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Abstract 

Exercise of sufficient intensity and duration can cause acute oxidative stress. Plasma 

protein carbonyl (PC) moieties are abundant, chemically stable and easily detectable markers 

of oxidative stress that are widely used for the interpretation of exercise-induced changes in 

redox balance. Despite many studies reporting acute increases in plasma PC concentration in 

response to exercise, some studies, including those from our own laboratory have shown 

decreases. This review will discuss the differences between studies reporting increases, 

decreases and no change in plasma PC concentration following exercise in humans; 

highlighting participant physiology (i.e. training status) and study design (i.e. intensity, 

duration and novelty of the exercise bout) as the main factors driving the direction of the PC 

response to exercise. The role of the 20S proteasome system is proposed as a possible 

mechanism mediating the clearance of plasma PC following exercise. Resting and exercise-

induced differences in plasma protein composition and balance between tissues are also 

discussed. We suggest that exercise may stimulate the clearance of plasma PC present at 

baseline, while simultaneously increasing reactive oxygen species production that facilitates 

the formation of new PC groups. The balance between these two processes likely explains 

why some studies have reported no change or even decreases in plasma PC level post-

exercise when other biomarkers of oxidative stress (e.g., markers of lipid peroxidation) were 

elevated. Future studies should determine factors that influence the balance between PC 

clearance and formation following acute exercise. 

 

Keywords: Protein oxidation, exercise, proteasome, protein degradation, reactive oxygen 
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Introduction 1 

Exercise can induce a wide range of whole body physiological adaptations that 2 

improve metabolic health and lower oxidative stress [1–3]. Oxidative stress is a biological 3 

state whereby reactive oxygen species (ROS) overwhelm antioxidant defences, increasing the 4 

oxidation of proteins, lipids and DNA. It is widely accepted that transient increases in 5 

exercise-induced ROS can initiate a diverse range of signalling pathways that lead to 6 

adaptation [4–6]. Indirect biomarkers of exercise-induced oxidative stress, such as protein 7 

oxidation [7–9], lipid peroxidation [8–10] and antioxidant capacity [8,11,12] are routinely 8 

measured to give an indication of altered redox balance. One of the most frequently examined 9 

biomarkers of protein oxidation is plasma protein carbonyl (PC) concentration. Carbonylation 10 

is a stable and quantifiable post-translational protein modification which is ten times more 11 

abundant than other protein adducts, such as 4-Hydroxynonenal and glycooxidation end-12 

products [13,14]. Most biomarkers of oxidative stress increase in plasma in response to 13 

exercise [11,12,15], as would be expected following an acute bout of increased metabolic 14 

activity. However some studies have reported decreases in plasma PC concentration post-15 

exercise alongside increases in other biomarkers of oxidative stress [8,16,17]. The focus of 16 

this review is to explore key physiological factors that might explain these different 17 

responses, with a primary emphasis on aerobic, steady state exercise bouts where PC groups 18 

have been measured in blood plasma or serum of human participants exercising under fasted 19 

conditions. It is beyond the scope of this review to include the results of studies that have 20 

examined the effect of habitual diet or dietary supplementation (e.g., high dose antioxidants) 21 

on resting or exercise-induced changes in PC levels. 22 

 23 

Protein carbonyl formation 24 



 PC groups are present in all proteins (carboxylic acid (-COOH) groups), form the 25 

basis of their structural integrity, and influence their capacity to function and interact with 26 

other molecules. Formation of additional, non-native PC groups can be a result of a variety of 27 

irreversible, non-enzymatic oxidative pathways (Figure 1) that are a normal part of metabolic 28 

processes [18]. These include direct oxidation of amino acids (in conjunction with oxidising 29 

agents such as transition metal clusters in protein structures) and secondary oxidation 30 

reactions with lipid peroxidation or glucose-protein oxidation products [19]. PC groups are 31 

highly polar, thus increasing the proteins susceptibility to further oxidation and/or formation 32 

of cross-linkages and protein aggregates (via ketone or aldehyde links) [20]. Excessive 33 

introduction of new PC groups can result in altered or disrupted protein function and 34 

exposure of previously embedded hydrophobic groups in the protein core, resulting in 35 

targeted proteolytic degradation by 20S and 11S proteasome systems [20,21]. The degree of 36 

