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Abstract 
Cryptococcosis is an invasive fungal infection of humans and other 

animals, typically caused by the species Cryptococcus neoformans in patients 

with impaired immunity. However, there is growing recognition of the 

importance of the related species C. gattii in causing infections in apparently 

immunocompetent individuals.  In particular, an ongoing outbreak of 

cryptococcal disease in the Pacific Northwest region, which started in 1999, has 

driven an intense research effort into this previously neglected pathogen. Here, 

we discuss some of the recent discoveries in this organism from the Pacific 

Northwest region and highlight areas for future investigation.  

 

Introduction 
Cryptococcus gattii is a fungal pathogen of humans and other animals that 

can be found both as an opportunistic infection (Hagen et al., 2012) and as a 

primary pathogen (Kwon-Chung & Varma, 2006). C. gattii is a haploid, 

encapsulated basidiomycete yeast that is widespread in soil, trees and tree 

hollows (reviewed in (Springer & Chaturvedi, 2010, Harris et al., 2012)).  

 

Cryptococcosis is thought to commence upon inhalation of airborne 

infectious propagules, such as spores or dried yeast cells, allowing the pathogen 

to settle in the lungs, where it can survive and proliferate within alveolar 
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macrophages (Fig. 1). Typical symptoms that are associated with cryptococcosis 

are fever, weight loss, fatigue, night sweats, cough, chest pain, headache, 

vomiting and neck stiffness (Phillips et al., 2015). If the pathogen reaches the 

central nervous system, this can lead to meningoencephalitis, the most severe 

form of cryptococcosis, which is always lethal without rapid treatment.  

Interestingly, there is a predilection of C. neoformans for central nervous system 

infection and C. gattii for lung infection. On the other hand pulmonary (and 

cerebral) cryptococcomas (large inflammatory masses) are formed during 

infection with C. gattii, but not with C. neoformans (Mitchell et al., 1995, Chen et 

al., 2000, Galanis et al., 2010, Byrnes & Marr, 2011); the latter leading instead 

mainly to small pulmonary lesions (Speed & Dunt, 1995, Chen et al., 2000). This 

might be due to higher transmigration of C. neoformans through brain blood 

barrier via the Trojan horse mechanism according to in vitro studies (Sorrell et 

al., 2015).  

 

Early reports describing patients suffering from cryptococcosis 

highlighted the prevalence of men over women (Chen et al., 2000) which was 

thought due to the exposure of males to environmental sources. Recent data 

indicate that in fact presence of testosterone in men, but not β-estradiol in 

women, may influence capsule growth and reduce phagocytosis of yeast by 

macrophages (McClelland et al., 2013, Costa et al., 2015).  

 

Interestingly, while C. neoformans mainly infects immunosuppressed 

patients, with HIV/AIDS being the most common underlying condition, C. gattii is 

considered as a primary pathogen, since it frequently infects immunocompetent 

and apparently healthy individuals (Speed & Dunt, 1995, Sorrell, 2001), 

although, recent studies suggest several factors such as smoking, oral 

corticosteroids usage and older age may increase the risk of infection by this 

species (reviewed in (MacDougall et al., 2011)). Interestingly, anti-cryptococcal 

antibody levels are higher during C. gattii than C. neoformans infections in 

immunocompetent patients (Speed et al., 1996) and in cats (Malik et al., 1999), 

and thus it is possible that undiagnosed antibody deficiencies may predispose to 

C. gattii infections (Marr et al., 2012).  Similarly, high concentrations of 
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granulocyte-macrophage colony-stimulating factor (GM-CSF) autoantibodies can 

be found in the plasma of otherwise healthy HIV-negative individuals suffering 

from cryptococcal meningitis (Rosen et al., 2013) and, interestingly, are a 

significant risk factor for CNS infection by C. gattii but not C. neoformans (Saijo et 

al., 2014).  

 

In comparison to cryptococcosis caused by C. neoformans which kills 

650,000 immunocompromised people suffering from HIV/AIDS every year 

worldwide (Park et al., 2009) as well as a significant additional number of organ 

transplant recipients (Pappas, 2013), C. gattii infections are rather rare, although 

recent studies indicate that they may be mis- or under-diagnosed (Iverson et al., 

2012, Tintelnot et al., 2015).  C. gattii meningitis can be cured completely in the 

early stages of disease (Chen et al., 2012), but often the disease is misdiagnosed 

as tuberculosis or other bacterial/viral pulmonary infections at this stage. 

Antifungal treatment is mainly based on amphotericin B in combination with 5-

flucytosine and/or fluconazole (Chen et al., 2013) and at later stages of the 

disease surgery and corticosteroids may be required (Sorrell & Chen, 2010). 

 

There are many methods to differentiate between Cryptococcus species. 

Only C. gattii will produce blue colonies if grown on CGB (L-canavanine, glycine 

and bromthymol blue) agar (Kwon-Chung et al., 1982, Min & Kwon-Chung, 

1986).  Similarly, capsular agglutination reactions can discriminate between C. 

neoformans, which exhibits serotypes A (C. neoformans var. grubii), D (C. 

neoformans var. neoformans) and AD) and C. gattii (which is comprised of 

serotypes B and C (Kwon-Chung et al., 1982, Franzot et al., 1999, Boekhout et al., 

2001)). However the most reliable methods for differentiating between 

Cryptococcus species are sequence based (McTaggart et al., 2011, Kwon-Chung et 

al., 2014, Hagen et al., 2015) and rely on amplified fragment length 

polymorphism (AFLP; (Boekhout et al., 2001)), PCR and multiplex PCR 

fingerprinting (Meyer et al., 1999, Meyer et al., 2003, Ito-Kuwa et al., 2007) or 

sequencing of intergenic spacers (IGS; (Diaz et al., 2000, Diaz et al., 2005)).  
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For most of the time that cryptococcosis has been recognized, research 

efforts have focused on C. neoformans as the dominant pathogenic species.  

However, in 1999 an outbreak of cryptococcosis started on Vancouver Island 

(British Columbia, Canada) that was later identified as being caused by C. gattii.  

This outbreak subsequently spread to mainland Canada and the northwestern 

part of the USA (Oregon and Washington (MacDougall et al., 2007)). Although C. 

gattii was previously known to be prevalent in tropical regions (Kwon-Chung & 

Bennett, 1984), its abrupt appearance in the moderate climate of the Pacific 

Northwest (PNW) region led to disease not only in otherwise healthy humans 

but also domestic, terrestrial and sea animals including dolphins (Stephen et al., 

2002, Kidd et al., 2004, MacDougall et al., 2007, Upton et al., 2007). During 1999–

2007 the outbreak affected 218 people (5.8 people per million in the region per 

year) and 19 died (8.7% associated deaths; (Galanis et al., 2010, Phillips et al., 

2015)). In addition, during 2004-2011 the outbreak affected approximately 100 

people, with a 33% mortality rate, in the US Pacific Northwest (Harris et al., 

2011). Most people suffered from respiratory illness (76.6%) or lung 

cryptococcomas (75.4%; (Galanis et al., 2010)), with a third of those patients 

also showing central nervous system infection (Phillips et al., 2015).  

 

97% of documented cryptococcosis cases from the Vancouver Island 

outbreak were compromised of molecular genotype VGII (VG=variety gattii; 

(Boekhout et al., 2001, Kidd et al., 2004)), with subtype VGIIa being responsible 

for 86.3% of cases in BC (Galanis et al., 2010) and 81% in Washington/Oregon 

(Harris et al., 2011). The remaining cases were caused by a closely related 

lineage, VGIIb (also termed the minor lineage; (Kidd et al., 2004)), while a third 

lineage, VGIIc (novel) has been reported mainly from Oregon State (Harris et al., 

2011). VGIIa exhibits higher fertility than other C. gattii strains 

(Ngamskulrungroj et al., 2008) and the molecular type is now considered as the 

most virulent within this species (Lizarazo et al., 2014).  

 

In comparison to non-outbreak isolates from Australia, where C. gattii is 

endemic, the majority of the Vancouver Island outbreak isolates were highly 

fertile (70% in BC versus 10% in Australia; (Fraser et al., 2003)), hypervirulent 
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(Fraser et al., 2005) and showed low susceptibility to anti-fungal drugs (Trilles et 

al., 2012). Although detailed analysis of many C. gattii isolates has been 

performed, no individual cryptococcal pathogenicity factors have yet been found 

(Ma et al., 2009), leading to the suggestion that virulence is a complex, 

multifactorial phenotype (Garcia-Solache et al., 2013, Firacative et al., 2014).  

Below we discuss some of the features of this pathogen which may contribute to 

this multifactorial pathogenicity. 

