanol precipitation. RNAP
holoenzyme was purified as described previously (16). Wild-
type CRP, ARI-mutated CRP (HL159) and AR2-mutated CRP
(KE101) were purified as described previously (17).

For a single ROMA experiment, two run-off transcription
reactions were set up in parallel. The control reaction con-
tained 4 pg of EcoRI digested genomic DNA, and 1 mM each
of ATP, GTP, CTP and UTP, in transcription buffer (40 mM
Tris/acetate, pH 7.9, 10 mM MgCl,, | mM DTT, 100 mM KCl,
0.1 mg/ml BSA), which contained RNase Out (Invitrogen,
UK) at a concentration of 50 U/reaction. The test reaction
contained 2 ul of 5 mM cAMP (final concentration 200 uM),
and 4 ul of 10 uM CRP (40 pmol of monomer, at a final
concentration of 800 nM) in addition to the components of
the control mixture. Both run-off transcription reaction mix-
tures were incubated for 10 min at 37°C and transcription
started by the addition of 20 pmol of RNA polymerase holoen-
zyme. Run-off transcription reactions were incubated at 37°C
for 30 min. After incubation, the reactions were stopped by the
addition of 5 pul of 250 mM EDTA and placed on ice.

RNA purification and labelling

Both RNA transcripts from in vitro transcription reactions and
total RNA from cell cultures were extracted using the Qiagen
RNeasy mini kit. On-column DNase I digestion (Qiagen Ltd)
was used to remove contaminating genomic DNA from the
RNA preparations. The concentrations of RNA or in vitro
transcription products were determined at OD,q, and
OD,gp. An indirect labelling method was used to obtain fluor-
escence-labelled cDNA for any RNA sample. Briefly, all
RNA transcripts from each reaction or 10-20 pg of total
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RNA were mixed with 6 ug of random hexamers (Amersham
Biosciences, Little Chalfont, UK) to a final volume of 18.4 ul,
incubated at 70°C for 10 min and snap-cooled in ice. Reverse
transcription labelling mixture (11.6 ul) was then added to
the RNA template and random hexamers, which contained
0.5 mM dATP, dCTP, dGTP, 0.2 mM dTTP, 0.3 mM
aminoallyl-dUTP (aa-dUTP), RNase inhibitor (30 U), 400 U
SuperScript II (Invitrogen, Paisley, UK), 10 mM DTT and
1x first strand buffer. The mixture was incubated at 42°C
for 3 h or overnight to generate aminoallyl-labelled cDNA.
To hydrolyse the RNA template, 10 ul of 0.5 M EDTA and
10 ul of 1 M NaOH were added to the reaction and incubated at
65°C for 15 min. The reaction was neutralized by the addition
of 10 ul 1 M HCI. Unincorporated aa-dUTP and free amines
were removed by washing the cDNA in a microconcentrator
(Microcon YM-30, Millipore) and the sample was then
vacuum dried. The aminoallyl-cDNA pellet was resuspended
in 4.5 pl of 0.1 M sodium carbonate buffer (pH 9.0) and
coupled with Cy3 or Cy5 monoreactive dye (Amersham),
prepared in dimethyl sulfoxide for 2 h at room temperature
in the dark. For the ROMA experiment, the aa-cDNA from
the control reactions was coupled with Cy3 and aa-cDNA from
the CRP reactions coupled with Cy5. For in vivo transcrip-
tional profiling, the aa-cDNA obtained from either wild-type
strain or ACRP strains before the addition of glucose was
coupled with Cy3 and after the addition of glucose was
coupled with Cy5. Uncoupled dyes were removed using a
QIAquick PCR purification kit (Qiagen). Lucidea™ Score-
card (Amersham) mRNA spike mixes were added to labelling
reactions for both in vivo and ROMA experiments.

For the in vivo microarray work, the quality and concentra-
tion of the RNA prepared was assessed using the Agilent 2100
Bioanalyser. Total RNA (10-20 pg) was labelled using the
CyScribe Post-Labelling Kit (Amersham Biosciences) as
described by the manufacturer.

Prehybridization and hybridization

Before hybridization, the arrayed slides were prehybridized
in a buffer containing 25% formamide, 5x SSC, 0.1% SDS
and 10 mg/ml BSA at 42°C for 2 h and washed by dipping
twice in distilled water. The slides were then dipped in 95%
ethanol for 1 sec and dried in a clean 50 ml centrifuge tube
by centrifugation at 1500 g for 10 min. The Cy3 and Cy5
labelled cDNAs were mixed, vacuum dried and resuspended
in 70 pl hybridization buffer containing 25% formamide, 5x
SSC, 2 ul of 50x Denhardt’s, 2 pul yeast tRNA (20 pg/ml) and
0.1% SDS. The labelled cDNAs were denatured by heating at
95°C for 5 min, and applied to the prehybridized slide in a
CMT-Hybridization chamber (Corning Inc., Corning, NY). A
HybriSlip (Sigma) was carefully lowered onto the slide. To
maintain humidity inside the chamber, 10 pl of distilled
water was added to the two reservoir wells. The chamber
was then tightly sealed and incubated at 42°C for 16-20 h in
the dark. The slide was then removed from the chamber,
washed for 5 min sequentially in 2x SSC/0.1% SDS buffer,
0.1x SSC/0.1% SDS buffer and 0.1x SSC buffer, rinsed
in distilled water for 5 s and dried by centrifugation at
2000 r.p.m. for 10 min. The hybridized slides were scanned
with a confocal laser scanner (Axon GenePix 4000A) using
appropriate gains on the photomultiplier tube to obtain the

highest intensity without saturation. Three replicates were
completed for each experiment.

Image extraction and data normalization

Scanned images for Cy3 and Cy5 were then overlaid with
GenePix Pro 3.0 software. Only data generated from spots
representing E.coli MG1655 genes were analysed in our stud-
ies. Spots with background-subtracted intensity lower than
100 in both Cy3 and Cy5 channels were filtered out. Gene-
Spring software (SiliconGenetics) was used for global normal-
ization and density-dependent normalization (Lowess) to
correct artefacts dependent on density or caused by different
dye incorporation rates for the two dyes. The duplicate spots
for each gene on a single slide were taken as two individual
spots. Three independent experiments were performed for
each comparison and, therefore, six replicate data sets were
obtained for each gene. The normalized data from GeneSpring
software were exported to a Microsoft Excel spreadsheet.

