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Highlights 20 

  21 

• Aquatic microcosms were used to study the transport and behavior of 22 

AgNPs in model low and high ionic strength waters.  23 

• Surface coating and solution chemistry has a major impact on AgNP 24 

stability. 25 

• UV-Visible spectrophotometry provided important information on the aggregation 26 

and migration of the AgNPs. 27 

• Experiments showed that PVP-coated AgNPs migrate via diffusion in all 28 

conditions, whereas citrate-coated AgNPs follow both sedimentation and 29 

diffusion dependent upon the aquatic environments.  30 

Abstract 31 

The role of surface coating (polyvinylpyrrolidone (PVP) and citrate) and water 32 

chemistry on the fate and behaviour of AgNPs in aquatic microcosms is reported in 33 

this study.  The migration and transformation of the AgNPs was examined in low 34 

(ultrapure water- UPW) and high ionic strength (moderately hard water – MHW) 35 

preparations, and in the presence of modelled natural organic matter (NOM) of 36 

Suwannee River Fulvic Acid (SRFA). The migration and fate of the AgNPs in the 37 

microcosms was validated using a sedimentation-diffusion model and the 38 

aggregation behaviour was monitored by UV-visible spectrometry (UV-vis). 39 

Dissolved and particulate Ag concentrations (% Ag) were analyzed by ultrafiltration 40 

methods. Imaging of the AgNPs was captured using transmission electron 41 

microscopy (TEM).  42 

Results indicate that PVP-coated AgNPs (PVP-AgNPs) remained stable for 28 43 

days with similarly distributed concentrations of the PVP-AgNPs throughout the 44 

columns in each of the water conditions after approximately 96 hours (4 days). The 45 

sedimentation-diffusion model confirmed PVP-AgNP stability in each condition, by 46 

showing diffusion dominated transport by using the original unaltered AgNP sizes to 47 

fit the parameters. In comparison, citrate AgNPs were largely unstable in the more 48 

complex water preparations (MHW). In MHW, aggregation dominated behavior 49 

followed by sedimentation/dissolution controlled transport was observed. The 50 

addition of SRFA to MHW resulted in small stabilizing effects, to the citrate coated 51 

AgNPs, producing smaller sized AgNPs (TEM) and mixed sedimentation and 52 

diffusion migration compared the studies absent of SRFA. The results suggest that 53 
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surface coating and solution chemistry has a major impact on AgNP stability, 54 

furthermore the corresponding modeling will support the experimental understanding 55 

of the overall fate of AgNPs in the environment. 56 

 57 

 58 

 59 

  60 
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 61 

1 Introduction 62 

Silver nanoparticles (AgNPs) are commercially exploited for their antibacterial 63 

and other properties(Benn and Westerhoff 2008),(Piccinno, Gottschalk et al. 2012). 64 

Although there are uncertainties, some studies have found AgNPs to be potentially 65 

toxic(Fabrega, Luoma et al. 2011) with adverse effects on biota(Navarro, Baun et al. 66 

2008). Due to their extensive use in consumer products, it is also inevitable that 67 

AgNPs will enter the aquatic environment(Benn and Westerhoff 2008). 68 

Environmental fate and exposure models indicate that the predicted environmental 69 

concentrations (PECs) of AgNPs in surface waters will be in the range of ng to µg L-1 70 

(Gottschalk, Sun et al. 2013). The quantities of NPs and rates of release will 71 

influence environmental concentrations, and be heavily impacted by their 72 

environmental behavior and transformations(Dale, Casman et al. 2015). The fate of 73 

the NPs is determined by key processes such as dissolution, aggregation, 74 

sedimentation, deposition, and sulfidation(Lowry, Gregory et al. 2012),(Peijnenburg, Baalousha et al. 75 
2015). These processes are largely influenced by the chemical complexity of the 76 

aquatic system such as ionic strength, pH and natural organic matter (NOM), and 77 

also the nature of the NPs(Peijnenburg, Baalousha et al. 2015). Deposition of AgNPs 78 

onto solid surfaces will reduce the migration of the AgNPs in suspension and 79 

influence their long term fate in the environment (Bae et al, 2013). Aggregation will 80 

increase particle size, reduce surface area and influence dissolution(Hotze, Phenrat 81 

et al. 2010) resulting in settling and sedimentation dominated migration which is a 82 

likely pathway for AgNPs. However, it has also been suggested that AgNPs can be 83 

modified by NOM leading to prolonged persistence in surface waters(La Farre, Pérez 84 

et al. 2008).  Furthermore, capping agents are designed to increase colloidal stability 85 

of the AgNPs by reducing the surface energy(Ju-Nam and Lead 2008), which 86 

prevent interactions with the surrounding environment and avoid NP-NP interactions 87 

reducing aggregation rates(Kvitek, Panáček et al. 2008).  88 

For charge stabilized-AgNPs, low ionic strength and high concentrations of NOM 89 

minimize homoaggregation(Chinnapongse, MacCuspie et al. 2011), whereas high 90 

ionic strength usually causes significant aggregation, even in the presence of high 91 

NOM concentrations most likely as a result of bridging mechanisms by divalent 92 

cations(Baalousha, Nur et al. 2013),(Chen and Elimelech 2007). However, sterically-stabilized AgNPs 93 

are generally more stable than charge-stabilized NPs and are less likely to undergo 94 

4 
 



aggregation and sedimentation, even at high ionic strengths(Baalousha, Arkill et al. 95 
2015),(Hitchman, Smith et al. 2013) and often less prone to dissolution.  96 

The aim of the current study is to produce a model to validate the environmental 97 

fate and migration behavior of AgNPs by investigating their behavior in static water 98 

‘microcosms’. In particular, this paper reports the impact of water chemistry and 99 

AgNP surface coating (citrate and PVP) on the fate of AgNPs over a period of 28 100 

days. The concentration and aggregation behavior of AgNPs were measured by 101 

atomic absorption spectroscopy (AAS) and UV-visible spectrophotometry (UV-vis). 102 

The measured Ag concentrations were fitted using a diffusion-sedimentation 103 

model(Hinderliter, Minard et al. 2010),(Socolofsky and Jirka 2005)  to illustrate the dominant fate 104 

processes (e.g. aggregation and sedimentation, or diffusion) controlling the fate of 105 

Ag NPs in a range of synthetic waters from pure water to moderately hard water 106 

spiked with fulvic acid as a surrogate of natural organic matter.  107 

 108 

109 
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2 Materials and Methods 110 

2.1 Materials 111 

 112 

Commercially available chemicals and solvents were purchased from Sigma-113 

Aldrich (Dorset, UK) and were of analytical reagent grade. Ultra pure water (UPW) 114 

with a maximum resistivity of 18.2 MΩcm-1 was used throughout the experiments. 115 