 

Environmental niche of C. gattii 
While C. neoformans spores can be found in birds’ droppings, the 

environmental presence of C. gattii is strictly associated with plants. To date 54 

species of trees growing globally (Hagen & Boekhout, 2010, Springer & 

Chaturvedi, 2010) have been found to host C. gattii, with Australian eucalyptus 

(Ellis & Pfeiffer, 1990), almond trees (Callejas et al., 1998) in tropical and semi-

tropical regions and, quite recently, Pseudotsuga menziesii (Oregon pine) in 

regions with a more moderate climate (Springer & Chaturvedi, 2010) acting as 

dominant host species. C. gattii can proliferate and mate on plant surfaces rich in 

myo-inositol (Xue et al., 2007, Springer et al., 2010) and there is some evidence 

that C. gattii may persist longer in the environment in the presence of plant 

tissue (Huerfano et al., 2001). 

 

The origin of the Pacific Northwest Outbreak 
Early investigations proposed several sources for the VGII outbreak 

strain, but more recent work points to an origin in South America (VGIIa; (Hagen 

et al., 2013, Billmyre et al., 2014, Engelthaler et al., 2014)) and Australia  (VGIIb; 

(Fraser et al., 2005, Billmyre et al., 2014)). Separation of the VGI and VGII C. 

gattii strains occurred around 12.4 million years ago (D'Souza et al., 2011), and 

this extended period of genetic isolation has contributed to recent suggestions to 

raise these lineages to species level (Hagen et al., 2015). Although the molecular 

genotype of the VGII population differs significantly from other strains of C. 

gattii, due to mutations and recombinations, within the VGII group, the four 

subpopulations VGIIa, VGIIb, VGIIc and VGIIx are highly clonal and not very 
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diverse (Billmyre et al., 2014, Engelthaler et al., 2014, Farrer et al., 2015). A 

comparison between genomes from VGIIa isolates suggests that these groups 

diverged less than 100 years ago from a less virulent strain in which a frameshift 

mutation in a DNA repair gene msh2 was found (Billmyre et al., 2014). VGIIa 

genomes from the outbreak do not contain the frameshift mutation and it has 

been hypothesized that its genome reverted via mitotic microevolution (Billmyre 

et al., 2014). If this is true, there is a possibility that the reversion occurred after 

gaining adaptation for higher virulence. Since the other non-pathogenic VGIIa-

like isolates have retained this hypermutator mutation, it remains possible that 

such an event may recur leading to the emergence of novel outbreak strains 

(Billmyre et al., 2014).   

 

In addition, several studies have highlighted the potential for gene 

transfer (introgression) occurring between C. neoformans var. grubii and C. gattii 

(Engelthaler et al., 2014) as well as between different C. gattii clades (Billmyre et 

al., 2014) through sexual reproduction (bisexual or unisexual). Support for the 

latter model comes from evidence for genomic islands of high polymorphism 

within a VGIIa genome, which were potentially introduced from two distinct VGII 

clades (Billmyre et al., 2014). 

 

To date, all clonal C. gattii VGII isolates identified from the PNW have 

been mating type MATα (Lockhart et al., 2013).  Unlike MATa strains, MATα 

strains are capable of same-sex mating (Wiesner et al., 2012) and this has been 

proposed as a potential origin for the PNW outbreak (Fraser et al., 2005). In C. 

neoformans, MATα strains are also associated with higher virulence (Kwon-

Chung et al., 1992, Barchiesi et al., 2005, Nielsen et al., 2005), but this appears 

not to be the case with C. gattii (Zhu et al., 2013). 

 

Genomic differences 
Separation between the VGI and VGII C. gattii strains has resulted in 

significant genome differences including chromosomal rearrangements and 

higher than expected overall nucleotide sequence divergence (D'Souza et al., 

2011). Recently a whole genome analysis was performed for all lineages of C. 
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gattii (Farrer et al., 2015), where the authors compared nuclear and 

mitochondrial DNAs between lineages. Interestingly, they found that the PNW 

outbreak VGII lost 146 genes (three times more than number of genes lost in 

VGI-III-IV lineages combined) that are still present in the three other lineages, 

including a mitochondrial cytochrome c peroxidase gene and several other genes 

that are typically thought of as being essential for nuclear and mitochondrial 

genome maintenance. At the same time, the VGII lineage has gained several 

unique genes encoding proteins with COX6B, HSP70 and iron-binding domains 

and proteins possibly involved in membrane trafficking. 

 

Lack of RNA interference machinery 
One of the most remarkable discoveries to emerge from the extensive 

genome sequencing effort in this species is the VGII-specific absence of genes 

encoding Argonaute, Ago1 and Ago2 (D'Souza et al., 2011), which are critical 

components of the RNA interference (RNAi) machinery in other fungi including 

C. neoformans (Janbon et al., 2010). This lack of ago genes was found in all VGII 

isolates, including those from beyond the PNW region (Farrer et al., 2015). Thus 

the C. gattii VGII lineage is lacking an RNAi-mediated genome defense during 

both the sexual cycle (Wang et al., 2010, Dumesic et al., 2013) and vegetative 

growth (Wang et al., 2012). This loss of silencing machinery appears to have 

independently occurred in several pathogens (reviewed in (Nicolas et al., 2013)), 

a finding which remains enigmatic.  However, this loss of RNAi typically leads to 

transposon reactivation, which may accelerate genome evolution and potentially 

help in developing novel anti-host mechanisms (Oliver & Greene, 2009, Biemont, 

2010, Wang et al., 2010). Alternatively, the loss of RNAi may be a protective 

response to pathogens that can otherwise hijack this pathway.  Cross-kingdom 

hijacking of RNAi silencing is known for other pathogens, such as the plant 

fungal pathogen Botrytis cinerea which is able to hijack Arabidopsis and tomato 

RNAi machineries by binding to host AGO1, leading to the silencing of host 

immunity genes and facilitating infection (Weiberg et al., 2013).  To date, 

pathogens of Cryptococci have not been identified, but such a hypothesis 

remains at least a theoretical possibility. 
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Fertility 
Although Cryptococci can reproduce sexually, where two opposite mating 

types, MATa and MATα, mate and produce spores, a predominance of α mating 

type in the environment means that alternative reproduction strategies are 

common.  In particular, same-sex mating between two α mating-type parents 

(Lin et al., 2005), or spontaneous generation of spores by haploid strains (known 

as monokaryotic fruiting) can both produce infectious propagules. It has been 

suggested that the rapid expansion of the PNW outbreak has been driven 

primarily by clonal reproduction (Fraser et al., 2005) and it is therefore 

enigmatic that the majority of the PNW outbreak isolates are highly fertile 

(Fraser et al., 2003, Ngamskulrungroj et al., 2008). Despite this, whole genome 

analysis has revealed very limited nuclear genetic exchange between C. gattii 

lineages (Farrer et al., 2015), although interestingly several instances of 

recombination within the mitochondrial genome (Voelz et al., 2013, Farrer et al., 

2015).  

 

Inflammation and the cytokine response 
In contrast to C. neoformans, C. gattii is able to infect immunocompetent 

individuals, suggesting that the latter uses different or additional methods to 

inhibit immune responses.  Somewhat counterintuitively, in human peripheral 

blood mononuclear cells C. gattii induces higher concentrations of cytokines 

such as pro-inflammatory interleukin IL-1β, TNF- α and IL-6 and the T-cell 

cytokines IL-17 and IL-22 than C. neoformans (Schoffelen et al., 2013). 

Interestingly, however, the authors found that Toll-like receptor (TLR) 4 and 

TLR9 were involved in the recognition of the pathogen, but not TLR2, unlike C. 

neoformans (Vecchiarelli, 2005).  These results suggested that a different innate 

cytokine response of the host might be related to different pathogen-activated 

molecular pattern (PAMPS) molecules localized on the C. gattii surface in 

comparison to C. neoformans.  TLR2 is known to recognize chitin (Da Silva et al., 

2008). Chitin-like structures in Cryptococci are only exposed in the limited parts 

of the cell surface under the capsule (Rodrigues et al., 2008), which may be the 

reason why they are not normally recognized by TLR2. Thus it is possible that 
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differences in the organization and localization of chitin-derived structures 

between C. neoformans and PNW C. gattii strains might explain different 

preferences in organ colonization, since C. gattii preferentially targets the lungs, 

whilst the brain is the primary target organ for C. neoformans (Ngamskulrungroj 

et al., 2012, Sorrell et al., 2015). 

 

Although in vitro blood infections by C. gattii result in potent 

inflammatory signalling, in pulmonary tissue Hoang et al. found only minimal 

inflammatory responses to C. gattii (Hoang et al., 2004). This may be accounted 

for by the ability of C. gattii to weaken pulmonary Th1 and Th17 responses (at 

least in mice) via altered dendritic cell (DC) function through down-regulation of 

pulmonary chemokine expression (Angkasekwinai et al., 2014).  This restricted 

DC function is related to reduced levels of TNF-α, and indeed addition of 

recombinant TNF-α fully restores DC maturation and thus T cell responses 

(Huston et al., 2013).  