Data reproducibility

To assess data reproducibility, the spot-to-spot variation was
calculated as described by Loos et al. (18) and correlation
between data sets analysed by the Pearson correlation coeffi-
cient (7). The spot-to-spot variation was represented by the
percent error calculated by dividing the SD by the average
ratio for each gene (% = o/|L). Average variation within a slide
was calculated as the average of the gene spot-to-spot varia-
tions on that slide (two spots), and average variation across
slides was calculated as the average of gene spot-to-spot varia-
tions based on the six spots of the data set. The latter variation
included spot, slide and cDNA variability. The Pearson cor-
relation coefficient (r) was calculated for Cy3 data sets from
any two slides and for Cy5/Cy3 from any two replicate slides.

Identification of differentially transcribed genes

Differentially transcribed genes were selected using an outlier
iteration method (18,19). The data for each gene were aver-
aged and the geometric mean and SD were calculated for the
entire population. Any gene with a log-ratio more than three
SDs away from the mean was considered an outlier. Outliers
were then removed from the population and retained within the
differentially expressed subset, and the mean and SDs were
recalculated for the rest of the data. The step was repeated until
few or no outliers were detected. The 99% predictive interval
(PI) was set for the final cut-off ratio to define the remaining
differentially transcribed genes within the now symmetrical
and well-defined distribution.

The in vitro transcription profiles of CRP derivatives were
compared with wild-type CRP, and significant changes were
identified by outlier iteration. The average of the log-ratios for
each gene from the CRP derivative experiments was normal-
ized to the wild-type CRP experiment. The geometric mean
and SD were calculated for the entire population. The outliers
were selected as stated above and the 95% PI was set as a final
cut-off. The genes with a log-ratio change between two experi-
ments falling in the outlier group or beyond the PI were
regarded as differentially regulated by CRP mutants and
wild-type CRP.



Sequence processing

The differentially transcribed genes were grouped into operons
using the RegulonDB database at http://www.cifn.unam.mx/
Computational_Genomics/regulondb. The current version of
the RegulonDB database (RegulonDB 4.0) identifies 87 CRP-
regulated operons that have been verified experimentally. In
this study, 24 of these operons were shown in the ROMA
experiments to be regulated by CRP and, therefore, were
further analysed. CRP-binding site predictions were based
on the previous study (5), where a Positional Weight Matrix
was generated from alignment of known CRP-binding sites
and used to determine the strength of a site. In this study, a
strong site was defined as a sequence with a score more than
10 (consistent with the prediction by Tan et al.) and a weak site
as a sequence with a score between 5 and 10. Sequences with a
score below 5 were rejected.

RESULTS

Combination of run-off transcription and
microarray analysis (ROMA) on glass slides

The original ROMA procedure used macroarray membranes to
analyseradioactivelylabelled RNA transcripts (12). Inourstudy,
the procedure was modified by using a post-transcriptional
fluorescence-labelling procedure to enable hybridization to
a sense-oligonucleotide array. To gauge data reproducibility,
data from each of three replicate slides were subjected to
statistical analysis. Gene spot-to-spot variation was 5.0%
(range, 4.1-6.3%) between replicate spots within a given
slide, and 13.9% (range, 12.6-15.4%) among six spots across
three slides. The latter number includes both the hybridization
variation and biological variation. Comparison of the dupli-
cated probe sets within a single hybridization showed good
reproducibility of the fluorescence signals with a Pearson cor-
relation coefficient () of >0.98. This result illustrates uniform
hybridization of the microarray. The reproducibility of signal
between replicate reactions was lower, with a Pearson correla-
tion coefficient (r) of >0.80. This variability was considered to
be mainly due to variations from independent reactions. In
addition, the detail of signal intensities showed that ~90%
of all genes gave a detectable signal.

CRP regulatory profiles in the ROMA system

Comparison of RNA transcripts from reactions containing
wild-type CRP to control reactions containing only RNAP
revealed many differentially transcribed genes (Figure la).
Data for the majority of genes fall within the threshold values,
with a ratio between +2 and —2, and therefore indicates that

Figure 1. Logarithmic-scale scatter plots of spot intensities. The data were
subjected to global and density-dependent normalization, and plotted on
GeneSpring 4.2.1. Each data point corresponds to the average of two spots
representing an individual MG1655 gene. The ratios were colour coded, with
red for ratio above one and green for ratio below one. The middle line passes
genes with no change at two conditions (ratio = 1) and the other two lines
demarcate threshold values for genes with significant increase or decrease in
transcription in response to CRP deletion (ratio = +2). (a) Transcriptional
profiles from reactions with wild-type CRP (wt. CRP) versus without CRP
(—CRP). (b) Transcriptional profiles from reactions with AR1-mutated CRP
(HL159) versus without CRP (—CRP). (¢) Transcriptional profiles from
reactions with AR2-mutated CRP (KE101) versus without CRP (—CRP).
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these genes are not significantly regulated by CRP. As
expected, transcripts of many genes were increased by the
addition of CRP and transcripts of very few genes were
reduced, which is consistent with the view that CRP activates
most of the genes that it regulates. A total of 280 genes, present
in 188 different operons, had significantly higher transcrip-
tional levels and 20 genes, in 16 operons, had reduced tran-
scriptional levels in response to CRP. Taken together, these
data show that ~7% of the genes in the E.coli genome were
transcribed differentially upon the addition of CRP in the
ROMA experiment. The highest activation, 13-fold induction,
was observed at the sdaC gene encoding a protein that is a
putative serine transporter. Of the 176 operons identified by
ROMA in this study, 24 are known members of the CRP
regulon (Table 2), i.e. the promoter regions and CRP sites
have been mapped experimentally. For genes present within
the same polycistronic operon, the signal for the promoter-
proximal gene should be the same or higher than the signal for
promoter distal genes. Of the 188 operons activated by CRP,
the promoter-proximal gene was activated in the vast majority
(176 operons). For 8 of these 176 operons, the promoter-prox-
imal gene was subjected to only marginal activation (above
95% PI), while the promoter distal gene(s) were activated at a
significant level. In only 12 operons was a promoter-distal
gene up-regulated and not the promoter-proximal gene
(Tables 1 and 2). These 12 promoters were not included in
the CRP-regulated set. Up-regulation of promoter-distal genes
in the absence of regulation of the promoter-proximal genes
may represent false positives in the assay; alternatively it may
be due to CRP-dependent promoters within operons that are
active in vitro.