PC formation is dependent on the presence of conjugated metals (e.g., iron [19]), the 37 

orientation of specific amino acids that are more susceptible to PC formation (i.e., Proline, 38 

Arginine, Lysine, and Threonine) and importantly, the magnitude and origin of ROS 39 

production in relation to the protein [22]. 40 

 41 

[Insert Figure 1 here] 42 

 43 

Exercise-induced changes in protein carbonylation 44 

A variety of cells can produce ROS in response to exercise, most notably myocytes 45 

[23], leukocytes [24] and endothelial cells [25]. Superoxide (O2
-.) is produced from a range 46 

enzymatic sources within these cell types during exercise, such as nicotinamide adenine 47 

dinucleotide phosphate (NADPH) oxidase, xanthine oxidase and nitric oxide synthases [26]. 48 

These cells can also release O2
-. into the extracellular space via enzymes expressed on the 49 



plasma membrane such as NADPH oxidase [26–28] or via passive diffusion of uncharged 50 

ROS, such as hydrogen peroxide [29]. Consequently, plasma proteins are susceptible to the 51 

formation of PC groups during exercise [7,9,30,31], with evidence that new PC moieties are 52 

stable in plasma for up to 4 hours, before selective degradation [32,33]. Increased formation 53 

of plasma PC groups following exercise is considered to be a non-specific reflection of 54 

increased systemic oxidative stress (i.e. the origin of ROS and biological impact is unknown). 55 

As a result, many studies over the last 15 years have investigated associations between 56 

changes in plasma PC concentration and aspects of the acute physiological stress caused by 57 

exercise, in a variety of populations [7,9]. 58 

 59 

Factors influencing post-exercise changes in protein carbonylation 60 

Exercise intensity  61 

Aside from the potential for greater production of ROS from the cellular sources 62 

discussed above, specific hypoxic mechanisms can also contribute during high intensity 63 

exercise. Repetitive cycles of temporary occlusion (hypoxia) and re-oxygenation of the blood 64 

vessels surrounding actively contracting muscle can produce large quantities of ROS via the 65 

enzyme xanthine oxidase [34], that may increase PC formation. Previous studies have 66 

reported increases in plasma PC concentration following high-intensity exercise to 67 

exhaustion relative to baseline values [12,31,35–37]. Lamprecht et al [30] assessed the 68 

impact of exercise intensity on plasma PC formation by examining three 40-minute cycling 69 

bouts of different intensities (70, 75 and 80% �̇�O2max) in three independent groups of 70 

moderately active participants (Table 1). Plasma PC concentration increased in response to 71 

cycling at 80% �̇�O2max only, suggesting that exercise intensity is a determinant of the 72 

formation of new non-native carbonyl moieties in the bloodstream. However it is likely that 73 

exercise duration and other physiological factors also have an impact upon these processes.  74 



 75 

Exercise duration  76 

There is some evidence to suggest that exercise duration is also a key factor in post-77 

exercise plasma PC formation. Bloomer et al [7] reported that 120 minutes of cycling at 70% 78 

�̇�O2max caused a greater increase in post-exercise plasma PC concentrations than 30 and 60-79 

minute bouts of the same exercise intensity in male and female participants. Moreover, an 80 

exercise bout of moderate intensity, but long duration (ultra-endurance running: 174 km, 30-81 