Suwannee River fulvic acid (SRFA) was purchased from the International Humic 116 

Substances Society (IHSS, St. Paul, MN, USA). Atomic force microscopy (AFM) 117 

cantilevers were purchased from Park systems corp, Suwon, Korea and used for 118 

AFM analysis. More information about the materials used in this experiment is 119 

provided in the supporting information (Table SI.1).   120 

 121 

2.2 Synthesis and Characterization of AgNPs 122 

 123 

Citrate-coated silver nanoparticles (cit-AgNPs) were synthesized by following a 124 

published methodology(Cumberland and Lead 2009) using reagent grade chemicals 125 

shown in table SI.1. Briefly, a 100 mL (0.25 mM) silver nitrate (AgNO3) solution was 126 

mixed with a 100 mL (0.25 mL) sodium citrate solution, followed by addition of 6 mL 127 

(0.25 mM) sodium borohydride (NaBH4). The mixture was then heated at 100 oC for 128 

2 hours, while stirring vigorously. The resulting suspension was then refrigerated 129 

overnight at 4oC and purification was carried out using a Millipore stirred cell 130 

ultrafiltration (1 kDa) system under nitrogen gas. PVP-AgNP suspensions(Tejamaya, 131 

Römer et al. 2012) were prepared by cooling a solution of (2 mM) NaBH4 and PVP 132 

(Mw 10000, Sigma Aldrich) to 4oC. AgNO3 (1 mM) was added to the suspension 133 

dropwise with vigorous stirring. The suspensions were refrigerated overnight at 4oC. 134 

Ultrafiltration using a Millipore stirred ultrafiltration cell with a cellulose membrane of 135 

1 kDa (purchased from Sigma) under nitrogen (N2) gas at approx 14 PSI was 136 

performed to remove Ag ions.  137 

A multi-method approach was used to characterize the AgNPs, both ‘as 138 

prepared AgNPs’ and samples withdrawn from the microcosm. Dynamic light 139 

scattering (DLS), was used to measure hydrodynamic size using a Malvern 140 

Nanosizer 5000. Particle core size was measured by transmission electron 141 

microscopy (TEM, particle equivalent circular diameter) and AFM (particle height). 142 
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Samples were prepared by drop casting methods by depositing a 20 µL drop of 143 

AgNP suspension on a 300 mesh carbon-coated copper TEM grid (Agar Scientific, 144 

UK) for TEM analysis, and a freshly cleaved mica sheet for AFM analysis. The AgNP 145 

suspension drop was left for approximately 30 minutes to allow the NPs to adhere to 146 

the carbon membrane coating the TEM grid and the mica sheets for AFM.  Both the 147 

TEM grids and the mica sheets were then rinsed with UPW to remove excess water, 148 

avoid NP aggregation and salt crystallization(Baalousha and Lead 2012).  149 

All TEM analyses were performed using a JEOL 1200EX 100kv Max system or a 150 

Tecnai F20 Field Emission gun (FEG) TEM coupled with an X-ray energy dispersion 151 

spectroscopy (EDS) detector from Oxford Instruments. For each sample, a minimum 152 

of 100 particles from different randomly selected sample areas of multiple grids, 153 

were used to calculate the size and shape measurements using Digital Micrograph 154 

software (Gatan Inc, Pleasanton, CA, USA). The measured sizes were then 155 

classified into intervals of 0.5 nm to construct particle size distribution histograms.   156 

All AFM analyses were performed using an XE-100 AFM (Park systems Corp., 157 

Suwon, Korea). The measurements were carried out in true non-contact mode using 158 

a Silicon cantilever with a typical spring constant of 42 N m-1 (PPP-NCHR, Park 159 

systems Corp., Suwon, Korea). All scans were performed at ambient conditions, 160 

which have been shown to produce accurate sizing, despite loss of most, but not all 161 

water(Baalousha and Lead 2013),(Balnois and Wilkinson 2002).  Images were recorded in topography 162 

mode with a pixel size resolution of 256 × 256 and a scan rate of 0.5-1.0 Hz. Height 163 

measurements of the AgNPs were made using the transect analysis using the XEI 164 

data processing and analysis software of the microscope (Park Systems Corp., 165 

Suwon, Korea). For each sample, a minimum of 100 height measurements were 166 

performed, which are sufficient to produce a representative particle size 167 

distribution(Baalousha and Lead 2012). The measured heights were then classified 168 

into intervals of 0.5 nm to construct particle size distribution histograms. 169 

Total silver (Ag) concentrations were measured by flame atomic absorption 170 

spectroscopy (FAAS) using a Perkin Elmer instrument AAnalyst 300, with an air-171 

acetylene mixture. Limits of FAAS instrumentation detection were devised by running 172 

a set of blanks (ultrapure water) which were measured at 2 ± 2 µg L-1 and a set of 173 

standards to determine a concentration of 50 µg L-1.  The concentrations of AgNPs in 174 

the purified NP suspensions were 11 mg L-1 and 20 mg L-1 for the cit- and PVP-175 

AgNPs, respectively.   176 
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The surface plasmon resonance (SPR) of AgNP suspensions was measured 177 

using a Jenway 8300 double beam UV-visible spectrometer (UV-vis) over the 178 

wavelength range of 300-800 nm, with the use of suitable controls (UPW and MHW 179 

water). A 10 cm long path length cuvette was used to collect spectra.  Full details of 180 

AgNP properties are provided in Table 1 and Figures S1-S9 in the Supporting 181 

Information. 182 

 183 
Table 1: Properties of the ‘as-prepared’ AgNPs obtained using a multi-Method Characterisation approach  184 

Technique Citrate AgNPs PVP AgNPs 
Particle core size measured by TEM (nm) 11 ± 3 11 ± 2 nm  
Particle height measured by AFM (nm) 12 ± 3 11 ± 3 
z-average hydrodynamic diameter measured by DLS (nm) 21 ± 2 20 ± 2 
Polydispersity index measured by DLS (PDI) 0.10 ± 0.04 0.20 ±  0.04 
Ag concentration FAAS (Concentration mg L-1) 11.5 ± 1 20.0 ± 2 

*Key to annotations: TEM: transmission electron microscopy, AFM, atomic force microscope, DLS: dynamic light 185 
scattering, FAAS: flame atomic absorption spectrometer 186 

  187 

2.3 Microcosm Experiments 188 

 189 

The fate and behavior of AgNPs was assessed in aquatic microcosms. The 190 

microcosms are cylindrical columns made of polystyrene plastic and measuring 100 191 

cm in height, 25 cm in diameter and 43 L in volume. The columns were shielded 192 

from light in all experiments, by wrapping the exterior walls in foil. AgNPs were 193 

introduced as a single concentration pulse through a mesh at a depth of 5 cm below 194 

the surface water (Figure SI.12). The starting mass of AgNPs (MAg) added to the 195 

columns (4.3 mg) was estimated to give a final concentration of 100 µg L-1 Ag, 196 

assuming uniform distribution of Ag throughout the water column and no losses. This 197 

Ag mass was introduced as 390 ml of 11 mg L-1 cit-Ag NPs, or 215 ml of 20 mg L-1 198 