Determination of CRP-binding sites

We scanned the upstream regions of the 176 up-regulated
operons for putative CRP-binding sites to determine whether
the activation observed is due to a site that matches the CRP-
binding site consensus. A previous study using a comparative
genomic approach (5) identified 447 operons on the E.coli
genome that contain putative CRP sites upstream from the
translation start site. Using the same approach as Tan et al.,
55 of the 176 (31%) operons identified in our study were found
to contain a CRP site. Tan et al. predicted CRP-binding sites
with a good match to the consensus (10 as a cut-off score).
However, some known CRP-dependent promoters contain
weak CRP sites that are not identified when using a cut-off
of 10 (see Table 2), e.g. the melR CRP site has a score of 5.5
and rpoH as two sites with scores of 2.2 and 7.4. In addition,
they also identified many false positives.

We therefore scanned the regulatory regions of the remain-
ing operons for sequences with a lower match to the consensus
(5 as a cut-off score) and found an additional 70 operons that
contain CRP sites with a score between 5 and 10 (Tables 1 and 2).
Thus, a total of 125 operons identified in the ROMA assay
contain CRP sites identified by either Tan et al. (5) or this
study. The remaining 51 operons (29%) identified by ROMA
do not contain a recognizable CRP site (score <5).

Effect of CRP AR1 and AR2 on activation

Previous studies have shown that CRP activation is dependent
on the interactions of its activating regions with subunits of

RNAP [reviewed in (3)]. In this study, the effects of two CRP
derivatives containing a mutation at either AR1 or AR2 were
analysed. The HL159-CRP carries a His-to-Leu mutation at
position 159 within AR1 and has been shown to be defective at
both Class I and Class II promoters. Whereas KE101-CRP,
which contains a Lys-to-Glu mutation at position 101 within
AR2, fails to activate transcription at Class II promoters, but
still functions at Class I promoters (20).

The transcriptional level of each gene in the presence of
either HL159-CRP or KE101-CRP was compared with those
from the control reaction. As expected, the results showed that
HL159-CRP failed to activate transcription of 86% (151/176)
of the CRP-dependent genes identified in the initial ROMA
experiment (Table 1, Figure 2 and Figure 1b). Therefore only
14% (25/176) of operons were activated by HL159-CRP to the
same level as by wild-type CRP. The AR2 mutant KE101-CRP
was defective for activation at 59% (104/176) of CRP-depen-
dent operons (Table 1, Figure 2 and Figure 1c). The AR2
mutant, therefore, still activated transcription for many
genes although the level of activation was reduced. We predict
that the promoter regions of the operons whose transcription is
not up-regulated by the AR2 mutant contain a CRP-binding
site overlapping the —35 hexamer (Class II binding site).

To validate the ROMA data, we considered the 24 up-regu-
lated operons whose promoter regions and CRP sites have
been mapped experimentally. Of these 24 operons, 7 contain
a single Class I CRP-dependent promoter (possess a CRP site
far upstream of the —35 hexamer), 9 contain a single Class II
promoter (possess a CRP site overlapping the —35 hexamer)
and 8 contain a Class III promoter with tandem CRP-binding
sites (Table 2). All Class III promoters contain a Class II
binding site and a Class I binding site. In the ROMA assay,
HL159-CRP failed to activate all promoters, except the two
Class III promoters, deoCABD and rpoH. Both the deoCABD
and the rpoH operons have several promoter regions that are
under differential regulation by CRP (21,22) and therefore the
effect of the ARI mutation may be compromised by transcrip-
tion from different promoters. In contrast to HL159-CRP,
KE101-CRP could still activate class I promoters, but failed
to activate all class II promoters and half of the class III
promoters. It is therefore clear from the experiments with
activating region mutants that the CRP regulation observed
in ROMA is similar to that observed in vivo. In addition, it
allows us to predict that 59% of the CRP-regulated operons
identified by ROMA contain a class II CRP site and are there-
fore class II or class IIT promoters.

CRP-repressed operons in the ROMA system

Although CRP is predominantly an activator, we found 16
operons where the promoter-proximal gene had reduced levels
of transcription in response to CRP in the ROMA experiments
(Table 3). The strongest repression, 3-fold reduction, occurred
at the yjcB gene. In contrast to activation, the repression levels
of most operons were not significantly affected by either
HL159-CRP or KE101-CRP, which indicates that most
CRP repression is not dependent on either the AR1 or the
AR2 determinant. However, repression at four operons was
slightly affected by the ARI1 mutation, suggesting some
role for ARI at these operons. We have identified possible
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Table 2. Operons which have been experimentally verified as being regulated by CRP