 

Thus acute introduction of C. gattii may induce rapid inflammation, but 

longer-lasting systemic inflammation is dampened by poor dendritic cell 

activation. This biphasic response may also explain otherwise contradictory 

findings, such as the relatively slower growth of C. gattii than C. neoformans in 

blood (Ngamskulrungroj et al., 2012) (suggesting strong induction of defense) 

and yet reduced neutrophil infiltration to sites of infection (Cheng et al., 2009).  

 

Virulence strategies 
Human fungal pathogens often use a huge repertoire of virulence 

strategies in order to survive inside the host. In cryptococci, the polysaccharide 

capsule, chitin and melanin within the cell wall, phospholipases, urease, laccase 

and the ability to growth at 37°C are the most studied virulence factors involved 

in pathogenesis.  However, although these features are shared by all pathogenic 

Cryptococci, there are some crucial differences among them that might play a 

role in the hypervirulence of PNW C. gattii isolates.  

 

Growth at 37°C 
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The ability to survive at elevated temperature is crucial for human 

pathogens. In Cryptococci this is regulated by Calcineurin, a Ca2+/calmodulin-

activated serine/threonine-specific phosphatase (Liu et al., 1991). Typically, 

mutants lacking calcineurin gene, such as cna1∆, are avirulent in both C. 

neoformans and C. gattii isolates.  However, PNW VGIIa strains lacking 

calcineurin function are still viable at elevated temperature (Chen et al., 2013), 

suggesting there may be as-yet unidentified differences in temperature tolerance 

in this lineage.  

 

Capsule  
Cryptococcal capsule is a highly hydrated and a negatively charged mesh 

of polysaccharides surrounding the yeast cell (Fig. 2), mainly composed of 

glucuronoxylomannan (GXM; composed of mannose, xylose and glucuronic acid), 

and glucuronoxylomannogalactan (GXMGal) plus mannoproteins (Vartivarian et 

al., 1989), and its growth is activated during host infection. Most studies to date 

have focused on C. neoformans capsule, which is considered a major virulence 

factor (McClelland et al., 2006) and has antiphagocytic properties in 

macrophages (Kozel & Mastroianni, 1976). This is correlated with a reduction of 

systemic inflammation (reviewed in (Vecchiarelli et al., 2013)) mainly due to a 

suppression of T lymphocyte proliferation (Syme et al., 1999), induced secretion 

of the anti-inflammatory cytokine IL-10 (Vecchiarelli et al., 1996) and inhibited 

secretion of TNF-α and IL-1β  (Vecchiarelli et al., 1995) by human monocytes.  

 

GXM is a large molecule (around 4,600,000 Daltons in serotype B strain 

I23) and has different structures (McFadden et al., 2006) which correlate with 

differences in antibody reactivity (Fonseca et al., 2010). Capsule size depends on 

environmental conditions (summarized in (Zaragoza & Casadevall, 2004, Gupta 

& Fries, 2010)) and capsule enlargement is usually observed during infection 

(Garcia-Hermoso et al., 2004). This is linked to the presence of mammalian 

serum (Zaragoza et al., 2003), higher CO2 concentration (Granger et al., 1985) 

and tissue-specific conditions such as iron deficiency in the lungs (Vartivarian et 

al., 1993) (Rivera et al., 1998) or the high concentration of urea in cerebrospinal 

fluid (Frazzitta et al., 2013). In addition, capsular size can change during the cell 
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cycle and its enlargement is mainly observed during the G1 phase when no 

budding occurs (Garcia-Rodas et al., 2014).   

Depending on the C. gattii strain, age of the cells, temperature, conditions 

and methodology used for studies, capsule thickness can differ dramatically.  For 

instance, relative to the canonical C. neoformans strain H99 (McFadden et al., 

2006), C. gattii capsules can be very similar (NIH191 and NIH198 (Frases et al., 

2009)), much smaller (strains CN23/10.993 and the PNW strain R265 (Cheng et 

al., 2009, Fonseca et al., 2010) or significantly larger (strain I23 and R265; 

(Frazzitta et al., 2013)). 

 

Although the major capsular polysaccharide GXM is generally 

immunosuppressive, fractions with molecular masses below 10,000 Daltons 

isolated from C. gattii strains were effective in stimulating nitric oxide (NO) 

production by host macrophages and in activation of TLRs (TLR2/1 and TLR2/6) 

and NF-κB (Fonseca et al., 2010). Increased production of NO has also been 

observed after incorporation of extracellular vesicles (EVs) by murine 

macrophages, but it was diminished after adding fractions of GXM (Oliveira et al., 

2010), suggesting that these two components may act in concert to reduce host 

inflammatory responses. 

 

Interestingly, the cryptococcal capsule is also likely to play an important 

role in the environment.  On plant surfaces, some strains of C. gattii form 40–100 

nm length extracellular fibrils which then allow yeast cells to escape from human 

neutrophils in vivo, potentially by inhibiting the production of neutrophil 

extracellular traps (Rocha et al., 2015). Consequently, infection of mice with 

yeast cells grown on leaf agar was more severe and showed higher proliferation 

in the lung and brain then when yeast cells grown on YPD agar were used 

(Springer et al., 2010).  

 

Extracellular vesicles 
GXM, the main polysaccharide component of the cryptococcal capsule, is 

synthesized intracellularly and transferred from the Golgi apparatus (Hu et al., 

2007) to the outside of the cell wall via EVs (Yoneda & Doering, 2006). The 
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bilayered membrane-EVs serve not only as transporting ports for capsule 

components, but also are used by cryptococci as 20 to 400 nm diameter 

“virulence bags” (Rodrigues et al., 2007, Rodrigues et al., 2008). Studies 

performed so far on C. neoformans revealed that EVs contain ribosomal proteins 

as well as proteins related to virulence and anti-oxidant defense, including 

laccase (melanin synthesis), urease, superoxide dismutase and heat shock 

proteins ((Rodrigues et al., 2008) and reviewed in (Rodrigues et al., 2014)). 

Interestingly, a C. neoformans sec6 RNAi mutant, which is impaired in EV 

secretion, was attenuated in virulence in mice, although growth at 37°C, capsule 

formation and phospholipase activity were not affected (Panepinto et al., 2009). 

Recent studies on EVs from different fungi including C. neoformans revealed that 

these vesicles are packed with a spectrum of short non-coding mRNAs, which are 

thought to play a role in cell communication and pathogenesis (Peres da Silva et 

al., 2015). Unfortunately there is no data regarding function and content of EVs 

isolated from C. gattii to date. 

 

On the other hand, cryptococcal EVs can enhance host antimicrobial 

activity after incorporation by murine macrophages where increased levels of 

NO and cytokines (extracellular TNF-α, IL-10, and transforming growth factor 

(TGF-β)) were observed (Oliveira et al., 2010). Similar results were obtained 

after treatment of macrophages with EVs isolated from Candida albicans (Vargas 

et al., 2015) suggesting that EVs can serve as a platform of secreted virulence for 

pathogenic fungi. 

 

At first glance, enhancing host phagocytosis in this way seems like a 

disadvantageous step for a pathogen.  However, since C. gattii can happily 

survive within the phagosome and, at the same time, be protected from other 

immune cells as well as extracellular antifungal molecules such as complement, 

it may be that EV-induced boosting of phagocytosis offers survival advantages to 

pathogens such as C. neoformans and C. albicans by facilitating their entry into an 

intracellular niche (Oliveira et al., 2010, Vargas et al., 2015). 

 

Survival within macrophages  



 13 

Although Cryptococci are phagocytosed by macrophages, in most cases 

they can then survive and proliferate inside these host cells. Cryptococci have 

developed an amazing repertoire of anti-phagocytic strategies (reviewed in 

(Johnston & May, 2013)), most probably as a result of prolonged selective 

pressure from environmental predators such as amoebae (Steenbergen et al., 

2001). As a result, virulence and defense mechanisms against phagocytic cells 

could be acquired and selected during the evolution of fungus-amoebal 

interactions in the environment. In support of this model, transcriptional profiles 

show strong similarities between genes upregulated by yeast internalized by 

amoebae and murine macrophages (Derengowski Lda et al., 2013). Interestingly, 

however, relative to C. neoformans, C. gattii is rarely phagocytosed by the model 

amoeba A. castellanii, perhaps reflecting differences in their capsule structure 

(Malliaris et al., 2004).  

 

Fungal persistence and reactivation 
C. neoformans  is classically thought of as a long-term latent pathogen that 

reactivates upon immunocompromisation, but this picture is more complex for C. 

gattii.  Recent multilocus sequence typing between European and worldwide 

isolates has revealed that dormant C. gattii infections can be reactivated many 

years after the initial infection (Hagen et al., 2012), for instance following 

treatment with corticosteroids (Hagen et al., 2010).  However, unlike C. 

neoformans it appears that many C. gattii infections represent de novo 

acquisition of the organism from the environment, rather than (re)activation of 

latent disease (MacDougall & Fyfe, 2006).   