44 hours) has been reported to elicit immediate and prolonged (7 days) post-exercise 82 

increases in plasma PC concentration [38]. This increased protein oxidation occurred 83 

simultaneously with a decline of exogenous and/or endogenous antioxidants, which may have 84 

reduced the capacity to clear PC groups within this seven day period. The roles of exercise 85 

intensity and duration on post-exercise PC concentrations are inevitably linked; however 86 

there is evidence that other physiological factors (e.g., training status) contribute [7,15]. 87 

 88 

Training status and habituation to exercise 89 

Exercise-induced ROS production can initiate a cascade of cellular signals which 90 

result in various post-translational modifications (i.e. phosphorylation, acetylation and thiol 91 

modifications), and up-regulate the expression of antioxidant and stress proteins following 92 

exercise [4,39,40]. Differences in the resting expression of antioxidant proteins between 93 

participants (i.e. due to training status and/or habituation to exercise) will no doubt have 94 

consequences for changes in exercise-induced oxidative stress. Indeed, it has been 95 

demonstrated that exercise training can stimulate an increased expression of endogenous 96 

antioxidant proteins [5,41], with some direct evidence of this in humans [42]. However, it is 97 

largely unclear how much resting antioxidant capacity impacts upon the acute oxidative 98 

stress response to exercise. Elevated endogenous antioxidant capacity may enable a buffering 99 



of ROS production subsequently reducing the magnitude of oxidative stress biomarker 100 

formation during exercise in trained individuals [43]. Bloomer et al [7] reported increases in 101 

plasma PC concentration immediately following cycling exercise (30 minutes at 70% 102 

�̇�O2max) (Table 1), but in a separate study, with different research participants, reported no 103 

change in plasma PC level following an identical cycling protocol [15]. Differences in the 104 

physiology and exercise training habits of the participants featured in these studies, rather 105 

than the intensity and duration of the exercise bout are likely to have influenced the 106 

differential net changes in PC post-exercise. For example, there were clear differences in both 107 

the aerobic fitness (�̇�O2max: 57 ± 5 ml/kg/min [7] vs. 45 ± 8 ml/kg/min [15]) and time 108 

engaged in aerobic exercise prior to the study (10.4 ± 1.6 hours/week [7] vs. 2.8 ± 2.2 109 

hours/week [15]). In addition, the participants in the study published by Bloomer et al, 2005 110 

[15] were more resistance (3.8 ± 1.8 hours/week), than aerobically trained. This suggests that 111 

the exercise stimulus implemented in both studies was more novel for the participants in the 112 

2005 study [15]. This supports some previous work reporting a greater magnitude of 113 

oxidative stress biomarker formation following unaccustomed exercise [44,45]. Thus, a 114 

combination of factors such as the novelty of exercise, and aspects of study design (i.e., 115 

exercise intensity and duration) are likely to interact to govern the magnitude of increase in 116 

plasma PC formation following exercise. However, it is perhaps more challenging to explain 117 

why decreases in plasma PC level have been observed.  118 

 119 

Studies reporting decreases in plasma PC concentration after exercise 120 

The available evidence suggests exercise intensity [30] and duration [7] influence the 121 

magnitude of ROS production and the associated increase in biomarkers of oxidative stress. It 122 

is therefore not surprising that many studies have reported no change in plasma PC 123 

concentration following sub-maximal exercise [15,46–50]. However, counter-intuitively, 124 



many studies report a decrease in plasma PC concentration following both sub-maximal and 125 

maximal exercise [8,16,17,51] (Table 1). Importantly, these changes have sometimes been 126 

reported alongside increases in other biomarkers of oxidative stress [8,17]. This is 127 

unexpected and implies that exercise stimulates clearance processes alongside exercise-128 

induced ROS production. 129 

We have shown that steady state submaximal cycling (60% and 80% �̇�O2max for 27 130 

[moderate intensity] and 20 minutes [high intensity] respectively) undertaken by untrained 131 

males (�̇�O2max; 42.7 ± 5.0 ml/kg/min) elicits a 9% (moderate intensity, p<.0001) and 4% 132 