Operon name ROMA CRP sites Other Gene function Reference
regulatorsb
WT HL HL/wt KE KE/wt Position® Sites Score
bglG 1.96 0.85 | 1.73 — —61.5 AACTGCGAGCATGGTCATATTT 11.2 Fis Positive regulation of bgl (49)
operon
dctA 244 1.09 | 1.85 — —81.5 TTGTGCGAGCCAGCTCAAACTT 14.1 DcuR, ArcA  Uptake of C4-dicarboxylic (50)
acids
rbsDACBKR 3.80 0.89 | 4.10 — —61.5 CGTTTCGAGGTTGATCACATTT 9.4 RbsR p-ribose high-affinity (51)
transport system
rhaSR 1.46 0.86 | 1.66 — —113.5 TGATGTGATGCTCACCGCATTT 12.4 RhaR Positive regulator for rhabad (52)
operon
sdhCDAB 271 1.11 | 238 — —83.5 TATCGTGACCTGGATCACTGTT 16.4 ArcA, FNR Succinate dehydrogenase, (53)
cytochrome b556
tnalLAB 198 095 | 208 — —61.5 GATTGTGATTCGATTCACATTT 19.6 Tryptophanase leader peptide (54)
treBC 3.09 135 | 473 — —60.5 AATTGTGATCTTCGCTGCGTTT 8.8 PTS system enzyme II, (55)
trehalose specific
focA_pfiB 390 1.59 | 1.39 | —41.5 AGATATGATCTATATCAATTTC 10.1 FNR Probable formate transporter (43)
galS 249 122 | 1.09 | —41.5 TGCTGTGACTCGATTCACGAAG 104 GalR, GalS Mgl repressor, galactose (56)
operon inducer
glpTQ 451 0.89 | 221 | —41.5 ATGTGTGCGGCAATTCACATTT 17.2 GIpR Sn-glycerol-3-phosphate (57)
permease
malXY 6.24 1.71 | 294 | —49.5 TTATGTGACAGATAAAACGTTT 11.2 PTS system, maltose and (58)
glucose-specific II ABC
melR 229 1.20 | 1.17 | —41.5 AACCGTGCTCCCACTCGCAGTC 5.5 MelR Regulator of melibiose operon (59)
mgIBAC 6.78 149 | 1.78 | —41.5 ATCTGTGAGTGATTTCACAGTA 16.6 Galactose-binding transport  (56)
protein
ptsG 2,11 1.14 | 1.13 | —40.5 AAACGTGATAGCCGTCAAACAA 143 Mlc PTS system, glucose-specific (35)
IIBC component
ptsHI crr 295 1.01 | 1.56 | —42.5 TTTTATGATTTGGTTCAATTCT 9.5 PTS system protein hpr (60)
yhfA 1.88 097 | 1.10 | —44.5 TAATGTGACGTCCTTTGCATAC 11.7 Orf, hypothetical protein (61)
aspA 6.29 2.50 | 2.65 | —90.5 AGCGGTGATCTATTTCACAAAT 15.5 FNR Aspartate ammonia-lyase (62)
(aspartase)
—40.5 TAAAGTGATCCAGATTACGGTA 14.2
deoCABD 322 237 — 237 — —94.5 TTATTTGAACCAGATCGCATTA 17.1 CytR, DeoR  2-Deoxyribose-5-phosphate  (21)
aldolase
—41.5 AATTGTGATGTGTATCGAAGTG 11.9
glpACB 438 1.72 | 331 — —90.5 AAATGTGAATTGCCGCACACAT 17.2 FNR, ArcA,  Sn-glycerol-3-phosphate (57)
FIhD, GIpR  dehydrogenase
—40.5 AATGACGCATGAAATCACGTTT 3.3
manXYZ 426 259 | 217 | —92.5 GAATGTGACAAGGATATTTTAC 2.4 Milc, NagC PTS enzyme IIAB, (63,36)
mannase-specific
—40.5 ATTACGGATCTTCATCACATAA 7.6
nupC 325 1.17 | 1.39 | —89.5 AAATGTATGACAGATCACTATT 12.6 CytR Permease of transport system (64)
for 3 nucleosides
—40.5 TAGTGTGTGTCAGATCTCGTTT 12.6
nupG 445 1.01 | 325 — —92.5 AAATGTTATCCACATCACAATT 20.4 CytR, DeoR  Transport of nucleosides, (65)
permease protein
—42.5 TTATTTGCCACAGGTAACAAAA 10.6
rpoH 2.18 175 — .15 | —93.5 ATTTCATCTCTATGTCACATTT 7.4 CytR Sigma(32) factor (22)
—41.5 ACTTGTGGATAAAATCACGGTC 2.2
tsx 396 1.19 | 240 | —40.5 AACTGTGAAACGAAACATATTT 129 CytR Receptor of phage T6 and (66)
colicin K
—74.5 AAACGTGAACGCAATCGATTAC 5.8

“The centre of an experimentally verified CRP-binding site relative to corresponding transcription start site.

PFactors that regulate transcription in addition to CRP.

CRP-binding sites within 11 of the 16 promoter regions, 8
operons contain a strong CRP-binding site (>10) and 3 operons
contain a weak site (5-10). The yjcB and ycfR operons contain
a CRP site almost identical to the consensus.

Of the 16 repressed operons, promoter regions of two,
nirB and pncB, have been determined experimentally
(23,24). Sequence analysis indicates that their CRP-binding
sites overlap the binding sites for RNAP (Figure 3) and it is
therefore probable that CRP represses transcription at the
nirB and pncB promoters by either blocking the interaction
between RNAP and the promoter DNA, or blocking

transcription from an alternative upstream promoter. The
position of putative CRP-binding sites relative to the
RNAP-binding site was determined for the other repressed
operons (Figure 3). The position of the CRP site is variable,
but at most promoters the CRP site overlaps the region
between the —35 and —10 hexamers. Therefore, repression
at these operons might also involve a simple blocking
mechanism. However, at the metK, ybiS and yjcB predicted
promoter regions, the CRP sites are located 3 bp upstream
of the —35 hexamer. The yjcB promoter contains a very
strong CRP-binding site (score = 22). The promoter
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wt=1
HL159/wt

yhiP

I '=C
KE101/wt

Figure 2. Regulatory map of 50 highest CRP-regulated operons. The figure indicates the activation by HL159-CRP (middle) and KE101-CRP (right) relative to wild-
type CRP (=1), generated by GeneSpring clustering in distance order, so that those with similar regulation pattern were grouped together. The relative activation
changes are colour coded: yellow indicates that a gene is regulated at the same level as wild-type CRP, blue indicates that a gene is regulated at a much lower level than

wild-type CRP and red indicates that a gene is regulated at a higher level.
architecture might be such that the CRP-binding site still
stops productive binding of RNAP.

Identification of CRP regulon by in vivo
transcriptional profiling

An in vivo microarray experiment was also designed to iden-
tify CRP-regulated genes. Both wild-type and Acrp strains

were grown in minimal media containing fructose and
then pulsed with glucose, and the transcriptome before the
addition of glucose for both strains was compared with that
after glucose addition. In the presence of glucose, the cAMP
level is expected to be decreased, and hence the cAMP CRP
level, thus the CRP-dependent regulation is repressed.
However, glucose also affects gene expression through