PVP-Ag NPs. The concentration of AgNPs was selected to be as close as possible 199 

to predicted environmental concentrations of AgNPs5, while maintaining sufficient 200 

particle concentration to enable analysis. To determine the minimum detectable 201 

concentration of AgNPs by UV-vis spectra were collected on AgNPs following serial 202 

dilutions, which suggested that a minimum concentration of 50 µg L-1 was required 203 

for detection (Figure SI.10). The fate and transport of AgNPs was investigated in 204 

three media: 1) UPW, 2) EPA moderately hard water (MHW), and 3) EPA 205 

moderately hard water spiked with 1 mg L-1 Suwannee River fulvic acid (MHW-206 
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SRFA). For lakes and surface waters the expected total organic carbon ranges 207 

between 1-30 mg L-1, depending on the trophic state (Hendricks 2006, Thurman 208 

2012). As lower concentrations are more frequent, it was decided that the 209 

concentration would be at the lower end of the scale at 1 mg L-1. 210 

 All microcosm experiments were performed in triplicate. The MHW was 211 

prepared according to guidelines from the United States Environmental Protection 212 

Agency (US EPA, 2002) (Table SI.2). The MHW-SRFA was prepared by adding 213 

SRFA stock to the MHW and leaving for 24 hours. 214 

Water samples of 5 mL were collected at the introduction point (water surface), 215 

middle (50 cm from the surface and bottom), and bottom (90 cm from the surface) of 216 

the microcosm column. Water samples were collected using six inch stainless steel 217 

hypodermic needles which were permanently fixed to the sampling points. The 218 

sampling point at the bottom was always sampled at a 45o angle downwards in order 219 

to obtain samples that were within 1 cm of the bottom of the microcosm. No mixing 220 

was performed and mesocosms were kept at room temperature (21 ± 2oC). Water 221 

samples were collected at different time points following introduction of Ag NPs; 0, 222 

0.5, 1.5, 3.5, 5.5, and 8 hours on day 1 and then on daily-basis for the first 14 days, 223 

then again on days 21 and 28. Additionally, samples from the surface and bottom 224 

were analysed on days 1-14, 21 and 28, to assess the dissolved and particulate 225 

concentration (% Ag) using ultrafiltration methods using a Millipore stirred 226 

ultrafiltration cell with a cellulose membrane of 1 kDa (purchased from Sigma) under 227 

nitrogen (N2) gas at approx 14 PSI. Ultrafiltration membrane viability tests were 228 

performed by running a set of known standards and checking their recovery rates, by 229 

measuring the Ag concentration in the retained and filtrate content. Thus, any 230 

adsorbed Ag to the membrane was accounted for in the recovery calculations. All 231 

water samples were analyzed for total Ag concentrations by atomic absorption 232 

spectroscopy (AAS), and for AgNP aggregation by UV-vis(Baalousha, Nur et al. 233 

2013) and confirmed by TEM analysis. 234 

 235 

2.4 Modeling the transport of Ag 236 

 237 

As the water in the column was kept stagnant throughout, the transport of AgNPs in 238 

the microcosms is determined by their sedimentation after aggregation and their 239 
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diffusion. These transport processes can be modeled by the diffusion-sedimentation 240 

equation(Socolofsky and Jirka 2005) (Eq 1).  241 

∂C
∂t

+ ∂µiC
∂xi

= D ∂2C
∂xi

2                                     [Eq 1] 242 

 243 

Where D is the diffusion coefficient (m2 s-1) of the AgNPs or their aggregates, C is 244 

concentration (mg L-1), t is time following AgNP introduction, viscosity of the solution 245 

µ (Pa.s), and  x is the distance AgNPs travelled into the column from the introductory 246 

point. To calculate Ag concentration profile as a function of time at the sampling 247 

point in the water column, we used a simple analytical solution for Eq 1 that satisfies 248 

the experimental boundary conditions. These boundary conditions are: 1) absence of 249 

AgNPs in the water column at t = 0; that is CAg = 0 at t = 0 for 0 < x <L, 2) 250 

introduction of AgNPs at the top of the water column; that is CAg = C0 at t = 0 and x 251 

=0, and 3) no flux at the bottom of the column; that is dC/dx= 0, at x=L. Using these 252 

boundary conditions, the analytical solution of Eq 1 can be given by Eq 2:  253 

 254 

C(x, t) =  M
A√4πDt 

 �exp �− (x−x0)2

4Dt
 � +  exp � (x−xi)

2

4Dt
 ��             [Eq 2] 255 

 256 

Where x0 is the point where the NPs are introduced to the column, A is column cross 257 

section area, and M is the mass of the introduced AgNPs. The nanoparticle diffusion 258 

coefficient and sedimentation velocity can be described by Stokes-Einstein (Eq 3) 259 

and Stokes equation(Hinderliter, Minard et al. 2010) (Eq 4): 260 

                                D = KT
3πμ d

                                               [Eq 3] 261 

                                         U =
g�ρρ−ρf�d

2

18μ
                                        [Eq 4] 262 

 263 

Where k is Boltzman constant (m2 kg s-2 K-1), T is temperature (K), μ is medium 264 

viscosity (kg m-1 s-1) and d is particle diameter (m). The sedimentation velocity is U 265 

(m s-1), g is the gravitational force (m s-2), particle density is ρρ (kg m-3) and fluid 266 

density is ρf, (Hinderliter, Minard et al. 2010).  These constant values are described in 267 

Table 2.  268 

 269 
 270 
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 271 
 272 
 273 
 274 
Table 2: Constant values used in the model 275 

Unit Constant value Description 
g 9.81 Acceleration of gravity (m s-2) 

Pp 10490 Density of the particle (kg m-3) 
Pf 998 Density of the medium (kg m-3) 
K 1.38065 X10-23 Boltzman constant (m2 kg s-2 K-1) 
T 293.15 Temperature oK 
µ 0.001 Viscosity of medium(Pa.s) = kg (m-1s-1) 

 276 

 277 

This analytical solution can only be used to predict the concentration of AgNPs in the 278 

water phase and does not account for particle accumulation at the bottom of the 279 

mesocosm following sedimentation/settling on the microcosm floor. Additionally, this 280 

analytical solution accounts only for NP diffusion and sedimentation and does not 281 

take into account AgNP dissolution and losses of Ag due to sorption on to the solid 282 

wall surfaces. Therefore, discrepancies between data and model can be explained 283 

partially by dissolution and sorption. The measured concentrations were then fitted 284 

using Eq 2, which is essentially an analytical solution of the diffusion-sedimentation 285 

model (Eq 1). The fitting parameters that changed were the particle size and 286 

concentration, and the rest of the values remained constant. 287 

 288 

The weighted sum of squared errors was calculated using Eq 5: 289 

X2 =  ∑ (O−E)2

σ2
                       [Eq 5] 290 

Where σ2 is the variance of the measured Ag concentrations, O is the observed 291 

concentration data, and E is the expected Ag concentration data. The fitting 292 

parameters (nanoparticle diameter and mass of Ag introduced to the water column) 293 

were optimized by Solver software in Microsoft Excel by minimizing the weighted 294 

square error. The middle point data were used in the fitting process as these 295 

concentrations are likely to be most accurate concentrations. The top sampling point 296 

can be affected by mixing with the water in the introduction reservoir, whereas the 297 

bottom sampling point concentrations could be impacted by particle sedimentation. 298 
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 299 