 

Proliferation inside macrophages and ‘’Division of Labour’’ 
All pathogenic Cryptococci appear capable of survival and proliferation 

within macrophages.  However, outbreak C. gattii isolates are capable of 

intracellular proliferation rates that exceed those of all other isolates and which 

correlate with virulence (Ma et al., 2009). In contrast, C. neoformans virulence is 

associated to macrophage uptake and laccase activity, but not to intracellular 

proliferation rate (IPR; (Sabiiti et al., 2014)).  This difference offers a potential 

explanation for their varying host profiles; C. gattii infections in otherwise 
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healthy individuals can only proceed if intracellular proliferation is rapid enough 

to overwhelm the host immune system.  In contrast, C. neoformans infections in 

immunocompromised hosts instead rely on “stealth”, in which rapid 

proliferation is not necessarily beneficial but an intracellular niche is critical for 

survival. 

 

In the case of C. gattii outbreak isolates, rapid intracellular proliferation is 

associated with changes in mitochondrial morphology (Ma et al., 2009, Voelz et 

al., 2014). It was initially proposed that this change in mitochondrial morphology 

could protect the pathogen against the intracellular environment of the 

phagocytic cells (Ma et al., 2009, Ma & May, 2010). However, more recent 

analyses of this group have indicated a more complex and intriguing model.  

Upon entry into host phagocytes PNW outbreak strains of C. gattii trigger a 

“Division of Labour” mechanism in which some cells adopt this mitochondrial 

morphology and cease division, but in doing so they facilitate extremely rapid 

proliferation of neighboring Cryptococci, thus driving amplification of the 

population as a whole (Fig. 3; (Voelz et al., 2014)).  

 

 Surprisingly, a comparison of mitochondrial genomes between C. gattii 

and C. neoformans revealed similar gene content (D'Souza et al., 2011).  Likewise, 

a very recent whole genome analysis did not identify any single gene that is 

characteristic of the PNW strains (Farrer et al., 2015). However, several studies 

have highlighted unusual patterns of mitochondrial inheritance and 

recombination in this lineage (Bovers et al., 2009, Xu et al., 2009, Voelz et al., 

2013), suggesting that unusual combinations of nuclear and mitochondrial 

alleles may contribute to the virulence of this group.   

 

Interestingly, the inheritance patterns of mitochondria in C. gattii can be 

influenced by several environmental variables including UV exposure and higher 

temperatures (Wang et al., 2015), suggesting an intriguing link between 

environmental conditions and the evolution of novel genotypes in this group.  

 

Escaping 
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In addition to intracellular proliferation, Cryptococci can also escape from 

host cells in a poorly understood process called vomocytosis (Alvarez & 

Casadevall, 2006, Ma et al., 2006). Interestingly, the frequency of this non-lytic 

expulsion process in vivo seems to be higher than the rates obtained in vitro 

(Nicola et al., 2011).  There is considerable interest in the contribution that 

vomocytosis may make to tissue dissemination by allowing infected phagocytes 

to “deposit” Cryptococci at distant sites; the so-called “Trojan Horse” model.  

Charlier and colleagues have previously provided evidence for this mechanism of 

entry across the blood-brain barrier (Charlier et al., 2009), although recent work 

using C. neoformans mutants with reduced phagocytosis by macrophages 

showed no difference in rates of CNS entry (Tseng et al., 2012). Both C. 

neoformans and C. gattii undergo vomocytosis in vitro, and rates appear similar, 

at least between C. neoformans H99 and C. gattii R265 (Voelz et al., 2009) 

suggesting that differential vomocytosis is unlikely to be a major factor in PNW 

virulence.  Rather, it appears that the slower growth of PNW C. gattii isolates in 

blood (10-100 times slower than C. neoformans) coupled with their exceptionally 

fast replication within host cells means that C. gattii infections frequently 

present as pulmonary infections rather than disseminated CNS disease 

(Ngamskulrungroj et al., 2012, Sorrell et al., 2015).  

 

Cell gigantism 
Enlargement of the cryptococcal capsule has been documented as a 

mechanism of protection against phagocytosis and the phagocytic oxidative 

burst for many years (Zaragoza et al., 2008). However, recently an additional 

role for cell size increase has become apparent.  During in vivo infections, giant 

or ‘titan’ cells (50-100 µm in diameter) form and represent about 20% of the 

cryptococcal population during pulmonary infection (Okagaki et al., 2010, 

Zaragoza et al., 2010). Intriguingly, the presence of titan cells in the cryptococcal 

population reduces overall phagocytosis (not just of the titan cells themselves) 

by macrophages (Okagaki & Nielsen, 2012). Recent studies using the moth larvae 

G. mellonella showed that during C. gattii infections, both the capsule and the cell 

sizes of VGII cells underwent significant enlargements up to 75 µm, but this was 

not observed in a very virulent PNW isolate R265 (Firacative et al., 2014). These 
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observations are consistent with a suggestion that cell ‘titanisation’ provides an 

additional defense mechanism of the isolates attenuated in virulence (Evans et 

al., 2015) and/or that this strategy is critical for long-term latent infections, but 

perhaps less vital for highly virulent acute infections caused by PNW strains.   

 

Conclusions 
Recent epidemiological data indicate that the Pacific Northwest outbreak 

of C. gattii infection is receding, although the fungus now appears endemic to 

Vancouver Island (Espinel-Ingroff & Kidd, 2015, Kwon-Chung & Saijo, 2015), 

However, understanding the apparently recent and dramatic evolutionary 

history of virulent VGIIa isolates is of profound importance both for improving 

our understanding of fungal pathogenesis (Fig. 4) in general and for determining 

the likelihood of other such outbreaks in the near future. 
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Figure Legends 

 

Fig. 1. A schematic illustration of an infection process of C. gattii (left) and 

C. neoformans (right). An infection starts upon inhalation of airborne infectious 

propagules, which may allow the pathogen to settle in the lungs. If the fungus 

reaches the central nervous system, this can lead to a brain infection, which can 

be lethal. Note the differences between C. neoformans and C. gattii environmental 

origin, the immune condition of the hosts and organ preference between 

pathogens. 

 

Fig. 2. Diagram representing the role of cryptococcal polysaccharide 

capsule and its involvement in several immune responses. Chitin-like 

structures (not shown) composed of β-1,4-N-acetylglucosamine oligomers link 
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the capsule to the cell wall (Rodrigues et al., 2008). GXMGal molecules (shown in 

red) are mainly found in growing capsules of budding daughter cell (De Jesus et 

al., 2009) and also in the capsules of mature cells but only transiently due to 

secretion (De Jesus et al., 2010). GXM, glucuronoxylomannan; GXMGal, 

glucuronoxylomannogalactan; EVs, extracellular vesicles. 

 

 

Fig. 3. Diagram representing a scheme of ‘Division of Labour’ during 

engulfment of cryptococcal cell by a macrophage. A) Receptor-mediated 

phagocytosis allows recognition of the fungal cell B) Phagocytosis of the 

pathogen cell by an alveolar macrophage C) One of the first steps of host defense 

is an oxidative burst during when macrophage releases reactive oxygen species 

D) A subpopulation of guardian cells sacrifice their proliferation and tubularize 

their mitochondria which is accompanied with reduction of host ROS E) This 

allows proliferation of neighboring cryptococcal cells F) and following escape 

from the macrophage.   

 

Fig. 4. A cartoon representing a repertoire of cryptococcal pathogenic 

activities. 

 

 

References 

Alvarez M & Casadevall A (2006) Phagosome extrusion and host-cell survival after 
Cryptococcus neoformans phagocytosis by macrophages. Current biology : CB 16: 
2161-2165. 
Angkasekwinai P, Sringkarin N, Supasorn O, Fungkrajai M, Wang YH, Chayakulkeeree 
M, Ngamskulrungroj P, Angkasekwinai N & Pattanapanyasat K (2014) Cryptococcus 
gattii infection dampens Th1 and Th17 responses by attenuating dendritic cell 
function and pulmonary chemokine expression in the immunocompetent hosts. 
Infection and immunity 82: 3880-3890. 
Barchiesi F, Cogliati M, Esposto MC, Spreghini E, Schimizzi AM, Wickes BL, Scalise G & 
Viviani MA (2005) Comparative analysis of pathogenicity of Cryptococcus 
neoformans serotypes A, D and AD in murine cryptococcosis. The Journal of infection 
51: 10-16. 
Biemont C (2010) A brief history of the status of transposable elements: from junk 
DNA to major players in evolution. Genetics 186: 1085-1093. 