Table 3. Operons repressed by wild-type CRP in ROMA experiment

Nucleic Acids Research, 2004, Vol. 32, No. 19 5887

Operon name ROMA CRP-binding site Product
wt HL HL/wt KE  KE/wt Position® CRP sites Score
yjcB 034 036 — 040 — —80 AATTGTGATATAGTTCACAAAA 2226 Orf, hypothetical protein
ycfR 0.38 048 — 046 — —87 GTATGTGATCCAGATCACATCT  20.52  Orf, hypothetical protein
—136 AAATTTAAAGATTTTTAAATTA 6.68
metK 040 054 — 052 — —200 GAATGAGACACGATTCAAAAAA 12 Methionine adenosyltransferase 1
nirB_nirD 042 054 — 050 — —-76 GAATTTGATTTACATCAATAAG 8.5 Nitrite reductase (NAD(P)H) subunit
—331 CTTTGTGATGTGCTTCCTGTTA 6.13
ybiS 043 056 — 048 — —116 AAATGTGATTTCGTACACATCT 16.59  Orf, hypothetical protein
—201 AGATATGACAAACCGCGCATTA 6.75
ykfC 045 044 — 046 — Orf, hypothetical protein
YhfC 046 048 — 0.64 — —141 TTCCGTGATCAAAATCACCTCT 1233  Putative transport
—88 AACATTTAAACAGATCACAAAA 10.22
rbfA_truB 049 072 — 0.66 — Ribosome-binding factor A
panF_prmA 052 081 — 0.64 — Sodium/pantothenate symporter
amiC 053 089 7 071 — N-acetyl-muramyl-L-alanine amidase
ydfK 054 094 7 0.56 — —195 AATTGTCAACTATATCATATAT 10.99  Orf, hypothetical protein
yeeF 0.54 080 — 0.65 — —252 TATTCTGACAAGCCTCTCATTC 8.98  Putative amino acid/amine transport protein
-29 TTACGCGACGGTTATCACCGTA  8.17
yefl 054 092 71 075 — Orf, hypothetical protein
ynak 0.57 078 — 0.57 — —195 AATTGTCAACTATATCATATAT 10.99  Orf, hypothetical protein
pncB 058 063 — 0.64 — —106 TGGTGTGATCGGGGTTCAATAA  7.19  Nicotinate phosphoribosyltransferase
—276 TGTTGAGTCATAAATAACCTTT 541
apbA_yojL 0.58 096 1 0.61 — —151 ATTTTTGATGCGAAGCATAATA 1045 Involved in biotin biosynthesis

“The position of 5" end of a CRP site relative to corresponding translation start site.

other mechanisms, thus glucose effects will be observed in the
Acrp strain. The CRP-regulated genes in this study were
defined as genes regulated by glucose in the wild-type strain,
but not regulated in the Acrp strain. In total, we identified only
17 operons repressed by glucose (CRP-activated operons)
and six glucose-activated operons (CRP-repressed operons),
listed in Table 4. In the 17 CRP-activated operons, 9
operons are known members of the CRP regulon and 7 operons
were activated by CRP in the ROMA experiment. Our in vivo
experiments failed to identify most CRP-regulated genes.

DISCUSSION

The combination of run-off transcription and microarra

analysis (ROMA) has shown advantages in defining ¢" -
dependent promoters in B.subtilis (12). In this study, we
have established ROMA exploiting microarray glass slides
and further demonstrated its application to investigate a spe-
cific transcription factor. The microarray glass slide has sev-
eral advantages over a macroarray membrane. First, the slide
array allows more genes to be studied in a single experiment
(up to 50000 genes) compared with a few thousand genes that
can be printed on a macroarray membrane. Second, RNA from
two different sources of interest can be dual fluorescence
labelled and simultaneously hybridized on a single slide,
whereas nylon arrays are generally probed in serial or parallel
hybridization reactions to allow comparison. Third, the utili-
zation of fluorescence instead of radioactive material is safer,
easier to handle and produces higher resolution and lower
background. Therefore, the establishment of ROMA on
glass slides provides a convenient system to obtain high
quality information. Our results have shown the high
sensitivity and reproducibility of the system. However, our
procedure does have some disadvantages compared with the

original macroarray procedure. First, several purification steps
are required which might result in the loss of short transcripts.
Second, a large amount of template DNA and protein
is required. Third, any trace of template DNA remaining
after RNA purification will result in high background hybri-
dization that might mask the actual induction level.

Using this newly established ROMA system, we have iden-
tified 152 novel CRP-dependent operons and 24 operons cor-
responding to previously known CRP regulons. Regulation at
these operons was further verified by using two CRP mutants.
Our experiments indicate that ROMA is a very powerful tech-
nique to identify direct regulation by a transcription initiation
factor. The ROMA system was, however, unable to identify
some known CRP-regulated operons. There are several rea-
sons that could account for these false negatives. First, some
operons require other factors for CRP to activate transcription,
e.g. AraC at the araBAD promoter (25), which are missing in
the ROMA system. Second, transcripts that can initiate from
different promoters upstream from the same operon cannot be
resolved. So genes where CRP alters the transcription start
point will not be identified. For example, the ga/P1 promoter is
a well-known Class IT CRP-dependent promoter. However, in
the absence of CRP, transcription of the gal operon can initiate
from the upstream ga/P2 promoter (26), which will mask the
weak transcription from ga/P1. Third, certain promoter struc-
tures result in a situation where CRP can activate transcription
by binding to an upstream site but can also repress transcrip-
tion by binding to a downstream site, e.g. the crp promoter
(27). In addition, some operons may not be transcribed effi-
ciently due to DNA relaxation, or in the experimental system
described here, the existence of an EcoRI restriction site
within the promoter region or coding region. Finally, because
of the necessity for data manipulation to identify only the most
robust changes in transcription, promoters that are only weakly
activated by CRP in vitro will not be detected. The CRP
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nirB