3 Results and Discussion 300 

 301 

3.1 Behavior and Transport of PVP-AgNPs  302 

 303 

In all media, PVP-AgNP behaviour followed a pattern broadly consistent with 304 

diffusion dominated transport(Tejamaya, Römer et al. 2012). The Ag concentration 305 

profiles in UPW, MHW and MHW-SRFA for each of the three sampling points are 306 

presented in Figure 1. As described above (section 2.3), all microcosms were spiked 307 

with a total mass of Ag NPs that should result in a final concentration of 100 µg L-1 308 

Ag in the water column, assuming uniform distribution of Ag throughout the water 309 

column and no losses. The total Ag concentration profiles in figures 1A, 1D and 1G, 310 

in each water condition, show that the average maximum concentration at the 311 

surface sampling point reaches 50 ± 5 µg L-1 after 120 hours, where it remains 312 

constant for the duration of the study. Time 0 represents the first 5 minutes after 313 

sample introduction due to the time taken to sample each depth and microcosm 314 

column. This time lapse accounts for the low  concentrations of Ag detected at time 0 315 

in both the middle (Figures 1b,1E and 1H) and bottom sampling points (Figures 1C, 316 

1F, and 1I). Due to the immediate mixing of the AgNPs on introduction, it is possible 317 

for the rapid diffusion of ionic species, which would account for the measured small 318 

Ag concentrations in the lower depths at time 0. On the other hand, particle 319 

dispersion is a much slower process (as shown by the higher concentrations of Ag 320 

held in the surface water up to 96 hours, and as a result, after ca. 50 hours, both the 321 

middle and bottom sampling points show the total Ag concentration increased to 322 

reach a plateau of 50 ± 15 µg L-1. It may thus be concluded that the behavior is the 323 

same throughout the microcosm columns and conditions, showing losses of 324 

approximately 50-70 % from the expected 100 µg L-1 Ag concentration. In addition to 325 

the analytical limitations, losses of Ag may have occurred from the sorptive losses of 326 

the AgNPs to the walls. The total Ag concentration profiles were also fitted with Eq 2 327 

to produce a predicted concentration over time based on particle size and the mass 328 

of Ag introduced to the water column (MAg) (Figures 1 and Table 3). The parameters 329 

were based on particle sizes between 11 and 20 nm.The MAg was between 1.4 and 330 

2.4 mg to reflect the range of concentrations resulting from losses as previously 331 

discussed during sampling (especially from areas of high concentration) and 332 
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sorption.  Ultrafiltration was used as a qualitative measure of the proportion of AgNP 333 

transformations in the surface and bottom depths. Ionic Ag (Ag+) and AgNP data is 334 

presented in the supporting information (Tables SI.3, SI.5 and SI.7). In all conditions, 335 

over the 28 day study period, PVP-AgNPs accounted for at least 75% of the total Ag 336 

concentration in the surface water and 70% in the bottom depth.  337 

 338 

 339 

 340 

 341 

 342 

 343 

 344 

 345 

 346 

 347 

 348 

 349 

 350 
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 355 
 356 

Figure 1: Observed and modelled total Ag concentrations over time for the PVP AgNP study in the surface, middle and bottom depths of the mesocosm, in each of the water conditions 357 
(parameters in supporting information) A) UPW surface water, B) UPW middle depth water, C) UPW bottom depth water, D) MHW surface water, E) MHW middle depth water, F) MHW bottom 358 
depth water, G) MHW SRFA surface water,  H) MHW SRFA middle depth water and I) MHW SRFA bottom depth water. Dots show the average concentrations of three independent triplicates, 359 
error bars represent the standard deviation of the measured concentrations in the three replicated and the solid lines is the fitted model. Mass of Ag NPs introduced to the column fixed at 4.3 360 
mg.361 
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 362 

Collectively, all the UV-vis spectra for the PVP-AgNPs (Figure 2) show one 363 

uniform peak centered on 400 nm, comparable to the ‘as prepared PVP-AgNPs 364 

(Figure SI.1) and is indicative of unaltered AgNPs(Tejamaya, Römer et al. 2012),(Römer, White et al. 365 
2011). The differences in the UV-vis absorbance maximum (λmax) was  also used to 366 

trace AgNP movement throughout the microcosms, showing as the λmax absorbance 367 

decreased over time from the surface sampling point, the λmax increased in the 368 

middle and bottom areas, indicating the migration of PVP-AgNPs into the column. 369 

The migration of PVP-AgNPs corresponds with the time trends shown in the 370 

modeled and observed Ag concentration data (Figure 1), as the AgNPs move 371 

through the microcosm. Losses and reduction in SPR spectra can also be used to 372 

indicate dissolution of AgNPs when total Ag concentrations remain unchanged. In all 373 

cases the SPR was still detectable at each sampling point at the end of the 28 day 374 

study showing particle presence. 375 

To provide further understanding of the PVP-AgNP fate behavior, TEM analysis 376 

was conducted on samples of PVP-AgNPs collected from the surface and bottom 377 

sampling areas at selected time intervals (Figure 3). All reported TEM sizes were 378 

consistent with our experimental data and in agreement with the average particle 379 

sizes within the error of measurements and high diffusion coefficients compared to 380 

settling velocities (Table 3) used to fit the model data for each water condition.  381 

 382 

 383 

 384 

 385 

 386 

 387 

 388 

 389 

 390 

 391 

 392 

 393 

 394 

 395 
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               401 
Figure 2: comparison SPR profiles of PVP AgNP over time for the surface, middle and bottom depths of the mesocosm, in each of the water conditions, A) UPW surface water, B) UPW 402 

middle depth water, C) UPW bottom depth water, D) MHW surface water, E) MHW middle depth water, F) MHW bottom depth water, G) MHW SRFA surface water,  H) MHW SRFA middle 403 
depth water and I) MHW SRFA bottom depth water. 404 
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 Figure 3: TEM imaging of PVP AgNPs recovered after 24 hours in each of the water conditions, A) surface UPW, B) bottom UPW, C) surface MHW, D) bottom MHW, E) surface MHW 410 
SRFA and F) bottom MHW SRFA.411 
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Table 3. Silver mass, diameter, diffusion coefficient and settling velocity calculated by fitting the measured concentration using the 412 
diffusion-sedimentation equation 413 

 MAg (mg) d (nm) D (10-12 m2s-1) Us (10-8 m s-1) 

PVP-Ag NPs 

UPW 2.4 20 21.5 0.21 

MHW 2.0 14.8 28.9 0.11 

MHW-SRFA 1.4 11 39 0.06 

Cit-Ag NPs 

UPW 4.0 10.0 43 0.05 

MHW 2.0 88.4 4.9 4.0 

MHW-SRFA 3.2 12.7 33.7 0.08 

MAg mass of Ag introduced to the water column (mg), D diffusion coefficient, v settling velocity, d diameter (nm) 414 

