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Kripke semantics for full ground references (work in progress)

Paul Blain Levy, University of Birmingham

“Full ground references” means references to integers and to other references, but not functions or
thunks. Game semantics for full ground references was given in [1]. This work aims to give Kripke
semantics.

Language We fix a set S of sorts. We extend the call-by-push-value types with a reference type
Refs for each sort s. We then define

full ground types D ::= 0 | D + D |
∑

i∈NDi | 1 | D ×D | Refs (s ∈ S)

and fix, for each sort s, a full ground type Ds, intended to be the type of values stored in a reference
cell of sort s.

A world is a finite set over S. (Alternatively: a finite sequence of sorts.) The judgements are
w, Γ `v V : A for values and w, Γ `c M : B for computations, where w is a world and Γ a typing
context (finite set of identifiers with an associated value type). Term syntax and operational semantics
is defined as usual. Evaluation terminates because of the restriction to full ground references.

Denotational semantics A value type A will denote a functor from the category Inj of worlds and
injections to Set. Intuitively, [[A]]w is a semantic domain for closed values in world w, and such values
can be renamed along an injection w → w′. In particular [[Refs]]w is the set of s-sorted cells in w.

A w-store associates to each cell l in w a value w `v sl : Dsort(l). The semantic domain for these is

Sw
def=

∏
l∈w

[[Dsort(l)]]w

Although for ground references S is a functor Inj
op → Set, that is not so for full ground references.

Computation types have more subtle semantics. To understand it, say that a w-store s associates
to each cell l in w a value w `v sl : Dsort(l). An SC-configuration Γ `sc x, s,M : B consists of

• a world x—we think of cells in x as local/private, whereas those in w are global/public

• a w + x-store s

• and a computation w + x, Γ `c M : B.

These arise in the operational semantics of a language that has both w-many global cells and generation
of local cells.

We want [[B]]w to be a semantic domain for closed SC-configurations in world w. What category
should [[B]] be a functor from?

Let’s start with the ground ref setting. An initialization (i, p) : w → w′ consists of

• an injection i : w → w′—we write new(i) for the cells in w′ not in the range of i

• and an element p ∈
∏

l∈new(i)[[Dsort(l)]]

These form a category Init. A partial initialization is defined similarly, except that i is a partial
injection. The latter form a category PInit that contains both Inj

op
and Init, and indeed is freely

generated by these subcategories modulo two equations.
A partial initialization i : w → w′ converts an SC-configuration in world w to one in world w′, by
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• hiding the cells in w that are not in the domain of i

• renaming each cell in the domain of i to one in the range

• creating each cell l ∈ new(i) with value pl.

So a computation type B should denote a functor PInit→ Set.
Turning to full ground references, an initialization (i, p) : w → w′ consists of

• an injection i : w → w′

• and an element p ∈
∏

l∈new(i)[[Dsort(l)]](w + new(i))

These form a category Init, and S is a functor Init→ Set. But partial initializations are more subtle.
Let’s first say that a stateful value Γ `sv x, s, V : A consists of

• a world x—again, cells in x are local/private, whilst those in x are global/public

• for each local cell l in x, a value w + x `v sl : Dsort(l)

• and a value w + x `v V : A.

For any functor A : Inj→ Set, define

(ΨA) w
def=

∫ x∈Init ∏
l∈x

[[Dsort(l)]](w + x)× [[A]](w + x)

so that (Ψ[[A]])w is a semantic domain for closed stateful values of type A in world w. If A is a constant
functor, then (ΨA)w ∼= Aw. A partial initialization (i, p) : w → w′ consists of

• a partial injection i : w → w′

• and an element p ∈ (Ψ
∏

l∈new(i)[[Dsort(l)]])(w + new(i)).

These form a category PInit that contains both Inj
op

and Init and indeed is freely generated by these
subcategories modulo two equations. A computation type B should denote a functor PInit → Set.
Also, if A : Inj→ Set then ΨA : PInit

op → Set.
Semantics of judgements:

• A value w, Γ `v V : A denotes a family of functions [[Γ]](w + x)→ [[A]](w + x), natural in x ∈ Inj.

• A computation w, Γ `c M : B denotes a family of functions S(w+x)× [[Γ]](w+x)→ [[B]](w+x),
natural in x ∈ Init. Here overline represents the forgetful functor Init→ Inj.

Semantics of types:

[[FA]]w def=
∫ x∈Init

S(w + x)× [[A]](w + x)

[[UB]]w def=
∫

x∈Init
S(w + x)→ [[B]](w + x)

[[
∏
i∈I

Bi]]w
def=

∏
i∈I

[[Bi]]w

[[A→ B]]w def=
∫

x∈Init
[[A]](w + x)→ [[B]](w + x)

[[U
∏
i∈I

(Ai → Bi)]]w ∼=
∫

x∈Init
S(w + x)→

∏
i∈I

([[Ai]](w + x)→ [[Bi]](w + x))
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