-10 hexamer

TATATAARGGTIGAATTT GATTTACAT CRRTAAC%CGGGGTT GCTGAATCGTTAAGGTAGGCGG

pncB

AGARAGGT GGCATAIIGGTGTGAT CGGGGT TCARTANNTTGCGARACALGGTATACTCCAGCA

yeeF

G}-U-‘LRATCRGCCATTTRA}-\_GI\RRRATITATTCTGRCRRGCCTCTC?-\.TTC'TCTTGTCATTTCCCC

ycfR

AATGATTGTTATAARRARTATCT T[GTATGTGAT CCAGATCACAT CT]AT CATTTAGTTATCGA

yhfcC

ARTTTAGCARCCGATTGCAATARARCATTTARACAGAT CACAAAATCACCTAARATCGCCCG

ydfK/ ynakE*

ACTTTAAGAACACCCRAGATARARATTGTCAACTATAT CATATATIRACACATTACTARTTCG

apbA

CATCTTTTCCT CTCCCTTqRT TTTT GATGCGMGCATAATR}CCCGCAAAGTTMATARC CGA

yjcB

ARACARAT CMTTG-T GATATAGTT CACAARRITTRATGAMCMACRG?—\GT GTTTCATTTTTGT

metK

|AGZ-\AT GAGACACGATT MMWGTGGAMTAG GGTGAAGARTTGACCTARAATAGCCAT

ybis

]—\Alﬁ]-\AT GTGATTTCGTACACATC TiGAT TTCACTGTGAGCTGGARTGARCTTATAATGCGCTT

Figure 3. Non-template strand sequences of promoters repressed by CRP. Except nirB and pncB, promoter regions are predicted by searching the —10 and —35
sequences upstream of 10 down-regulated genes with a CRP site. The predicted —10 and —35 hexamers are underlined and in boldface with the —10 regions aligned
together. The potential CRP-binding sites are shown as shaded boxes. *ydfK and ynaE are both associated with different prophage (Quin and Rac, respectively) but

have essentially identical sequences.

regulon may therefore contain more operons than were iden-
tified in this study.

In the 6" ROMA experiment, 50% of the genes identified
using ROMA were also identified using consensus sequence
searching and in vivo transcriptional profiling (12). However,
in the case of CRP, these approaches have serious limitations.
Comparison of the ability of each method to identify known
members of the CRP regulon demonstrates that sequence
searching generates the highest number of hits, and in vivo
transcriptional profiling generates the fewest (Figure 4). A
combination of the three methods can identify more than 80%
of known operons, but failed to identify 14 operons known to
be regulated by CRP. Although the sequence prediction gen-
erates the highest number of hits, it is probable that this
includes many false positives and is therefore not necessarily
the best approach. In addition, many weak sites are difficult to
identify by sequence searching. Lowering the cut-off score
would facilitate the identification of known sites but would
inevitably lead to more false positives. Besides DNA
sequence, CRP activation is dependent on the location of

the binding site. Previous studies have indicated that at a
Class I promoter, the CRP-binding site is normally positioned
at —61.5, —71.5, —81.5 or —91.5, and no activation occurs
when CRP sites are located further than —113.5, which might
be beyond the reach of aCTD [reviewed in(28)]. Therefore,
many in silico predicted sites might be null sites that are not
functional during transcription. For promoters containing tan-
dem CRP sites, the space between the two sites is an important
determinant for synergistic activation (29-32). Therefore,
although some operons contain several predicted binding
sites, we hypothesized that at least some sites are not func-
tional due to improper spacing. This may also explain why
some operons with strong predicted binding sites were not
regulated by CRP in our experiments. It is also probable
that sequence searching generates many false negatives due
to the ability of CRP to bind variable sequences. For example,
previous work has identified the CRP sites within the melR,
rpoH and rbs promoters that play important roles in regulation
of these promoters (22). These sites have scores below 10
and were, therefore, not identified in the sequence search. It



Table 4. CRP-regulated genes” identified by in vivo transcription profiling
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Operons Genes Glucose effect” CRP-binding site

Product

Wt strain  crp-strain  Position Sequence Score
Glucose repression (CRP-activated operons)
acs acs 0.542 1.131 —100 TTGCGTGATCTGTCGCCCAAAT  8.47 Acetyl-CoA synthetase
aldA® aldA  0.524 1.057 —112 TTTTATGAAGCCCTTCACAGAA 12.79 Aldehyde dehydrogenase, NAD-linked
JfruBKA fruB  0.218 0.515 —178 AATTGTGCAGCACATCAAACTT 15.13 PTS system, fructose-specific IIA/fpr component
fruK 0410 0.755 Fructose-1-phosphate kinase
gatYZABCD gatR 2° gatY  0.177 1.410 =75 TTTTGTGATCGTTATCTCGATA 13.62 Tagatose-bisphosphate aldolase 1
gatZ  0.122 0.841 -30 TATTTTGAAATCGAAAACAAAC  6.62 Putative tagatose 6-phosphate kinase 1
gatA  0.122 0.921 Galactitol-specific enzyme IIA of
phosphotransferase system
gatC  0.265 1.240 PTS system galactitol-specific enzyme IIC
gatD  0.368 0.589 Galactitol-1-phosphate dehydrogenase
gcvP gevP  0.492 0.810 Glycine decarboxylase
glpFK*® glpF  0.137 1.096 —142 TTTTATGACGAGGCACACACAT 10.45 Facilitated diffusion of glycerol
glpK  0.144 0.828 Glycerol kinase
glpTQ° glpQ  0.154 0.785 —129 ATGTGTGCGGCAATTCACATTT 17.23  Glycerophosphodiester phosphodiesterase,
periplasmic
glpT  0.509 1.390 sn-Glycerol-3-phosphate permease
mglBAC® mglB  0.519 0.958 —270 ATCTGTGAGTGATTTCACAGTA 16.64 Galactose-binding transport protein; receptor for
galactose taxis
mglA  0.400 0.934 ATP-binding component of methyl-galactoside
transport and galactose taxis
mglC  0.549 0.967 Methyl-galactoside transport and galactose taxis
nmpC_trs5 2 nmpC  0.490 0.823 —69 AATAGAGATCTACTTCACAAAT 16.15 Outer membrane porin protein
ompF ompF 0.518 2915 —242 AAATATGACGGTGTTCACAAAG 12.53 Outer membrane protein la (Ia;b;F)
rbsDACBK rbsD  0.426 0.973 —66 CGTTTCGAGGTTGATCACATTT  9.35 b-ribose high-affinity transport system
rbsB  0.497 1.488 D-ribose periplasmic binding protein
ribB ribB 0.505 1.119 3,4 Dihydroxy-2-butanone-4-phosphate synthase
tnal AB® tnal  0.437 0.802 —-94 GATTGTGATTCGATTCACATTT 19.57 Tryptophanase leader peptide
ybeK ybeK  0.504 1.910 -97 AATTGCGCGCCATCTCACGCTT 10.64 Putative tRNA synthetase
YIhQPO_yshA yihQ  0.310 1.081 —76 TTATGAGAATCATTTTACATAA 14.51 Putative glycosidase
sdhCDAB_b0725 sdhD  0.605 1.018 —313 TATCGTGACCTGGATCACTGTT 16.39 Succinate dehydrogenase, hydrophobic subunit
sucABCD®
sdhA  0.509 1.250 Succinate dehydrogenase, flavoprotein subunit
sucC  0.494 1.101 Succinyl-CoA synthetase, beta subunit
sucD  0.381 1.067 Succinyl-CoA synthetase, alpha subunit
Glucose induction (CRP-repressed operons)
ged gcd 2.014 0.864 —80 AATTGTGATGACGATCACACAT 20.43 Glucose dehydrogenase
proP proP  2.413 1.111 —227 ATGTGTGAAGTTGATCACAAAT 20.42 Proline permease II
pisG© ptsG  3.632 1.628 —154 AAACGTGATAGCCGTCAAACAA 14.25 PTS system, glucose-specific IIBC component
soda sodA  2.012 1.174 —161 GTGGGTGATTTGCTTCACATCT 13.61 Superoxide dismutase, manganese
trpLEDCBA trpL 2.200 1.087 Trp operon leader peptide
trpE 2.806 1.061 Anthranilate synthase component I
trpD  2.152 0.972 Anthranilate synthase component II,
glutamine amidotransferase and
phosphoribosylanthranilate transferase
trpC 2.096 1.202 N-(5-phosphoribosyl)anthranilate isomerase and
indole-3-glycerolphosphate synthetase
trpA 2.144 0.982 Tryptophan synthase, alpha protein
yagU yagU  1.872 1.022 Orf, hypothetical protein