 415 

 416 

3.1.1 Behavior of PVP-AgNPs in UPW 417 

 418 

To assess the stability and migration behavior of the PVP-AgNPs in UPW the model 419 

parameters were optimized using the weighted sum of squared errors (Eq 5) to produce a best fit 420 

using a 20 nm particle size and MAg of 2.4 mg L-1 (Table 3). The decrease in MAg from the starting 421 

MAg (4.3 mg L-1) reflects the potential losses of Ag during sampling and from sorption on to the 422 

solid surfaces of the microcosm. The diffusion coefficient of the modeled particles was 21.5 X 10-12 423 

m2s-1 exceeding the sedimentation velocity of 0.21 X 10-8 m s-1 (Table 2), evidencing that diffusion 424 

was the dominant migration process. The higher diffusion coefficient confirms diffusion dominated 425 

migration and thus, the maintained stability of the PVP AgNPs when released into the UPW. 426 

Furthermore, the small NP size (20 nm) used to produce the best fit for the modeled Ag 427 

concentration is reflective of the PVP AgNP stability and is comparable to the ‘as prepared’ PVP-428 

AgNPs. In addition to the model parameters, the observed total Ag concentration profiles (also 429 

presented in Figures 1A, 1B and 1C) for the UPW conditions, show the Ag concentrations 430 

between each sampled depth were comparable at each time point and satisfy the rules of Stokes-431 

Einstein Law  of particles in solution(Hinderliter, Minard et al. 2010)  and Ficks Law of 432 

diffusion(Fick 1855, Gorban, Sargsyan et al. 2011). Therefore, this provides suitable evidence to 433 

support AgNP dissolution. At any given time, the total Ag concentration accounted for >80% 434 

AgNPs and <20% dissolved Ag throughout the study in UPW (Table SI.3). 435 

UV-vis is a particularly important tool used to identify changes in AgNP properties, which can 436 

alter their SPR. A single UV-vis peak at 400 nm was comparable to the ‘as prepared PVP-AgNPs 437 

(Figure SI.1) showing characteristics of unaltered AgNPs(Tejamaya, Römer et al. 2012),(Römer, White et al. 2011). 438 

Additionally the SPR signal was present for 672 hours (28 days) confirming their presence and 439 
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stability. TEM imaging (Figures 3A and 3B) also identified small single spherical particles in the 440 

surface and bottom depth of the microcosm at 24 hours post release. The average size was 13 ± 7 441 

nm in the surface and 14 ± 4 nm in the bottom, showing no significant difference (Table SI.4) when 442 

compared to the as prepared PVP-AgNPs prior to release and agrees with the model size fitting 443 

parameters. The TEM imaging produced both qualitative and quantitative information which 444 

underpins the model concentrations and the UV-vis data to provide strong evidence that PVP-445 

AgNPs remain stable in UPW.  These results are also in agreement with previous findings for 446 

small sterically-stabilized AgNPs in UPW(Liu and Hurt 2010), therefore diffusion dominated 447 

transport was used to show accurate calibrations for the model.   448 

 449 

3.1.2 Behavior of PVP-AgNPs in MHW 450 

 451 

When the PVP-AgNPs were released into the MHW (Figures 1D, 1E and 1F), the modeled fitting 452 

parameters (ca. d and MAg) were appropriate to confirm unaltered particles. The weighted sum of 453 

squared errors (Eq 5) optimized the model fits, using a small average size of 14.8 nm (consistent 454 

with TEM size analysis) and a MAg of 2 mg L-1. The optimized model sizes were also comparable 455 

to the ‘as prepared AgNPs’. The diffusion coefficient of 28.9 X 10-12 m2s-1 was higher when 456 

compared to the sedimentation velocity of 0.11 X 10-8 m s-1 (Table 3). This information supports 457 

that PVP AgNPs maintained stability and migrated through the microcosm columns via diffusion, in 458 

a similar fashion to the behavior observed in UPW.  459 

It is well documented in the literature that in simple aqueous environments AgNPs form 460 

complexes with cholride chloride and sulfide ligands(Lowry, Gregory et al. 2012, Tejamaya, Römer et al. 2012, 461 
Peijnenburg, Baalousha et al. 2015),(Levard, Reinsch et al. 2011), which were all present in the MHW, although no 462 

evidence for their co-existance was found here, in contrast with cit-AgNPs (see section 3.2.2.). In 463 

addition, there was some evidence of Ag dissolution and reprecipitation during the study, as 71% 464 

of the total Ag concentration was accounted for NPs after 24 hours (Table SI.5), compared  to  465 

81% on day 28.  The co-existence of Ag and Cl present the possibility for precipitation of (most 466 

probably) AgCl nanoparticles, as a transformation process (as observed in the EDS profiles in 467 

Figure 7B). As AgCl NPs do not have an associated SPR absorbance (Zook, Long et al. 2011), it 468 

was not possible to qualitativly identify this association, although the co-existance of the AgCl may 469 

explain the slight vairations in size.  470 

Despite some dissolution and  the influence of the water chemistry, a total Ag concentration 471 

remained comparable between each depth (surface, middle and bottom) at 120 hours (5 days 472 

(Figures 1D, 1E and 1F) and for the duration of the study thereafter. 473 
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SPR is a good indicator of aggregation of AgNPs(Baalousha, Nur et al. 2013) where additional 474 

second absorbance peaks in the region of 500-700 nm confirm the presence of larger 475 

particulates(Chinnapongse, MacCuspie et al. 2011, Baalousha, Nur et al. 2013). UV-vis spectra 476 

for the PVP-Ag NPs (Figure 2D, 2E, and 2F) show only a single peak in each depth at 400 nm 477 

which remains constant for the duration of the study over 672 hours (28 days), which confirms the 478 

stability of the PVP-AgNPs. Morphological observations (Figure 3C and 3D) confirm the presence 479 

of small spherical particles and measuring 13 ± 8 nm in the surface and 16 ± 6 nm in the bottom 480 

post 24 hours release (Table SI.6). These figures are also in agreement to the sized used to fit the 481 

model parameters.  482 

 483 

3.1.3 Behavior of PVP-AgNPs in MHW-SRFA  484 

 485 

Evidence for the presence of unaltered PVP-AgNPs in the MHW-SRFA was provided by the 486 

optimized model parameters which used particle size of 11 nm and a MAg of 1.4 mg to create a 487 

best fit (Eq 5) between our observed and expected total Ag concentration profiles (Figure 1G, 1H 488 

and 1I). The small particle size was comparable to the ‘as prepared’ PVP-AgNPs and the TEM 489 

sizing at 24 hours post release. The model calculated the diffusion coefficient to be 39 X10-12 m2s-1 490 

with a sedimentation velocity of 0.06 X 10-8 m s-1 (Table 3). In agreement to the previous water 491 

exposures (in UPW) for the PVP-AgNPs, a higher diffusion coefficient strongly suggests that 492 

diffusion was the dominant process of migration. Furthermore, evidence to support particle stability 493 

and diffusion dominated transport was shown by a maintained concentration gradient between 494 

each depth of the mesocosm after 72 hours (days 3), where concentrations of Ag remained 495 

comparable at 35 ± 12 µg L-1 for the duration of the study. Figure 2G, H and I show the UV-vis 496 

absorbance peaks at 400 nm, although the SPR at 300 nm in 2H and 2I is due to interferences of 497 

band tailing at 254 nm from the SRFA (USA,EPA, 2009, (Hendricks 2006). UV absorbance 498 

spectra show only the absorbance for SRFA is presented in Figure SI.11 (Supporting information).  499 