 18 

Billmyre RB, Croll D, Li W, Mieczkowski P, Carter DA, Cuomo CA, Kronstad JW & 
Heitman J (2014) Highly recombinant VGII Cryptococcus gattii population develops 
clonal outbreak clusters through both sexual macroevolution and asexual 
microevolution. mBio 5: e01494-01414. 
Boekhout T, Theelen B, Diaz M, Fell JW, Hop WC, Abeln EC, Dromer F & Meyer W 
(2001) Hybrid genotypes in the pathogenic yeast Cryptococcus neoformans. 
Microbiology 147: 891-907. 
Bovers M, Hagen F, Kuramae EE & Boekhout T (2009) Promiscuous mitochondria in 
Cryptococcus gattii. FEMS yeast research 9: 489-503. 
Byrnes EJ, 3rd & Marr KA (2011) The Outbreak of Cryptococcus gattii in Western 
North America: Epidemiology and Clinical Issues. Current infectious disease reports 
13: 256-261. 
Callejas A, Ordonez N, Rodriguez MC & Castaneda E (1998) First isolation of 
Cryptococcus neoformans var. gattii, serotype C, from the environment in Colombia. 
Medical mycology 36: 341-344. 
Charlier C, Nielsen K, Daou S, Brigitte M, Chretien F & Dromer F (2009) Evidence of a 
role for monocytes in dissemination and brain invasion by Cryptococcus neoformans. 
Infection and immunity 77: 120-127. 
Chen S, Sorrell T, Nimmo G, Speed B, Currie B, Ellis D, Marriott D, Pfeiffer T, Parr D & 
Byth K (2000) Epidemiology and host- and variety-dependent characteristics of 
infection due to Cryptococcus neoformans in Australia and New Zealand. 
Australasian Cryptococcal Study Group. Clinical infectious diseases : an official 
publication of the Infectious Diseases Society of America 31: 499-508. 
Chen SC, Slavin MA, Heath CH, et al. (2012) Clinical manifestations of Cryptococcus 
gattii infection: determinants of neurological sequelae and death. Clinical infectious 
diseases : an official publication of the Infectious Diseases Society of America 55: 
789-798. 
Chen SC, Korman TM, Slavin MA, et al. (2013) Antifungal therapy and management 
of complications of cryptococcosis due to Cryptococcus gattii. Clinical infectious 
diseases : an official publication of the Infectious Diseases Society of America 57: 
543-551. 
Chen YL, Lehman VN, Lewit Y, Averette AF & Heitman J (2013) Calcineurin governs 
thermotolerance and virulence of Cryptococcus gattii. G3 3: 527-539. 
Cheng PY, Sham A & Kronstad JW (2009) Cryptococcus gattii isolates from the British 
Columbia cryptococcosis outbreak induce less protective inflammation in a murine 
model of infection than Cryptococcus neoformans. Infection and immunity 77: 4284-
4294. 
Costa MC, Fernandes HB, Silveira RR, Freitas GJC, Oliveira LVN, Silva AM & Santos DA 
(2015) Gender influence on the macrophages interaction with Cryptococcus gattii. 
XXVIII Congresso Brasileiro Microbiologia CBM 2015. 
D'Souza CA, Kronstad JW, Taylor G, et al. (2011) Genome variation in Cryptococcus 
gattii, an emerging pathogen of immunocompetent hosts. mBio 2: e00342-00310. 
Da Silva CA, Hartl D, Liu W, Lee CG & Elias JA (2008) TLR-2 and IL-17A in chitin-
induced macrophage activation and acute inflammation. Journal of immunology 181: 
4279-4286. 



 19 

De Jesus M, Nicola AM, Rodrigues ML, Janbon G & Casadevall A (2009) Capsular 
localization of the Cryptococcus neoformans polysaccharide component 
galactoxylomannan. Eukaryotic cell 8: 96-103. 
De Jesus M, Chow SK, Cordero RJ, Frases S & Casadevall A (2010) 
Galactoxylomannans from Cryptococcus neoformans varieties neoformans and 
grubii are structurally and antigenically variable. Eukaryotic cell 9: 1018-1028. 
Derengowski Lda S, Paes HC, Albuquerque P, Tavares AH, Fernandes L, Silva-Pereira I 
& Casadevall A (2013) The transcriptional response of Cryptococcus neoformans to 
ingestion by Acanthamoeba castellanii and macrophages provides insights into the 
evolutionary adaptation to the mammalian host. Eukaryotic cell 12: 761-774. 
Diaz MR, Boekhout T, Theelen B & Fell JW (2000) Molecular sequence analyses of the 
intergenic spacer (IGS) associated with rDNA of the two varieties of the pathogenic 
yeast, Cryptococcus neoformans. Systematic and applied microbiology 23: 535-545. 
Diaz MR, Boekhout T, Kiesling T & Fell JW (2005) Comparative analysis of the 
intergenic spacer regions and population structure of the species complex of the 
pathogenic yeast Cryptococcus neoformans. FEMS yeast research 5: 1129-1140. 
Dumesic PA, Natarajan P, Chen C, Drinnenberg IA, Schiller BJ, Thompson J, Moresco 
JJ, Yates JR, 3rd, Bartel DP & Madhani HD (2013) Stalled spliceosomes are a signal for 
RNAi-mediated genome defense. Cell 152: 957-968. 
Ellis DH & Pfeiffer TJ (1990) Natural habitat of Cryptococcus neoformans var. gattii. 
Journal of clinical microbiology 28: 1642-1644. 
Engelthaler DM, Hicks ND, Gillece JD, et al. (2014) Cryptococcus gattii in North 
American Pacific Northwest: whole-population genome analysis provides insights 
into species evolution and dispersal. mBio 5: e01464-01414. 
Espinel-Ingroff A & Kidd SE (2015) Current trends in the prevalence of Cryptococcus 
gattii in the United States and Canada. Infection and drug resistance 8: 89-97. 
Evans RJ, Li Z, Hughes WS, Djordjevic JT, Nielsen K & May RC (2015) Cryptococcal 
phospholipase B1 is required for intracellular proliferation and control of titan cell 
morphology during macrophage infection. Infection and immunity 83: 1296-1304. 
Farrer RA, Desjardins CA, Sakthikumar S, et al. (2015) Genome Evolution and 
Innovation across the Four Major Lineages of Cryptococcus gattii. mBio 6. 
Firacative C, Duan S & Meyer W (2014) Galleria mellonella model identifies highly 
virulent strains among all major molecular types of Cryptococcus gattii. PloS one 9: 
e105076. 
Fonseca FL, Nohara LL, Cordero RJ, Frases S, Casadevall A, Almeida IC, Nimrichter L & 
Rodrigues ML (2010) Immunomodulatory effects of serotype B 
glucuronoxylomannan from Cryptococcus gattii correlate with polysaccharide 
diameter. Infection and immunity 78: 3861-3870. 
Franzot SP, Salkin IF & Casadevall A (1999) Cryptococcus neoformans var. grubii: 
separate varietal status for Cryptococcus neoformans serotype A isolates. Journal of 
clinical microbiology 37: 838-840. 
Fraser JA, Subaran RL, Nichols CB & Heitman J (2003) Recapitulation of the sexual 
cycle of the primary fungal pathogen Cryptococcus neoformans var. gattii: 
implications for an outbreak on Vancouver Island, Canada. Eukaryotic cell 2: 1036-
1045. 
Fraser JA, Giles SS, Wenink EC, et al. (2005) Same-sex mating and the origin of the 
Vancouver Island Cryptococcus gattii outbreak. Nature 437: 1360-1364. 



