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Implementing the log-add algorithm in hardware

S J Melnikoff & S F Quigley

We present a hardware implementation of the log-add algorithm, being a simple

method of computing ln(A + B) given ln(A) and ln(B), as used in speech recognition.

We show that it can be efficiently implemented in hardware using a small look-up

table plus some additional arithmetic logic, with no significant loss of accuracy over

direct calculation.

Introduction

As part of the speech recognition process [1], we are required to compute probabilities

based on Gaussian mixtures. Each mixture has components which are computed in the

log domain, but which must be added in the normal domain.

While we could use large look-up tables [2] or CORDIC (co-ordinate rotation digital

computer) [3] to convert between domains, a convenient algorithm exists for this

specific problem [4]. It removes the need to perform a conversion at all, instead

relying on a look-up table significantly smaller than that of the logarithm or

exponential operations, along with some simple arithmetic computations — and hence

well suited for implementation in hardware.

Accordingly, in this Letter we describe the theory behind this algorithm, and give

details of our novel implementation on a field-programmable gate array (FPGA),



which forms part of a hardware speech recognition system. This implementation

requires fewer resources and has a lower latency than the alternatives.

Theory

Given two values ln(A) and ln(B) for which we would like to compute ln(A+B):

A+B = A(1+B/A)

⇒ ln(A+B) = ln(A(1+B/A))

⇒ ln(A+B) = ln(A) + ln(1+B/A).

(1)

To compute the result, we work out ln(B/A), which is simply equal to ln(B) – ln(A),

and then use a look-up table to map that value to ln(1+B/A). Since the values in this

table are dependent on the relative values of A and B, it can be smaller than one which

relies on their actual values.

In order to minimise the size of the look-up table without compromising accuracy, we

require that A ≥ B, hence limiting 1+B/A to the range 1 to 2, and switch the values if

this condition is not met.

Data representation

The calculations for speech recognition are best performed in the negative log domain,

as it reduces the many multiplications associated with the process to additions, for

which hardware is better suited.

Recognition is a statistical process, and so the values used are probabilities. If a

probability A is converted to the negative log domain by computing –ln(A), a 16-bit



log-domain integer value would represent the probabilities from 3 × 10-28462 to 1, a

range which is far too broad for our purposes. A more reasonable range is 10-12 to 1,

which can be achieved by computing –Kln(A), where K equals –2371.8. This approach

is used by the HTK speech development toolkit [5], which was used to generate the

speech models that we used, and to verify the results of our system.

We found that for the more complex speech models, 16 bits was not sufficient to

maintain accuracy, and so 24-bit values were used instead, resulting in the range of

probabilities being 10-3072 to 1. The value of K was kept constant in order to maintain

compatibility with HTK.

Implementation

As a hardware implementation, this algorithm seems ideal, since it relies on functions

easily realisable on a chip. But in order to give it a significant advantage over the

alternative methods described below, the look-up table needs to be kept as small as

possible without adversely affecting accuracy.

Hence the first step of the implementation was to analyse the data to be used in the

table. Software was written to perform the calculations directly, and produce a full set

of values. These were then inspected in order to identify patterns which could be used

to produce a more efficient design. This involved keeping to a minimum both the

number of entries in the look-up table, and the amount of additional logic required.



Inspection of this data revealed that when Kln(B/A) is 0, Kln(1+B/A) is –1644. Since

all of the outputs are negative, we ignore the sign at this stage. So taking the outputs

as positive numbers, as the input value increases, the output decreases, initially at the

rate of 1 for every 2 increments of the input, and then more and more slowly. The first

consequence of this was that we could ignore the least significant bit (LSB) of the

input, as it did not affect the output by more than ± 1. The other was that for all values

of the input above 16,384, the output changed only twice, decreasing from 2 to 1 at

17,471, and then to 0 at 20,077.

The result of this was that a table 8,192 entries deep and 11 bits wide (a total of 11

Kb) was sufficient to represent all values of the input from 0 to 16,384 (discarding the

LSB), with the two values above this handled using a couple of comparators, as shown

in Fig. 1.

The only other processing required was a comparator for the two inputs Kln(A) and

Kln(B), a subtractor to compute their difference, and another subtractor to subtract the

smaller (i.e. more negative) input from the output of the look-up table (which is

equivalent to adding the smaller input to the negative of the value from the look-up

table, required because the numbers stored in the look-up table are positive, the minus

sign having been discarded). The architecture of the log-add block is shown in Fig. 2.

Domain conversion

The alternative to this algorithm is to convert the data from the log domain to the

normal domain (i.e. take the exponential), perform the summation, and then take the



log of the result.

Two different approaches have been previously implemented on an FPGA. In [2], a

RAM-based look-up table is used to perform the conversion on 16-bit log-domain

values, producing 16-bit results; 128 Kb of storage is required for this. The reverse

operation is performed in software; were it to be implemented in hardware, we would

assume that another similarly sized table would be required. This compares to one 11

Kb look-up table in our design.

Alternatively, CORDIC [3] provides a very resource-efficient method for performing

non-linear operations like these. An iterative implementation requires a very small

look-up table (just one entry per bit of accuracy), and incurs a delay of one clock cycle

per bit. A fully pipelined version does not use a look-up table at all, and incurs a

latency of one clock cycle per bit. Two CORDIC blocks would be required for the two

conversions, with a couple of additional cycles for the summation itself. Our design,

using 24-bit numbers, has a total latency of 4 cycles.

If we are converting between domains, there is also the issue of data representation to

consider. As mentioned above, if we use the scaling factor K, a 16-bit value in the log

domain translates to a number between 10-12 and 1, which would need to be

represented as a 40-bit fixed-point value if complete accuracy were required, or

floating-point otherwise. With 24 bits, the range is 10-3072 to 1, which cannot be

sensibly represented in fixed-point. Hence avoiding a domain conversion circumvents

these issues.



Conclusion

We have shown one way in which the log-add algorithm can be implemented in

hardware, in this case as part of a speech recognition system. We have shown that this

method requires significantly less data storage than domain conversion based on look-

up tables, while having a shorter latency than CORDIC, and in both cases avoiding the

problem of how best to represent data in the normal domain.

While the size of the look-up table and the cutoff values are specific to our

implementation, the nature of the data ensures that optimisations can be made in the

manner described.

Using an existing theory, our design demonstrates that what would otherwise be a

complex calculation can be reduced to elements well-suited to hardware, with no

significant loss of accuracy.
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Figures

Fig. 1. Log-add table structure. The ‘and’ gate with negated inputs is equivalent to a

comparator checking if the input is less than 16384, but requires fewer resources. The

multiplexor outputs zero (option ‘d’) if the input is greater than or equal to 20077

Fig. 2. Log-add structure



Fig. 1.
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