Morphological observations of the PVP-AgNPs at 24 hours post release identified small 500 

singular particles (Figure 3E and 3F) sized at 11 ± 3 nm (Table SI.8) at the bottom sampling point. 501 

Due to insufficient AgNP numbers for statistical relevance, it was not possible to determine size 502 

from the surface sampling point. Nonetheless the reported sizes were comparable to those used 503 

to produce a best fit from the model for our data, further confirming PVP-AgNP stability in MHW-504 

SRFA. 505 

To conclude, it is likely that the overall stabilty of the PVP-AgNPs is due to the 506 

thermodynamics of the high molecular weight structural complexity of PVP polymer forming a thick 507 

layer that is strongly bound to the surface of the Ag atom(Kvitek, Panáček et al. 2008). Therefore, 508 

21 
 



compared to the citrate surface stabilizer, PVP is not sensitive to charge screening under the 509 

influence of the simple electrolyte media, maintaining unaltered AgNPs (Tejamaya, Römer et al. 2012),(Badawy, 510 
Luxton et al. 2010), even at high ionic strengths(Kvitek, Panáček et al. 2008),(Ju-Nam and Lead 2008). In addition the 511 

stability of the PVP AgNPs in the MHW-SRFA may also have been due to NOM adsorption to the 512 

particle surface(Auffan, Bottero et al. 2010, Tejamaya, Römer et al. 2012, Hitchman, Smith et al. 513 

2013). 514 

 515 

3.2 Behavior and transport of cit-AgNPs 516 

 517 

The observed and modeled Ag concentration profiles for the cit-AgNP releases are presented in 518 

Figure 4 for each water condition. The UV-vis profiles are presented in Figure 5 and 519 

accompanying TEM imaging for each water condition is shown in Figure 6. In contrast to the PVP-520 

AgNPs (Figure 1), the cit-AgNPs behavior and transport was media-dependant. 521 

 522 

 523 
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 549 
Figure 4: Observed and modelled total Ag concentrations over time for the citrate AgNP study in the surface, middle and bottom depths of the mesocosm, in each of the water conditions 550 
(parameters in supporting information). A) UPW surface water, B) UPW middle depth water, C) UPW bottom depth water, D) MHW surface water, E) MHW middle depth water, F) MHW bottom 551 
depth water, G) MHW SRFA surface water,  H) MHW SRFA middle depth water and I) MHW SRFA bottom depth water. Dots show the average concentrations of three independent triplicates, 552 
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error bars represent the standard deviation of the measured concentrations in the three replicated and the solid lines is the fitted model. Mass of Ag NPs introduced to the column fixed at 4.3 553 
mg. 554 
 555 
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Figure 5: comparison SPR profiles of citrate AgNP over time for the surface, middle and bottom depths of the mesocosm, in each of the water conditions. A) UPW surface water, B) UPW 562 
middle depth water, C) UPW bottom depth water, D) MHW surface water, E) MHW middle depth water, F) MHW bottom depth water, G) MHW SRFA surface water,  H) MHW SRFA middle 563 
depth water and I) MHW SRFA bottom depth water.  564 
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Figure 6: TEM imaging of citrate AgNPs recovered after 24 hours in each of the water conditions, A) surface UPW, B) bottom 588 

UPW, C) surface MHW, D) bottom MHW, E) surface MHW SRFA and F) bottom MHW SRFA.  589 
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3.2.1 Behavior of cit-AgNPs in UPW 590 

 591 

In UPW, the cit-AgNPs remained stable with comparable behavior and transport mechanisms to 592 

the PVP-AgNPs, suggesting few transformations in agreement with other studies(Römer, White et 593 

al. 2011). To determine stability of the cit-AgNPs the Ag concentration profiles (Figures 4A-C) 594 

were fitted (Eq 2), using the weighted square of fitting errors (Eq 5) and the primary particle size of 595 

10 nm with a MAg of 4 mg. The particle size used was comparable within the error of the 596 

measurements to the ‘as prepared’ cit-AgNPs and in agreement to the TEM sizing (Table SI.4). 597 

The model accurately predicted the total Ag concentrations to identify strong correlations 598 

between our observed and expected data using the Chi squared analysis (Eq 5), which were 599 

comparable to the PVP-AgNP studies. Table 3 shows a high diffusion coefficient of the 10 nm 600 

particles (43 X 10-12 m2s-1) combined with a low settling velocity (0.05 X 10-8 m s-1), indicating 601 

diffusion orientated behaviour of small NPs in suspension.  Dissolution of the AgNPs (Table SI.3) 602 

was observed after day 1 in each of the surface and bottom of the microcosms, by measuring 603 

dissolved and particulate Ag (ultrafiltration). In the surface, the total Ag concentration accounted 604 

for 85% AgNPs and 15% dissolved Ag, whereas, the Ag concentration on day 28 accounted for 605 

63% AgNPs and 37% dissolved Ag. 606 

The UV-vis spectra of cit-AgNPs in UPW shows a single absorption peak centered at 392 nm 607 

(Figures 5A, 5B and 5C) for each of the surface, middle and bottom depth. These results confirm 608 

the stability of the cit-AgNPs in UPW and are consistent with the literature for small spherical 609 

particles(Cumberland and Lead 2009),(Tejamaya, Römer et al. 2012),(Römer, White et al. 2011). The UV-vis spectra of cit-610 

AgNPs also indentified UV-vis SPR peaks at 672 hours (day 28), confirming AgNP presence in 611 

each of the surface, middle and bottom sampling points. Additionally, as discussed in section 2.4, 612 

the model inputs do not take into account AgNP dissolution and losses of Ag. Therefore 613 

discrepancies between the model and observed total Ag concentration data with the UV evidence 614 

can be explained partially by dissolution and sorption. However, since the modeled particle size 615 

remains comparable to the ‘as prepared’ cit-AgNPs (within the error of measurement) the model 616 

size values and diffusion coefficient are valid to confirm the cit-AgNPs remain mostly unaltered in 617 

UPW.  Furthermore, TEM imaging (Figures 6A and 6B) confirmed single spherical particles in the 618 

surface and bottom depth of the mesocosm at 24 hours post release, providing evidence to 619 

support the model parameters and that the cit-AgNPs migrated via diffusion dominated transport.   620 

 621 

3.2.2 Behavior and transport of cit-AgNPs in MHW 622 

 623 
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When introduced to the MHW, the yellow/orange color of the cit-AgNPs immediately changed to 624 

dark brown/orange. This became colorless as particles migrated and diluted through the columns 625 

over the first 0.5 hours. In the presence of simple electrolytes, the visual color changes on release 626 

are consistent with the aggregation of cit-AgNPs(Tejamaya, Römer et al. 2012), (Zhang, Smith et al. 2012).  627 