(high intensity, p<.0001) mean decrease in plasma PC concentration (see figure 2: A and B) 133 

[8]. Importantly, these changes occurred in parallel with increases in plasma lipid 134 

hydroperoxides (LOOH), total antioxidant capacity (TAC) and cellular markers of oxidative 135 

stress [52]. Interestingly, the participants in this study engaged in less than 3 hours of generic 136 

aerobic exercise per week, indicating that these bouts were relatively unaccustomed. These 137 

findings are not limited to just moderately trained individuals. We have also shown a 7% 138 

decrease (p=.016) in plasma PC concentration immediately after a bout of cycling exercise 139 

(70% �̇�O2max, 75 min) in highly trained cyclists (�̇�O2max; 63.7 ± 5.3 ml/kg/min) (Wadley et 140 

al, 2015; In Preparation; see figure 2D). Finally, our findings are not limited to sub-maximal 141 

exercise: we have also shown a 10% mean decrease (p=.002) in plasma PC concentration 142 

immediately after a graded exercise test to volitional exhaustion (i.e., 100% �̇� O2max, 143 

approximately 15-minutes) in very active young men (�̇�O2max; 61.9 ± 4.7 ml/kg/min; see 144 

Figure 2C) (Turner et al; unpublished data) and a 13% mean decrease (p<.0001) following a 145 

bout of low volume high intensity interval exercise (10 × 1 minute stages at 90%�̇�O2max, with 146 

9 × 1 minute rest intervals at 40% �̇�O2max) in moderately active participants (�̇�O2max; 42.7 ± 147 

5.0 ml/kg/min) [8]. 148 



There are a number of other studies that report (but do not always comment upon) 149 

decreases in plasma PC levels following exercise (Table 1). For example, Chevion et al, [16] 150 

reported decreases in PC concentration following a study involving two walks (50km and 151 

80km) of unreported intensity. The magnitude of this decrease in PC concentration was 152 

greater following the first walk compared to the second, highlighting again that the novelty of 153 

the exercise stimulus may be a key factor modulating post-exercise PC concentration. 154 

Furthermore, reductions in plasma PC level have been reported immediately [17,51] and up 155 

to four hours [17] following submaximal cycling exercise in moderately trained participants. 156 

 157 

[Insert Figure 2 here] 158 

 159 

Possible mechanisms mediating protein carbonyl clearance in response to exercise  160 

The 20S proteasome system 161 

The proteasome system is an organised assembly of proteins present in all cell types 162 

that functions to degrade irreversibly modified proteins, such as those containing carbonyl 163 

groups. The ubiquitin-independent 20S proteasome is the primary system in place to degrade 164 

oxidatively damaged proteins [21,32,53], with recent evidence also suggesting the 11S 165 

proteasome facilitates this process under conditions of heightened oxidative stress [20]. 166 

Increased exposure of carbonyl-mediated hydrophobic groups within the protein core can 167 

increase targeted degradation by these proteasome systems within cells. The 20S proteasome 168 

is also excreted into extracellular fluids such as plasma [54–56] and is known to be 169 

enzymatically functional [57], suggesting that it could cleave PC groups in plasma directly. 170 

Studies in humans have found that exercise can acutely increase ubiquitin-dependent 171 

proteasome gene expression in response to resistance [58–60] and ultra-endurance exercise 172 

[61]. However, the impact of acute shorter-duration aerobic-type exercise on the ubiquitin-173 



independent 20S and 11S proteasome subunits (either intra- or extra-cellular; expression or 174 

activity) and the relationship with plasma PC has not been investigated in humans. Data from 175 

rats has indicated that chymotrypsin-like activity of the ubiquitin-independent 20S 176 

proteasome subunit increases in brain tissue following 8 weeks of exercise overload (1 hour 177 

swimming/day, 5 days a week for 6 weeks) [62]. 178 

Exercise bouts below a certain intensity and/or duration, in combination with the 179 

other physiological parameters discussed above may activate intracellular and extracellular 180 

proteasome pathways to clear modified proteins and thus lower the concentration of PC 181 

groups in plasma (Figure 3). The net increase in PC level observed in response to high 182 

intensity or prolonged duration exercise may result from the formation of new PC groups 183 

outnumbering proteolytic clearance of those present at baseline. Furthermore, inferences 184 

from cell culture data [53] led Radak et al [63] to propose that proteasome activity may 185 

follow a hormetic-type response with increasing exercise-induced oxidative stress. 186 