 20 

Frases S, Pontes B, Nimrichter L, Viana NB, Rodrigues ML & Casadevall A (2009) 
Capsule of Cryptococcus neoformans grows by enlargement of polysaccharide 
molecules. Proceedings of the National Academy of Sciences of the United States of 
America 106: 1228-1233. 
Frazzitta AE, Vora H, Price MS, Tenor JL, Betancourt-Quiroz M, Toffaletti DL, Cheng N 
& Perfect JR (2013) Nitrogen source-dependent capsule induction in human-
pathogenic cryptococcus species. Eukaryotic cell 12: 1439-1450. 
Galanis E, Macdougall L, Kidd S, Morshed M & British Columbia Cryptococcus gattii 
Working G (2010) Epidemiology of Cryptococcus gattii, British Columbia, Canada, 
1999-2007. Emerging infectious diseases 16: 251-257. 
Garcia-Hermoso D, Dromer F & Janbon G (2004) Cryptococcus neoformans capsule 
structure evolution in vitro and during murine infection. Infection and immunity 72: 
3359-3365. 
Garcia-Rodas R, Cordero RJ, Trevijano-Contador N, Janbon G, Moyrand F, Casadevall 
A & Zaragoza O (2014) Capsule growth in Cryptococcus neoformans is coordinated 
with cell cycle progression. mBio 5: e00945-00914. 
Garcia-Solache MA, Izquierdo-Garcia D, Smith C, Bergman A & Casadevall A (2013) 
Fungal virulence in a lepidopteran model is an emergent property with deterministic 
features. mBio 4: e00100-00113. 
Granger DL, Perfect JR & Durack DT (1985) Virulence of Cryptococcus neoformans. 
Regulation of capsule synthesis by carbon dioxide. The Journal of clinical 
investigation 76: 508-516. 
Gupta G & Fries BC (2010) Variability of phenotypic traits in Cryptococcus varieties 
and species and the resulting implications for pathogenesis. Future microbiology 5: 
775-787. 
Hagen F & Boekhout T (2010) The search for the natural habitat of Cryptococcus 
gattii. Mycopathologia 170: 209-211. 
Hagen F, van Assen S, Luijckx GJ, Boekhout T & Kampinga GA (2010) Activated 
dormant Cryptococcus gattii infection in a Dutch tourist who visited Vancouver 
Island (Canada): a molecular epidemiological approach. Medical mycology 48: 528-
531. 
Hagen F, Khayhan K, Theelen B, Kolecka A, Polacheck I, Sionov E, Falk R, Parnmen S, 
Lumbsch HT & Boekhout T (2015) Recognition of seven species in the Cryptococcus 
gattii/Cryptococcus neoformans species complex. Fungal genetics and biology : FG & 
B. 
Hagen F, Colom MF, Swinne D, et al. (2012) Autochthonous and dormant 
Cryptococcus gattii infections in Europe. Emerging infectious diseases 18: 1618-1624. 
Hagen F, Ceresini PC, Polacheck I, et al. (2013) Ancient dispersal of the human fungal 
pathogen Cryptococcus gattii from the Amazon rainforest. PloS one 8: e71148. 
Harris J, Lockhart S & Chiller T (2012) Cryptococcus gattii: where do we go from 
here? Medical mycology 50: 113-129. 
Harris JR, Lockhart SR, Debess E, Marsden-Haug N, Goldoft M, Wohrle R, Lee S, 
Smelser C, Park B & Chiller T (2011) Cryptococcus gattii in the United States: clinical 
aspects of infection with an emerging pathogen. Clinical infectious diseases : an 
official publication of the Infectious Diseases Society of America 53: 1188-1195. 
Hoang LM, Maguire JA, Doyle P, Fyfe M & Roscoe DL (2004) Cryptococcus 
neoformans infections at Vancouver Hospital and Health Sciences Centre (1997-



 21 

2002): epidemiology, microbiology and histopathology. Journal of medical 
microbiology 53: 935-940. 
Hu G, Steen BR, Lian T, Sham AP, Tam N, Tangen KL & Kronstad JW (2007) 
Transcriptional regulation by protein kinase A in Cryptococcus neoformans. PLoS 
pathogens 3: e42. 
Huerfano S, Castaneda A & Castaneda E (2001) Experimental infection of almond 
trees seedlings (Terminalia catappa) with an environmental isolate of Cryptococcus 
neoformans var. gattii, serotype C. Revista iberoamericana de micologia 18: 131-132. 
Huston SM, Li SS, Stack D, Timm-McCann M, Jones GJ, Islam A, Berenger BM, Xiang 
RF, Colarusso P & Mody CH (2013) Cryptococcus gattii is killed by dendritic cells, but 
evades adaptive immunity by failing to induce dendritic cell maturation. Journal of 
immunology 191: 249-261. 
Ito-Kuwa S, Nakamura K, Aoki S & Vidotto V (2007) Serotype identification of 
Cryptococcus neoformans by multiplex PCR. Mycoses 50: 277-281. 
Iverson SA, Chiller T, Beekmann S, Polgreen PM & Harris J (2012) Recognition and 
diagnosis of Cryptococcus gattii infections in the United States. Emerging infectious 
diseases 18: 1012-1015. 
Janbon G, Maeng S, Yang DH, Ko YJ, Jung KW, Moyrand F, Floyd A, Heitman J & Bahn 
YS (2010) Characterizing the role of RNA silencing components in Cryptococcus 
neoformans. Fungal genetics and biology : FG & B 47: 1070-1080. 
Johnston SA & May RC (2013) Cryptococcus interactions with macrophages: evasion 
and manipulation of the phagosome by a fungal pathogen. Cellular microbiology 15: 
403-411. 
Kidd SE, Hagen F, Tscharke RL, Huynh M, Bartlett KH, Fyfe M, Macdougall L, 
Boekhout T, Kwon-Chung KJ & Meyer W (2004) A rare genotype of Cryptococcus 
gattii caused the cryptococcosis outbreak on Vancouver Island (British Columbia, 
Canada). Proceedings of the National Academy of Sciences of the United States of 
America 101: 17258-17263. 
Kozel TR & Mastroianni RP (1976) Inhibition of phagocytosis by cryptococcal 
polysaccharide: dissociation of the attachment and ingestion phases of phagocytosis. 
Infection and immunity 14: 62-67. 
Kwon-Chung KJ & Bennett JE (1984) High prevalence of Cryptococcus neoformans 
var. gattii in tropical and subtropical regions. Zentralblatt fur Bakteriologie, 
Mikrobiologie, und Hygiene Series A, Medical microbiology, infectious diseases, 
virology, parasitology 257: 213-218. 
Kwon-Chung KJ & Varma A (2006) Do major species concepts support one, two or 
more species within Cryptococcus neoformans? FEMS yeast research 6: 574-587. 
Kwon-Chung KJ & Saijo T (2015) Is Cryptococcus gattii a Primary Pathogen? J Fungi 1: 
154-167. 
Kwon-Chung KJ, Polacheck I & Bennett JE (1982) Improved diagnostic medium for 
separation of Cryptococcus neoformans var. neoformans (serotypes A and D) and 
Cryptococcus neoformans var. gattii (serotypes B and C). Journal of clinical 
microbiology 15: 535-537. 
Kwon-Chung KJ, Edman JC & Wickes BL (1992) Genetic association of mating types 
and virulence in Cryptococcus neoformans. Infection and immunity 60: 602-605. 



 22 

Kwon-Chung KJ, Fraser JA, Doering TL, Wang Z, Janbon G, Idnurm A & Bahn YS (2014) 
Cryptococcus neoformans and Cryptococcus gattii, the etiologic agents of 
cryptococcosis. Cold Spring Harbor perspectives in medicine 4: a019760. 
Lin X, Hull CM & Heitman J (2005) Sexual reproduction between partners of the 
same mating type in Cryptococcus neoformans. Nature 434: 1017-1021. 
Liu J, Farmer JD, Jr., Lane WS, Friedman J, Weissman I & Schreiber SL (1991) 
Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 
complexes. Cell 66: 807-815. 
Lizarazo J, Escandon P, Agudelo CI, Firacative C, Meyer W & Castaneda E (2014) 
Retrospective study of the epidemiology and clinical manifestations of Cryptococcus 
gattii infections in Colombia from 1997-2011. PLoS neglected tropical diseases 8: 
e3272. 
Lockhart SR, Iqbal N, Harris JR, Grossman NT, DeBess E, Wohrle R, Marsden-Haug N 
& Vugia DJ (2013) Cryptococcus gattii in the United States: genotypic diversity of 
human and veterinary isolates. PloS one 8: e74737. 
Ma H & May RC (2010) Mitochondria and the regulation of hypervirulence in the 
fatal fungal outbreak on Vancouver Island. Virulence 1: 197-201. 
Ma H, Croudace JE, Lammas DA & May RC (2006) Expulsion of live pathogenic yeast 
by macrophages. Current biology : CB 16: 2156-2160. 
Ma H, Hagen F, Stekel DJ, Johnston SA, Sionov E, Falk R, Polacheck I, Boekhout T & 
May RC (2009) The fatal fungal outbreak on Vancouver Island is characterized by 
enhanced intracellular parasitism driven by mitochondrial regulation. Proceedings of 
the National Academy of Sciences of the United States of America 106: 12980-12985. 
MacDougall L & Fyfe M (2006) Emergence of Cryptococcus gattii in a novel 
environment provides clues to its incubation period. Journal of clinical microbiology 
44: 1851-1852. 
MacDougall L, Fyfe M, Romney M, Starr M & Galanis E (2011) Risk factors for 
Cryptococcus gattii infection, British Columbia, Canada. Emerging infectious diseases 
17: 193-199. 
MacDougall L, Kidd SE, Galanis E, Mak S, Leslie MJ, Cieslak PR, Kronstad JW, Morshed 
MG & Bartlett KH (2007) Spread of Cryptococcus gattii in British Columbia, Canada, 
and detection in the Pacific Northwest, USA. Emerging infectious diseases 13: 42-50. 
Malik R, Speed BR, Kaldor J, Cairns B, Pegorer M, Wigney DI & Love DN (1999) Serum 
antibody response to Cryptococcus neoformans in cats, dogs and koalas with and 
without active infection. Medical mycology 37: 43-51. 
Malliaris SD, Steenbergen JN & Casadevall A (2004) Cryptococcus neoformans var. 
gattii can exploit Acanthamoeba castellanii for growth. Medical mycology 42: 149-
158. 
Marr KA, Datta K, Pirofski LA & Barnes R (2012) Cryptococcus gattii infection in 
healthy hosts: a sentinel for subclinical immunodeficiency? Clinical infectious 
diseases : an official publication of the Infectious Diseases Society of America 54: 
153-154. 
McClelland EE, Bernhardt P & Casadevall A (2006) Estimating the relative 
contributions of virulence factors for pathogenic microbes. Infection and immunity 
74: 1500-1504. 