“The CRP-regulated genes in this study were defined as genes regulated by glucose (i.e. the ratio of gene expression plus glucose divided by the gene expression

minus glucose) in the wild-type strain, but not regulated in the Acrp strain.

"The ratio of gene expression plus glucose divided by the gene expression minus glucose.

“Genes that were also identified as CRP-regulated by Gosset et al. (40).

is therefore possible that several promoters identified by
ROMA that do not contain a putative CRP-binding site,
e.g. inaA and yfaH, may still be regulated by CRP.
Comparing activation levels of operons with strong CRP
sites to those with weak sites indicated that there is no sig-
nificant relationship between the degree of activation and the
‘quality’ of CRP-binding sites. For example, the focA-pfiB
operon which is activated 3.9-fold contains a relatively
weak CRP site (score = 10.1), whereas the tnal. operon
which is activated 2-fold contains a very strong CRP-binding
site (score = 19.6) (Table 2). Therefore, conservation of

CRP-binding sequence is not sufficient to predict CRP activa-
tion levels.

In our study, the in vivo transcriptional profiles failed to
identify many CRP-regulated genes. The main reason for this
is the complexity of the CRP regulon. CRP activation at some
promoters, such as melAB and araBAD, is dependent on the
presence of an additional regulator (MelR and AraC, respec-
tively) (33,25) that is only induced by a specific substrate. It is
impossible to include all inducers in the growth media
and, moreover, the presence of extra inducers may trigger
expression of other genes that are independent on CRP, further
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ROMA in vivo profiling

Sequence searching (Tan et al.)

ROMA in vivo profiling

Sequence searching (Tan ef al.)

Figure 4. Venn diagram of the CRP regulon as identified by three genomic
approaches: ROMA, in vivo transcriptional profiling, sequence search (5). The
result for (a) 87 known (experimentally verified) CRP regulon collected in
RegulonDB database and (b) all operons are shown. The number of operons
identified by each approach is presented in a coloured circle. The numbers
covered by more than one circles are operons identified by two or three
methods.

complicating the interpretation of the data. In addition, most
CRP-dependent promoters are subjected to repression by other
factors, which will mask the CRP activation in vivo. For exam-
ple, the galE promoter is repressed by GalR, the lacZ promoter
repressed by Lacl and many CRP-activated promoters are
repressed by CytR (Table 2). Therefore, the variability of
CRP regulation at different operons makes it difficult to design
an in vivo microarray experiment to distinguish direct effects
from indirect effects. ROMA is better suited for identifying
the regulon of a factor that is part of a complex regulatory
network. In the six glucose-induced operons, two operons, gcd
and proP, are known CRP-repressed operons, which contain a
strong CRP-binding site between the —10 and —35 regions,

thus blocking RNAP binding. As observed in previous studies
(34,35), the ptsG gene encoding the major glucose transporter
was highly induced by glucose in the wild-type stain. Previous
studies have indicated that the pzsG promoter, which contains
a CRP activation site (see Table 2) (36), is both activated by
CRP and strongly repressed by the pleiotropic transcriptional
repressor Mlc. The glucose induction of ptsG is through a
complicate Mlc-dependent mechanism that involves several
layers of regulation (34-39). The case of ptsG demonstrates
that an in vivo indirect effect can mask the real regulation by
CRP, sometimes leading to the opposite conclusion. The reg-
ulation observed in the #7p operon might also have resulted
from an indirect effect, as there is no evidence from previous
studies to indicate that CRP regulates this operon.

Further evidence of the limitations of in vivo transcription
profiling of a complex regulon has come from a recent study of
CRP using an Affymetrix E.coli array (40). Gosset et al com-
pleted a similar in vivo transcriptomic study of CRP and iden-
tified 39 operons under CRP-dependent glucose repression and
19 operons under CRP-dependent glucose activation. Among
these operons, only seven glucose-repressed operons and one
glucose-activated operon were identified in our in vivo tran-
scriptional profiling (Table 4). However, direct comparison of
the two data sets is difficult because of differences in the strain
and the growth conditions used. Gosset et al in their study used
the E.coli strain BW25113 and an isogenic ¢rp mutant deri-
vative and grew their cells in LB media with or without glu-
cose. The difference in composition between the LB media
used in the Gosset study and minimal media used in this study
could contribute to a different profile of induction of some
genes. For example, the presence of fructose in our growth
conditions meant that the fru operon was identified as CRP
regulated in our study, but not regulated in the Gosset study
due to the lack of fructose in LB media. Gosset et al. (40) used
long-term growth in glucose plus media rather than a glucose
shock which was used in this study. Long-term growth in
glucose should result in higher levels of induction but can
also lead to a larger number of indirect effects, such as reg-
ulation of ribosomal protein-encoding genes, RNA-encoding
genes, stress-related genes and temperature shock genes,
which were significantly affected in their study. One-third
of operons subject to CRP-dependent glucose repression
(13/39) in Gosset et al. were activated by CRP in ROMA
experiment. This figure is similar to the data obtained by in
vivo transcription profiling in this study (7/17). This indicates
that ROMA has limitations to detect a certain set of operons
that may be subjected to complex regulation or regulated
indirectly in vivo. However, as seen in this study, Gosset
et al. failed to identify many CRP-regulated genes, such as
rpoH, melR and rbs, so neither study produced a definitive list
of members of the CRP regulon. This further indicates that the
study of complex regulons, such as CRP, in vivo has many
limitations. However, combining several approaches, such as
in vivo profiling, sequence analysis and ROMA increases
the likelihood of obtaining a more accurate definition of a
complex regulon.