Proteasome activity may be reduced at higher exercise intensities or after prolonged duration 187 

exercise, due to ROS-induced inactivation of the functional 20S or 11S proteasome. Future 188 

work is needed to explore this mechanism. 189 

 190 

Resting or exercise-induced differences in total plasma protein composition and balance 191 

between tissues 192 

 Studies examining plasma PC concentration typically express results relative to the 193 

total protein concentration of plasma (i.e., nM of carbonyls per mg of protein) [64]. 194 

Measuring protein carbonylation in this way does not account for possible exercise-induced 195 

shifts in protein composition. This is relevant because certain plasma proteins, such as 196 

serotransferrin and fibrinogen (approximately 2-4% of total plasma proteins) are more 197 

susceptible to exercise-induced oxidation than other plasma proteins [18]. Therefore, 198 



individual differences in baseline plasma protein composition may influence post-exercise 199 

changes in PC. Furthermore, exercise could induce shifts in the proportion of certain proteins 200 

in plasma, which could result in exaggerated or suppressed protein carbonylation.  201 

Although not as susceptible to oxidation as fibrinogen, albumin, the most abundant 202 

plasma protein, has also been shown to exhibit a high concentration of PC groups [65]. The 203 

extent to which albumin becomes oxidised in response to exercise is dependent on intensity, 204 

and albumin carbonylation is marked at intensities of 80% �̇�O2max or more [30]. Inter-205 

individual variation in exercise-induced proteinurea or albuminuria has been documented 206 

[66,67], and might affect the amount and type of plasma proteins that can be oxidised during 207 

exercise. Furthermore, it has been shown that during and following both aerobic and 208 

resistance exercise, there is an increase in the uptake and turnover of proteins such as 209 

albumin and fibrinogen by muscle [68,69]. Thus, differences in PC excretion and balance 210 

between tissues might explain to some degree, alterations in the composition of plasma 211 

proteins, which may increase or decrease plasma PC level. 212 

 213 

Experimental approaches for monitoring changes in plasma protein carbonyl level 214 

The evidence presented in this review highlights the uncertainty with regards to the 215 

mechanistic underpinnings of post-exercise decreases in plasma protein carbonylation. 216 

Despite the factors discussed, experimental design and the analytical techniques used to 217 

quantify protein carbonyl concentration in the cited studies warrants discussion. 218 

The majority of studies included in Table one controlled for factors such as age, 219 

training status, dietary habits (i.e. fasted exercise trials), and the time of day that exercise was 220 

undertaken. All of these variables have been shown to alter protein balance through changes 221 

in protein uptake to skeletal muscle during exercise [68,69], highlighting the rigorous 222 

experimental approach taken in these studies. However, an important consideration is the 223 



timing of blood sampling. Many of the studies presented assessed protein carbonyl 224 

concentration immediately following cessation of the exercise bout. It is conceivable that 225 

changes within the minutes and hours after exercise might give more insight into the 226 

‘conundrum’ of post-exercise changes in protein carbonyl level. Indeed, independent studies 227 

have shown increases [70] and decreases [17] in protein carbonyl concentration up to 4 hours 228 

post-exercise. In this regard, it is clear that extensive timecourse analysis of protein carbonyl 229 

concentration is needed to validate these findings and importantly, to elucidate the 230 

mechanisms influencing decreases following exercise. 231 

It is important to note that a variety of analytical techniques are used to quantify 232 

protein carbonylation in the literature. These have primarily included spectrophotometric and 233 