 23 

McClelland EE, Hobbs LM, Rivera J, Casadevall A, Potts WK, Smith JM & Ory JJ (2013) 
The role of host gender in the pathogenesis of Cryptococcus neoformans infections. 
PloS one 8: e63632. 
McFadden DC, De Jesus M & Casadevall A (2006) The physical properties of the 
capsular polysaccharides from Cryptococcus neoformans suggest features for 
capsule construction. The Journal of biological chemistry 281: 1868-1875. 
McTaggart L, Richardson SE, Seah C, Hoang L, Fothergill A & Zhang SX (2011) Rapid 
identification of Cryptococcus neoformans var. grubii, C. neoformans var. 
neoformans, and C. gattii by use of rapid biochemical tests, differential media, and 
DNA sequencing. Journal of clinical microbiology 49: 2522-2527. 
Meyer W, Castaneda A, Jackson S, Huynh M, Castaneda E & IberoAmerican 
Cryptococcal Study G (2003) Molecular typing of IberoAmerican Cryptococcus 
neoformans isolates. Emerging infectious diseases 9: 189-195. 
Meyer W, Marszewska K, Amirmostofian M, et al. (1999) Molecular typing of global 
isolates of Cryptococcus neoformans var. neoformans by polymerase chain reaction 
fingerprinting and randomly amplified polymorphic DNA-a pilot study to standardize 
techniques on which to base a detailed epidemiological survey. Electrophoresis 20: 
1790-1799. 
Min KH & Kwon-Chung KJ (1986) The biochemical basis for the distinction between 
the two Cryptococcus neoformans varieties with CGB medium. Zentralblatt fur 
Bakteriologie, Mikrobiologie, und Hygiene Series A, Medical microbiology, infectious 
diseases, virology, parasitology 261: 471-480. 
Mitchell DH, Sorrell TC, Allworth AM, Heath CH, McGregor AR, Papanaoum K, 
Richards MJ & Gottlieb T (1995) Cryptococcal disease of the CNS in 
immunocompetent hosts: influence of cryptococcal variety on clinical manifestations 
and outcome. Clinical infectious diseases : an official publication of the Infectious 
Diseases Society of America 20: 611-616. 
Ngamskulrungroj P, Chang Y, Sionov E & Kwon-Chung KJ (2012) The primary target 
organ of Cryptococcus gattii is different from that of Cryptococcus neoformans in a 
murine model. mBio 3. 
Ngamskulrungroj P, Sorrell TC, Chindamporn A, Chaiprasert A, Poonwan N & Meyer 
W (2008) Association between fertility and molecular sub-type of global isolates of 
Cryptococcus gattii molecular type VGII. Medical mycology 46: 665-673. 
Nicola AM, Robertson EJ, Albuquerque P, Derengowski Lda S & Casadevall A (2011) 
Nonlytic exocytosis of Cryptococcus neoformans from macrophages occurs in vivo 
and is influenced by phagosomal pH. mBio 2. 
Nicolas FE, Torres-Martinez S & Ruiz-Vazquez RM (2013) Loss and retention of RNA 
interference in fungi and parasites. PLoS pathogens 9: e1003089. 
Nielsen K, Marra RE, Hagen F, Boekhout T, Mitchell TG, Cox GM & Heitman J (2005) 
Interaction between genetic background and the mating-type locus in Cryptococcus 
neoformans virulence potential. Genetics 171: 975-983. 
Okagaki LH & Nielsen K (2012) Titan cells confer protection from phagocytosis in 
Cryptococcus neoformans infections. Eukaryotic cell 11: 820-826. 
Okagaki LH, Strain AK, Nielsen JN, Charlier C, Baltes NJ, Chretien F, Heitman J, 
Dromer F & Nielsen K (2010) Cryptococcal cell morphology affects host cell 
interactions and pathogenicity. PLoS pathogens 6: e1000953. 



 24 

Oliveira DL, Freire-de-Lima CG, Nosanchuk JD, Casadevall A, Rodrigues ML & 
Nimrichter L (2010) Extracellular vesicles from Cryptococcus neoformans modulate 
macrophage functions. Infection and immunity 78: 1601-1609. 
Oliver KR & Greene WK (2009) Transposable elements: powerful facilitators of 
evolution. BioEssays : news and reviews in molecular, cellular and developmental 
biology 31: 703-714. 
Panepinto J, Komperda K, Frases S, Park YD, Djordjevic JT, Casadevall A & Williamson 
PR (2009) Sec6-dependent sorting of fungal extracellular exosomes and laccase of 
Cryptococcus neoformans. Molecular microbiology 71: 1165-1176. 
Pappas PG (2013) Cryptococcal infections in non-HIV-infected patients. Transactions 
of the American Clinical and Climatological Association 124: 61-79. 
Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG & Chiller TM (2009) 
Estimation of the current global burden of cryptococcal meningitis among persons 
living with HIV/AIDS. Aids 23: 525-530. 
Peres da Silva R, Puccia R, Rodrigues ML, Oliveira DL, Joffe LS, Cesar GV, Nimrichter L, 
Goldenberg S & Alves LR (2015) Extracellular vesicle-mediated export of fungal RNA. 
Scientific reports 5: 7763. 
Phillips P, Galanis E, MacDougall L, et al. (2015) Longitudinal Clinical Findings and 
Outcome Among Patients With Cryptococcus gattii Infection in British Columbia. 
Clinical infectious diseases : an official publication of the Infectious Diseases Society 
of America 60: 1368-1376. 
Rivera J, Feldmesser M, Cammer M & Casadevall A (1998) Organ-dependent 
variation of capsule thickness in Cryptococcus neoformans during experimental 
murine infection. Infection and immunity 66: 5027-5030. 
Rocha JD, Nascimento MT, Decote-Ricardo D, et al. (2015) Capsular polysaccharides 
from Cryptococcus neoformans modulate production of neutrophil extracellular 
traps (NETs) by human neutrophils. Scientific reports 5: 8008. 
Rodrigues ML, Alvarez M, Fonseca FL & Casadevall A (2008) Binding of the wheat 
germ lectin to Cryptococcus neoformans suggests an association of chitinlike 
structures with yeast budding and capsular glucuronoxylomannan. Eukaryotic cell 7: 
602-609. 
Rodrigues ML, Nakayasu ES, Almeida IC & Nimrichter L (2014) The impact of 
proteomics on the understanding of functions and biogenesis of fungal extracellular 
vesicles. Journal of proteomics 97: 177-186. 
Rodrigues ML, Nakayasu ES, Oliveira DL, Nimrichter L, Nosanchuk JD, Almeida IC & 
Casadevall A (2008) Extracellular vesicles produced by Cryptococcus neoformans 
contain protein components associated with virulence. Eukaryotic cell 7: 58-67. 
Rodrigues ML, Nimrichter L, Oliveira DL, Frases S, Miranda K, Zaragoza O, Alvarez M, 
Nakouzi A, Feldmesser M & Casadevall A (2007) Vesicular polysaccharide export in 
Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell 
wall transport. Eukaryotic cell 6: 48-59. 
Rosen LB, Freeman AF, Yang LM, et al. (2013) Anti-GM-CSF autoantibodies in 
patients with cryptococcal meningitis. Journal of immunology 190: 3959-3966. 
Sabiiti W, Robertson E, Beale MA, et al. (2014) Efficient phagocytosis and laccase 
activity affect the outcome of HIV-associated cryptococcosis. The Journal of clinical 
investigation 124: 2000-2008. 