The mechanism of CRP activation, in particular the role of
different activating regions, has been studied using several
well-characterized promoters. At Class I promoters, CRP
binds to a DNA sequence upstream of the RNAP-binding
site and makes direct protein—protein contact to o’CTD via



ARI1 of the downstream subunit of the CRP dimer, and this
interaction recruits olCTD to its DNA target immediately
downstream of the CRP-binding site. At Class II promoters,
CRP binds to a site overlapping the —35 hexamer and makes
several contacts with RNAP: AR1 of the upstream subunit of
the CRP dimer binds coCTD, AR2 of the downstream subunit
of the CRP dimer binds aNTD and AR3 of the downstream
subunit binds region 4 of ¢'°. The olCTD binds to its target
upstream of the CRP site. At Class III promoters that contain
tandem sites, CRP activation involves both Class I and Class I1
mechanisms [reviewed in (3)]. Nearly 90% of operons identi-
fied by ROMA showed dependence on the AR1 determinant of
CREP for full activation, while AR?2 is required for activation of
59% (104) of operons. We predicted that these 104 AR2-
dependent operons (including 14 known operons) contain a
Class II binding site in their promoter regions.

It is not surprising that transcription of some Class III oper-
ons was still activated by KE101-CRP though they all contain
a Class II binding site. It has been previously shown that CRP
activation at this kind of promoter involves a Class I mechan-
ism (upstream site) and a Class II mechanism (downstream
site) (30). Inactivation of AR2 only affects the proximal Class
II activation, while the distal Class I site could still drive
efficient activation. In some cases, where CRP activation is
mainly dependent on the proximal site, the AR2 determinant
will be crucial.

Interestingly, a few known FNR-regulated operons, adhE,
sdhC, sodA, cyoA and focA, were also activated by CRP in the
ROMA experiments. FNR is a CRP homologue and regulates
genes during anaerobic growth. The consensus sequence for
FNR is similar to that for CRP consensus, and previous studies
have shown that FNR activates transcription initiation in a
similar way to CRP and that both proteins can bind to the
DNA site for the other protein (41,42). Therefore, we propose
that some CRP-regulated operons identified in this study
are actually regulated by FNR in vivo and contribute to
anaerobic growth.

At some promoters, transcription activation by CRP can be
repressed by a transcriptional regulator protein, CytR. The
CytR-regulated promoters usually contain two DNA sites
for CRP, centred at positions —41.5 and —93.5 with respect
to the transcription start point, and a DNA site for CytR
located between the two CRP-binding sites (43). Cytidine is
an allosteric inducer of CytR. In the presence of cytidine, CytR
is inactive, and thus CRP can activate transcription in a Class
IIT dependent manner. In the absence of cytidine, CytR is
active and binds between the two CRP dimers, repressing
CRP-dependent transcription [reviewed in (42)]. CytR binds
to two 5’-TTGCAA-3’ motifs between two CRP-binding sites
separated by 10-30 bp (44). The deoC, nupG and tsx operons
that are under CytR regulation were activated by CRP in our
study. Many operons identified by ROMA possess tandem
CRP-binding sites separated by 30-60 bp (Table 1). Sequence
analysis of the promoter sequence of these operons may iden-
tify more CytR-regulated promoters.

In addition to activation, our data also shows that CRP can
serve as a repressor at some promoters. There are several
different mechanisms by which repressors can inhibit tran-
scription initiation. The simplest mechanism is by blocking
the interaction between RNAP and a promoter. This can occur
if a binding site for a repressor protein is located overlapping
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the binding site for RNAP at a promoter, e.g. over the tran-
scription start site or the —10 hexamer. The blocking mechan-
ism is common for most repressors, such as Lacl at the lacUVS5
promoter and IcIR at the icIR promoter (45-47). CRP repres-
sion at nirB, pncB, yeeF, ycfR, yhfC, ydfK, ynaE and apbA
might also involve this mechanism since at these promoter
regions the CRP-binding site overlaps the sites for RNAP.
Repressors also can inhibit transcription initiation by direct
contact with RNAP, a process more commonly associated with
activators. The P4 protein of the B.subtilis bacteriophage ©29
represses the transcription of early promoter A2C by inhibiting
promoter clearance (48). The binding of P4 overstabilizes the
open complex formed by RNAP and DNA, thus impeding the
following promoter escape step. The repression at metK, ybiS
and yjcB might involve this mechanism since they all contain a
strong CRP-binding site immediately upstream of a recogniz-
able —35 hexamer. Interestingly, the CRP-binding site and the
—35 region at three promoters are separated by 3 bp, which
suggests that the structure of protein—protein interaction might
play an important role.

CRP has been identified as a regulator of genes required for
catabolism of sugars other than glucose and a large number of
other genes [reviewed in (1)]. The CRP regulon defined in this
study includes several operons that are involved in carbohy-
drate transport and metabolism, such as fucPI for fucose,
kdgT for gluconate and fucAO for fuculose. CRP also regulates
transcription of genes required for energy production, amino
acid metabolism, nucleotide metabolism and ion transport
systems. In addition, CRP can regulate transcription of
other transcription factors, such as MelR, RpoH, BlgG, Fis
and PdhR, which could further regulate transcription of genes
involved in the above processes. We predict that there are
several hundred genes that are directly or indirectly subjected
to regulation by CRP. In our list, the functions of more than
one-third of the gene products are unknown. Identification of
function of the gene product of these genes will help to define
the biological function of CRP in E.coli.
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