ELISA-based methods, which have recently come under scrutiny with regards to their 234 

sensitivity [71] and reproducibility [72]. However, while these studies provide an example of 235 

an important limitation of quantifying protein carbonyl concentration, they do not explain 236 

why protein carbonyl concentration might decrease following exercise. Furthermore, with 237 

independent laboratories now reporting decreases in protein carbonyl level following exercise 238 

[8,16,17,51], this reduces the chances of experimental variability causing this effect. 239 

 240 

[Insert Figure 3 here] 241 

 242 

Conclusions 243 

Plasma protein carbonyl concentration is a marker of oxidative stress routinely used 244 

to assess exercise-induced redox regulation. The evidence presented in this review suggests 245 

that certain exercise conditions can result in a net decrease in plasma PC concentration 246 

following exercise, which occurs in parallel with increases in other biomarkers of oxidative 247 

stress. Exercise intensity (>70% �̇�O2max) and prolonged duration (>60 minutes) appear to be 248 



the main contributing factors in the observed post-exercise increases in PC concentration. 249 

The factors influencing decreases in protein carbonyl level are more difficult to interpret, but 250 

likely involve the clearance of oxidised proteins from plasma, potentially by plasma 251 

proteasomes, excretion, or uptake into active tissues. Studies wishing to assess markers of 252 

oxidative stress in response to exercise should assess PC concentration together with other 253 

biomarkers over an extended time course (immediately after and up to 4 hours post-exercise) 254 

for a true representative assessment [31]). 255 
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Figure Legends 

Figure 1: Formation of non-native carbonyl groups in proteins. Non-native carbonyl 

groups can be introduced into proteins by; (1) direct oxidation of amino acids, (2) via 

secondary oxidation products of lipid peroxidation, and (3) the oxidation products of 

reducing sugars. An example carbonyl modification is included for each pathway; (A) (2-

amino-3-ketobutyric acid, (B) malondialdehyde-Lysine adduct, and (C) carboxymethyl lysine 

(3)). The non-native carbonyl group in each example is indicated by a dashed circle around 

the C=O bond of the amino acid or amino acid side chain (adduct). 

 

Figure 2: Published and unpublished data indicating decreases in protein carbonyl 

concentration (nM/mg protein) in response to exercise. PC level decreases during the last 

minute (End-Exercise) (A) 27 minutes of cycling at 60% �̇�O2max and (B) 20 minutes of 

cycling at 80% VO2max in untrained young men (n=10; mean ± SD: age 22 ± 3 yrs; �̇�O2max 

42.7 ± 5.0 ml/kg/min) [8]; C) PC level decreases immediately following a �̇�O2max test to 

exhaustion in trained young men (n=10; mean ± SD: age 23 ± 3 yrs; �̇�O2max 61.9 ± 4.7 

ml/kg/min) (Turner & Aldred; unpublished work); D) PC level decreases immediately 

following 75 minutes of cycling at 70% �̇�O2max, and is elevated above baseline levels 2 hours 

post-exercise in trained young men (n=12; mean ± SD: age: 28 ± 4 years, �̇�O2max 63.7 ± 5.3 

ml/kg/min) (Wadley et al, 2015; in preparation). Individual (grey bars) and mean (black line) 

PC concentration changes are reported. Mean percentage change and statistical significance 

are indicated above each graph. Paired samples T-tests (A-C) and repeated measures 

ANOVA (D) were performed using SPSS (PASW Statistics, 22.0). 

 



Figure 3:  Proposed formation/ clearance of protein carbonyl groups in response to 

exercise in humans. Exercise can cause an increase in plasma protein carbonylation when 

the exercise bout is of sufficient intensity and/or duration. Activation of clearance 

mechanisms may drive a decrease in PC groups present at baseline when certain exercise 

conditions are met.   
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