The modeled concentration profiles for the cit-AgNPs released in MHW, did not fit with the 628 

observed Ag concentrations when modeled with the primary particle size as described for the 629 

previous UPW study. A larger size of 88.4 nm produced the best fit for the model (Eq 5), further 630 

suggesting media-dependent aggregation (and precipitation) and sedimentation behavior, which 631 

account for the concentration rises and declines observed in Figures 4D-F (Socolofsky and Jirka 632 

2005, Hinderliter, Minard et al. 2010). The settling velocity of the cit-AgNPs also increased to 4 633 

X10-8 ms-1, whereas the diffusion rate decreased to 4.9 X10-12 m2s-1 (Table 3) evidencing 634 

sedimentation dominated migration.  635 

Additionally, the total Ag concentration changes over time in the middle and bottom of the 636 

microcosm (Figure 4H and 4I), show a systematic trend where the Ag concentration gradually 637 

rises to reach a concentration max of 83 ± 15 µg L-1 at 336 hours (day 14) before falling to 40 ± 17 638 

µg L-1 at 504 hours (day 21) and 30 ± 15 µg L-1 at 672 hours (day 28) as the Ag begins to settle. 639 

The Ag concentration behavior is indicative of both dissolution and precipitation behavior (Table 640 

SI.5), combined with sedimentation dominated AgNP transport (i.e. moving as a cloud of 641 

aggregated AgNPs through the column). This concentration profile was not observed in the UPW 642 

and MHW PVP-AgNP study, indicating surface coating dependent behavior, as well as media 643 

dependent behavior.  644 

After 14 days, the AgNP concentration accounted for only 54% for the total Ag in the surface 645 

water. Similarly, AgNPs only contributed to 57% of the total Ag in the bottom at day 14, with the 646 

number being slightly higher due to sedimentation. Reprecipitation of AgNPs was evident in the 647 

surface water over time, as the AgNP concentration increased from 65% on day 21 to 71% on day 648 

28 (Table SI.5), with no effects to the total Ag concentration. Differences in the cit-AgNP 649 

concentration in the surface sampling point over the 28 day study were also accompanied by a 650 

reduced SPR peak (Figure 5D), which is consistent with rapid aggregation of cit-Ag 651 

NPs(Baalousha, Nur et al. 2013). A UV-vis peak at 392 nm with an additional second absorbance 652 

peak in the region of 500-700 nm, also confirmed cit-AgNP instability and aggregation at the 653 

surface of the microcosm(Chinnapongse, MacCuspie et al. 2011, Baalousha, Nur et al. 2013). 654 

These additional peaks were absent when cit-Ag NPs were released in UPW and for all PVP-655 

AgNP experiments. Furthermore, SPR peaks were only visible in MHW for 456 hours (19 days) in 656 

the middle depth compared to 672 hours (28 days) in the UPW exposures, showing a decline in 657 

AgNP concentration as they sediment and dissolve.  658 
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TEM imaging revealed that the cit-AgNPs in the surface MHW were 13 ± 5 nm after 24 hours 659 

(Figure 6C, Table SI.4) and the cit-AgNPs located at the bottom were significantly larger at 23 ± 23 660 

nm (Table SI.6), further evidencing aggregation determined behavior when introduced to an 661 

electrolyte containing media. Note that the 88 nm used to model the particle reflects the average 662 

core size during the whole time course of the study and does not reflect the changing dissolution 663 

and reprecipitation of the NPs. Morphological observations show that the particles were 664 

aggregated and larger than those compared to the UPW study at 24 hours in the bottom of the 665 

microcosm. EDS (Figure SI.13) confirmed the presence of Ag from the aggregates shown in 666 

Figure 6D. The changes that were observed from the TEM imaging between the MHW compared 667 

to the UPW are indicative of the physicochemical changes that will incur when exposed to 668 

environmental waters.  669 

The EDS spectrum (Figures 7B) identifed the presence of Ca, Mg, S, Cl and Na in solution, all 670 

of which could possibly interact with the charged surface of the cit-AgNPs and thus result in 671 

aggregation. Particular interest is given to the presence of divalent cations (Ca2+ and Mg2+) shown 672 

in Figure 7B, as these have been proven to influence cit-AgNP aggregation by bridging between 673 

two anionic moleculees. Additionally, aggregation may also have been caused by the cations in 674 

solution such as Na and Cl by neutralising surface charge of the citrate stabilizer(Akaighe, Depner 675 

et al. 2012). Previous work found that the dilution of AgNPs in media leads to citrate re-676 

equilibration and loss from surface followed by aggregation20, in agreement with the present study 677 

which showed the citrate capping to result in more unstable nanoparticles.  Differences between 678 

UPW and MHW suggests this mechanism (dilution and loss of citrate) is also important. Studies by 679 

Baalousha et al, (2013) and Akaighe et al (2012) further observed aggregation of citrate AgNPs in 680 

CaCl2, MgCl2 and NaCl2 containging media ionic strenghts relevant to the present study(Akaighe, 681 

Depner et al. 2012). 682 

Coprecipitation with Cl of the AgNPs is also a possible mechanism that would result in 683 

increased aggregation(Levard, Hotze et al. 2012). The results from the present study were also 684 

similar to EDS profiles obtained by Ha and Payer (2011) who exposed Ag to a sodium chloride 685 

solution (NaCl) and obtained AgCl complexes(Ha and Payer 2011). As citrate coated AgNPs are 686 

electrostatically stabilized, they are therefore prone to aggregation by charge neutralization 687 

caused by the electrolytes present in the MHW water(Bae, Hwang et al. 2013). 688 

As described by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, the electrostatic 689 

repulsion between two particles in conjunction with van der Waals attraction will determine particle 690 

aggregation(Baalousha 2009). Partial removal of the citrate surface coating and a change in the 691 

surface charge, induced by ionic strength will reduce the electrostatic diffuse double layer, 692 

resulting in increased aggregation(Römer, White et al. 2011). Additionally, UPW does not contain 693 

citrate, therefore the re-equilibration of citrate from the NP surface into the aqueous phase, would 694 
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also result in the surface coating loss.  Furthermore, the lack of charge repulsion between the 695 

particle surfaces causes decreased charge shielding, susceptibility to dissolution, and the 696 

formation of silver complexes with the electrolytes in solution, such as chloride(Lowry, Gregory et al. 697 
2012),(Levard, Reinsch et al. 2011),(Levard, Mitra et al. 2013). In contrast, the PVP coated AgNPs are sterically 698 

stabilized and are more stable in ionic solutions, as the presence of cations do not significantly 699 

influence steric stabilization, or induce charge neutralization.  700 

 701 

(a)702 

(b) 703 

Figure 7:  A) EDX spectra for pristine citrate AgNP suspensions and B) EDX  spectrum for cit-AgNPs located in the surface 704 
water after 24 hrs exposure to MHW with additional SRFA. The presence of copper (Cu) and carbon (C) shown in the EDS 705 
spectrum represent  the carbon film and copper mesh grid used to mount the sample. 706 