 25 

Saijo T, Chen J, Chen SC, Rosen LB, Yi J, Sorrell TC, Bennett JE, Holland SM, Browne SK 
& Kwon-Chung KJ (2014) Anti-granulocyte-macrophage colony-stimulating factor 
autoantibodies are a risk factor for central nervous system infection by Cryptococcus 
gattii in otherwise immunocompetent patients. mBio 5: e00912-00914. 
Schoffelen T, Illnait-Zaragozi MT, Joosten LA, Netea MG, Boekhout T, Meis JF & 
Sprong T (2013) Cryptococcus gattii induces a cytokine pattern that is distinct from 
other cryptococcal species. PloS one 8: e55579. 
Sorrell TC (2001) Cryptococcus neoformans variety gattii. Medical mycology 39: 155-
168. 
Sorrell TC & Chen SC (2010) Recent advances in management of cryptococcal 
meningitis: commentary. F1000 medicine reports 2: 82. 
Sorrell TC, Juillard PG, Djordjevic JT, Kaufman-Francis K, Dietmann A, Milonig A, 
Combes V & Grau GE (2015) Cryptococcal transmigration across a model brain 
blood-barrier: evidence of the Trojan horse mechanism and differences between 
Cryptococcus neoformans var. grubii strain H99 and Cryptococcus gattii strain R265. 
Microbes and infection / Institut Pasteur. 
Speed B & Dunt D (1995) Clinical and host differences between infections with the 
two varieties of Cryptococcus neoformans. Clinical infectious diseases : an official 
publication of the Infectious Diseases Society of America 21: 28-34; discussion 35-26. 
Speed BR, Kaldor J, Cairns B & Pegorer M (1996) Serum antibody response to active 
infection with Cryptococcus neoformans and its varieties in immunocompetent 
subjects. Journal of medical and veterinary mycology : bi-monthly publication of the 
International Society for Human and Animal Mycology 34: 187-193. 
Springer DJ & Chaturvedi V (2010) Projecting global occurrence of Cryptococcus 
gattii. Emerging infectious diseases 16: 14-20. 
Springer DJ, Ren P, Raina R, Dong Y, Behr MJ, McEwen BF, Bowser SS, Samsonoff WA, 
Chaturvedi S & Chaturvedi V (2010) Extracellular fibrils of pathogenic yeast 
Cryptococcus gattii are important for ecological niche, murine virulence and human 
neutrophil interactions. PloS one 5: e10978. 
Steenbergen JN, Shuman HA & Casadevall A (2001) Cryptococcus neoformans 
interactions with amoebae suggest an explanation for its virulence and intracellular 
pathogenic strategy in macrophages. Proceedings of the National Academy of 
Sciences of the United States of America 98: 15245-15250. 
Stephen C, Lester S, Black W, Fyfe M & Raverty S (2002) Multispecies outbreak of 
cryptococcosis on southern Vancouver Island, British Columbia. The Canadian 
veterinary journal La revue veterinaire canadienne 43: 792-794. 
Syme RM, Bruno TF, Kozel TR & Mody CH (1999) The capsule of Cryptococcus 
neoformans reduces T-lymphocyte proliferation by reducing phagocytosis, which can 
be restored with anticapsular antibody. Infection and immunity 67: 4620-4627. 
Tintelnot K, Hagen F, Han CO, Seibold M, Rickerts V & Boekhout T (2015) Pitfalls in 
Serological Diagnosis of Cryptococcus gattii Infections. Medical mycology. 
Trilles L, Meyer W, Wanke B, Guarro J & Lazera M (2012) Correlation of antifungal 
susceptibility and molecular type within the Cryptococcus neoformans/C. gattii 
species complex. Medical mycology 50: 328-332. 
Tseng HK, Liu CP, Price MS, Jong AY, Chang JC, Toffaletti DL, Betancourt-Quiroz M, 
Frazzitta AE, Cho WL & Perfect JR (2012) Identification of genes from the fungal 



 26 

pathogen Cryptococcus neoformans related to transmigration into the central 
nervous system. PloS one 7: e45083. 
Upton A, Fraser JA, Kidd SE, Bretz C, Bartlett KH, Heitman J & Marr KA (2007) First 
contemporary case of human infection with Cryptococcus gattii in Puget Sound: 
evidence for spread of the Vancouver Island outbreak. Journal of clinical 
microbiology 45: 3086-3088. 
Vargas G, Rocha JD, Oliveira DL, et al. (2015) Compositional and immunobiological 
analyses of extracellular vesicles released by Candida albicans. Cellular microbiology 
17: 389-407. 
Vartivarian SE, Anaissie EJ, Cowart RE, Sprigg HA, Tingler MJ & Jacobson ES (1993) 
Regulation of cryptococcal capsular polysaccharide by iron. The Journal of infectious 
diseases 167: 186-190. 
Vartivarian SE, Reyes GH, Jacobson ES, James PG, Cherniak R, Mumaw VR & Tingler 
MJ (1989) Localization of mannoprotein in Cryptococcus neoformans. Journal of 
bacteriology 171: 6850-6852. 
Vecchiarelli A (2005) The cellular responses induced by the capsular polysaccharide 
of Cryptococcus neoformans differ depending on the presence or absence of specific 
protective antibodies. Current molecular medicine 5: 413-420. 
Vecchiarelli A, Retini C, Monari C, Tascini C, Bistoni F & Kozel TR (1996) Purified 
capsular polysaccharide of Cryptococcus neoformans induces interleukin-10 
secretion by human monocytes. Infection and immunity 64: 2846-2849. 
Vecchiarelli A, Retini C, Pietrella D, Monari C, Tascini C, Beccari T & Kozel TR (1995) 
Downregulation by cryptococcal polysaccharide of tumor necrosis factor alpha and 
interleukin-1 beta secretion from human monocytes. Infection and immunity 63: 
2919-2923. 
Vecchiarelli A, Pericolini E, Gabrielli E, Kenno S, Perito S, Cenci E & Monari C (2013) 
Elucidating the immunological function of the Cryptococcus neoformans capsule. 
Future microbiology 8: 1107-1116. 
Voelz K, Lammas DA & May RC (2009) Cytokine signaling regulates the outcome of 
intracellular macrophage parasitism by Cryptococcus neoformans. Infection and 
immunity 77: 3450-3457. 
Voelz K, Johnston SA, Smith LM, Hall RA, Idnurm A & May RC (2014) 'Division of 
labour' in response to host oxidative burst drives a fatal Cryptococcus gattii 
outbreak. Nature communications 5: 5194. 
Voelz K, Ma H, Phadke S, et al. (2013) Transmission of Hypervirulence traits via 
sexual reproduction within and between lineages of the human fungal pathogen 
cryptococcus gattii. PLoS genetics 9: e1003771. 
Wang X, Hsueh YP, Li W, Floyd A, Skalsky R & Heitman J (2010) Sex-induced silencing 
defends the genome of Cryptococcus neoformans via RNAi. Genes & development 
24: 2566-2582. 
Wang X, Wang P, Sun S, Darwiche S, Idnurm A & Heitman J (2012) Transgene induced 
co-suppression during vegetative growth in Cryptococcus neoformans. PLoS genetics 
8: e1002885. 
Wang Z, Wilson A & Xu J (2015) Mitochondrial DNA inheritance in the human fungal 
pathogen Cryptococcus gattii. Fungal genetics and biology : FG & B 75: 1-10. 



 27 

Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z, Kaloshian I, Huang HD & Jin H (2013) 
Fungal small RNAs suppress plant immunity by hijacking host RNA interference 
pathways. Science 342: 118-123. 
Wiesner DL, Moskalenko O, Corcoran JM, et al. (2012) Cryptococcal genotype 
influences immunologic response and human clinical outcome after meningitis. mBio 
3. 
Xu J, Yan Z & Guo H (2009) Divergence, hybridization, and recombination in the 
mitochondrial genome of the human pathogenic yeast Cryptococcus gattii. 
Molecular ecology 18: 2628-2642. 
Xue C, Tada Y, Dong X & Heitman J (2007) The human fungal pathogen Cryptococcus 
can complete its sexual cycle during a pathogenic association with plants. Cell host & 
microbe 1: 263-273. 
Yoneda A & Doering TL (2006) A eukaryotic capsular polysaccharide is synthesized 
intracellularly and secreted via exocytosis. Molecular biology of the cell 17: 5131-
5140. 
Zaragoza O & Casadevall A (2004) Experimental modulation of capsule size in 
Cryptococcus neoformans. Biol Proced Online 6: 10-15. 
Zaragoza O, Fries BC & Casadevall A (2003) Induction of capsule growth in 
Cryptococcus neoformans by mammalian serum and CO(2). Infection and immunity 
71: 6155-6164. 
Zaragoza O, Garcia-Rodas R, Nosanchuk JD, Cuenca-Estrella M, Rodriguez-Tudela JL & 
Casadevall A (2010) Fungal cell gigantism during mammalian infection. PLoS 
pathogens 6: e1000945. 
Zaragoza O, Chrisman CJ, Castelli MV, Frases S, Cuenca-Estrella M, Rodriguez-Tudela 
JL & Casadevall A (2008) Capsule enlargement in Cryptococcus neoformans confers 
resistance to oxidative stress suggesting a mechanism for intracellular survival. 
Cellular microbiology 10: 2043-2057. 
Zhu P, Zhai B, Lin X & Idnurm A (2013) Congenic strains for genetic analysis of 
virulence traits in Cryptococcus gattii. Infection and immunity 81: 2616-2625. 
 