 707 

3.2.3 Behavior of cit-AgNPs in MHW-SRFA 708 

 709 

Using Eq 2, we were able to show the stabilizing effects of SRFA by fitting the model parameters 710 

(Figure 4G, 4H and 4I) using the weighted square of fitting errors (Eq 5) with a smaller particle size 711 

of 12.7 nm, when compared to the MHW study absent of SRFA. The observed stabilizing effects 712 

of cit-AgNPs exposed to low concentrations of NOM are also in agreement with previous 713 

literature(Chinnapongse, MacCuspie et al. 2011),(Manciulea, Baker et al. 2009). The Ag concentration rises over the first 714 

5 days (120 hours) in the middle depth (Figure 4H) illustrating sedimentation governed behavior as 715 

larger particles settle. However, after 168 hours (7 days) the Ag concentration decreased to 30 ± 716 

10 µg L-1 which remained consistent until the end of the study. This behavior is conformational of a 717 
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mix of sedimentation and diffusion governed transport mechanisms, despite the smaller modeled 718 

size. Additionally this behavior also predicts that the mobility of the cit-AgNPs in natural 719 

environments will be influenced by adsorption/deposition onto solid objects such as suspended 720 

solids (NOM), soil sediments and organisms, thus reducing their bioavailability and migration 721 

(Auffan, Bottero et al. 2010, Bae, Hwang et al. 2013). 722 

 After 24 hours, the AgNP concentration was higher accounting for 89% of the total Ag in the 723 

surface water and 95% in the bottom depth, compared to the previous cit-AgNP studies. The data 724 

from Table SI.7 (Supporting Information) suggests the SRFA has reduced the effects of 725 

dissolution, although, the higher AgNP concentration in the bottom is indicative of immediate 726 

sedimentation, which may have been caused by deposition of the cit-AgNPs on to the SRFA.  727 

Aggregation was also confirmed in the UV-vis spectra (Figure 5G,5H and 5I) where a second 728 

absorbance peak in the region of 500-700 nm at 0.5 hours was present in the surface 729 

water(Chinnapongse, MacCuspie et al. 2011),(Baalousha, Nur et al. 2013). Aggregation of the cit-AgNPs in the presence 730 

of SRFA may be caused by bridging flocculation(Huynh and Chen 2011) and is consistent to 731 

findings by Quik et al, 2014 who observed the sedimentation of nanoparticles in a range of natural 732 

waters(Quik, Velzeboer et al. 2014). However, the additional second absorbance peaks were no 733 

longer present in the middle or bottom depths after this time point, confirming sedimentation and 734 

sorption(Bae, Hwang et al. 2013). Additionally, the absence of these UV-vis bands at later 735 

sampling points are consistent with the smaller modeled size and previous literature(Cumberland and 736 
Lead 2009),(Tejamaya, Römer et al. 2012). 737 

NOM has been documented to displace the citrate surface stabilizer by re-coating the particle 738 

with  NOM (Diegoli, Manciulea et al. 2008) to provide steric stabilization(Baalousha, Manciulea et 739 

al. 2008), which has been evidenced in the present study. The steric stabilization from the addition 740 

of the SRFA to the MHW enhanced the stability and persistence of the citrate AgNPs in the 741 

surface waters by reducing aggregation, which was not observed in the MHW absent of SRFA. 742 

Reduced aggregation and sedimentation of the cit-AgNPs was complimented by the reduced SPR 743 

banding patterns between 600-800 nm in figures 4G, 4H and 4I after 24 hours, compared the 744 

MHW absent of SRFA (Figures 5D, 5E and 5F). 745 

Although stabilization of the cit-AgNPs was observed, the formation of aggregates in the 746 

presence of SRFA can be explained either by reprecipitation of AgNPs and/or the charge 747 

neutralization, charge screening or bridging flocculation(Huynh and Chen 2011) of the SRFA on 748 

the AgNP surfaces.  SRFA can act as a reducing agent, to nucleate ionic Ag to grown into 749 

elemental Ag coated by the NOM (Akaighe, Depner et al. 2012). TEM imaging continued to 750 

support the stabilizing effects of the addition of SRFA to the MHW standard (Figure 6E and 6F). 751 

The aggregate structure in figures 6E and 6f are morphologically different to those observed in 752 

figure 6D, showing small spherical particles closely connected by a surface film similar to those 753 

32 
 



observed in Baalousha et al (2009)(Baalousha 2009), compared to core ‘fusion’ of the NP 754 

aggregates observed in Figure 6d. Cit-AgNPs had an average TEM size of 12 ± 6 nm (Table SI.8) 755 

in the surface water comparable to the primary particle size, and were larger in the bottom area at 756 

27 ± 10 nm 24 hours post release (Table SI.8: Figure 6E). Results show a reduction in size 757 

compared to those observed in the MHW absent of SRFA, demonstrating stability in the presence 758 

of NOM. 759 

 760 

4 Conclusions 761 

In all conditions, sorption of Ag to the microcosm wall was responsible for Ag concentration 762 

losses, suggesting that sorption of particulates might be a dominant behavior when AgNPs are 763 

released in to the environment. PVP-AgNPs remained unaltered, regardless of the chemical 764 

composition of the water matrix and displayed diffusion dominated transport behaviors. The model 765 

data used both the primary ‘as prepared’ sizes and the reported TEM aggregate sizes (cit-AgNPs) 766 

to help validate the transport mechanisms in each study.  Further evidence of non-aggregated 767 

spherical AgNPs was shown from the TEM imaging and SPR data to support the stability and 768 

diffusion of the PVP AgNPs over the citrate AgNPs.  769 

Cit-AgNPs were only stable in the UPW studies, whereas ionic concentrations measured in 770 

the presence of cit-AgNP indicated complex mass fluctuations, sedimentation dominated migration 771 

and potential reprecipitation of AgNP species. These behaviours and transformations are all likely 772 

to be dominant when released in real water conditions.  The addition of SRFA demonstrated small 773 

stabilizing effects to the cit-AgNPs which was validated in the model and TEM imaging where the 774 

primary particle sizes compared to the ‘as prepared’ AgNPs used. The total Ag concentration 775 

losses also suggest that eventually the AgNPs will either adsorb to NOM and other surfaces 776 

and/or sediment. 777 

Based on the information presented in this study we can make predictions that concentrations 778 

of AgNPs will be elevated in waters with higher concentrations of NOM, due to the displacements 779 

of electrostatic surface coating and sorption of NOM onto the AgNP surface to enhance their 780 

stability. AgNPs will also interact with chlorine and sulphur species in natural waters and this may 781 

enhance their persistence in environmental conditions. Waters with lower NOM concentrations 782 

and higher electrolyte concentrations will favor aggregation mechanisms of electrostatically coated 783 

particles and particles with no surface modifications. Aggregated particles will sediment and are 784 

likely to be bioavailable to sediment-dwelling organisms with potential implications to this 785 

ecological niche.  786 

 787 

 788 
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