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SARASON CONJECTURE ON THE BERGMAN SPACE

ALEXANDRU ALEMAN, SANDRA POTT, AND MARIA CARMEN REGUERA

Abstract. We provide a counterexample to the Sarason Conjecture for the Bergman space
and present a characterisation of bounded Toeplitz products on the Bergman space in terms
of test functions by means of a dyadic model approach. We also present some results about
two-weighted estimates for the Bergman projection. Finally, we introduce the class B∞ and
give sharp estimates for the one-weighted Bergman projection.

1. Introduction

Let dA denote Lebesgue area measure on the unit disc D, normalized so that the measure
of D equals 1. The Bergman space A2(D) is the closed subspace of analytic functions in the
Hilbert space L2(D, dA). Likewise, the Hardy space H2(T) is the closed subspace of L2(T)
consisting of analytic functions.

The Bergman projection PB, given by

PBf(z) =

∫
D

f(ζ)

(1− ζz)2
dA(ζ),

is the orthogonal projection from L2(D, dA) ontoA2(D), while the Riesz projection PR denotes
the orthogonal projection from L2(T) to H2(T). For each function f ∈ L2(D) we have the
densely defined Bergman space Toeplitz operator Tf on A2(D), given by

Tfu = PBfu.

In the same way, given f ∈ L2(T), the Hardy space Toeplitz operator Tf on H2 is given by

Tfv = PRfv,

where u and v are suitable elements in A2 and H2, respectively.
For analytic f , it is easy to see that both the Bergman space Toeplitz operator Tf and the

Hardy space Toeplitz operator Tf are bounded, if and only if f is a bounded function on D.
In this paper, we shall study the question as to which pairs of functions f, g ∈ A2(D) give

rise to a bounded Toeplitz product operator

TfT
∗
g : A2(D)→ A2(D).

2010 Mathematics Subject Classification. Primary: Primary: 47B38, 30H20 Secondary: 42C40,
42A61,42A50 .
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2 A. ALEMAN, S. POTT, AND M.C. REGUERA

This questions has a rich history and interesting connections to Harmonic Analysis, as we
outline below.

Sarason [28] conjectured the following:

Conjecture 1.1 (Sarason Conjecture for the Bergman space). Let f, g ∈ A2(D). Then TfT
∗
g

is bounded on A2(D), if and only if

(1.2) b2
f,g := sup

z∈D
B(|f |2)(z)B(|g|2)(z) <∞,

where B denotes the Berezin transform,

(1.3) Bf(z) =

∫
D

f(ζ)(1− |z|2)2

|1− ζz|4
dA(ζ).

Likewise, he conjectured the following for the case of the Hardy space:

Conjecture 1.4 (Sarason Conjecture for the Hardy space). Given f, g ∈ H2(T), TfT ∗g is

bounded in H2(T) if and only if

(1.5) sup
z∈D
P(|f |2)(z)P(|g|2)(z) <∞,

where P denotes the Poisson extension.

Both in the Bergman space and the Hardy space case, these questions are closely connected
to very interesting questions in Harmonic Analysis, namely two-weight estimates for the
Bergman projection, respectively the Riesz projection.

Cruz-Uribe observed [7] the following commutative diagram in the case of the Hardy space:

TfT ∗g
H2(T) −→ H2(T)

Mḡ ←
−

−→ Mf

PR
L2( 1

|g|2 ,T) −→ H2(|f |2,T)

Here, Mḡ, Mf on the vertical sides denote multiplication with the respective symbols, and
these operators are isometric by definition of the weights. A similar argument can be made
for the Bergman space,

(1.6)

TfT
∗
g

A2(D) −→ A2(D)

Mḡ ←
−

−→ Mf

PB
L2( 1

|g|2 ,D) −→ A2(|f |2,D)
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again with isometric operators on the vertical sides. One can thus see easily that the top row
of each diagram is bounded, if and only if the bottom row is bounded.

Hence the question on the boundedness of Toeplitz products can be translated to the
problem of boundedness of the two-weighted Bergman projection

(1.7) PB : L2(D,
1

|g|2
)→ L2(D, |f |2)

respectively boundedness of the two-weighted Riesz projection

(1.8) PR : L2(T,
1

|g|2
)→ L2(T, |f |2)

in the case of the Hardy space.
This connection motivated the Sarason conjectures 1.1, 1.4 above. Namely, condition (1.2)

is the natural two-weight form of the Békollé-Bonami condition B2 for a weight function w
on D [4, 5],

sup
z∈D

B(w)(z)B(w−1)(z) <∞,

which is equivalent to the boundedness of the one-weighted Bergman projection

(1.9) PB : L2(D, w)→ A2(D, w),

and also to the boundedness of the maximal one-weighted Bergman projection

(1.10) P+
B : L2(D, w)→ L2(D, w),

where

(1.11) P+
B (f) :=

∫
D

f(ζ)

|1− ζz|2
dA(ζ)

(see [5]). In the same way, (1.5) is the natural two-weight form of the invariant Muckenhoupt
condition A2 for a weight function v ,

sup
z∈D
P(v)(z)P(v−1)(z) <∞,

which is equivalent to the boundedness of the one-weighted Riesz projection

(1.12) PR : L2(D, v)→ L2(D, v),

or equivalently, the one-weighted Hilbert transform H [12].
The problem of classifying those pairs of weights (ρ, v) for which the two-weighted Riesz

projection

(1.13) PR : L2(D, ρ)→ L2(D, v),

or equivalently, the two-weighted Hilbert transform is bounded, is a famous problem in
Harmonic Analysis. For a long time, it was conjectured that a version of (1.5) for general
weights (ρ, v), the joint invariant A2 condition

(1.14) sup
z∈D
P(v)(z)P(ρ−1)(z) <∞



4 A. ALEMAN, S. POTT, AND M.C. REGUERA

characterises (1.13). This would in particular imply Sarason’s conjecture on Hardy spaces.
However, F. Nazarov disproved both this conjecture and the Sarason conjecture 1.4. in 1997
[22]. The two-weight Hilbert transform problem, the problem of characterising boundedness
of (1.13), has been the subject of intense recent research activity, see e.g. [25], [23], [24], [18],
[16], [15] and the references therein.

Sarason’s Conjecture 1.1 for Toeplitz products on Bergman spaces, in contrast, has re-
mained open till now. The purpose of this paper is to provide a counterexample to this
conjecture, depending on a new characterisation of bounded Toeplitz products on Bergman
space by means of natural test function conditions. Our main results can be summarised as
follows:

Theorem 1.15. There exist functions f, g ∈ A2(D) such that bf,g < ∞, but TfT
∗
g is not

bounded on A2(D).

Theorem 1.16. Let P+
B (·) be the maximal Bergman projection on the disc D, and let f, g ∈

A2(D). The following are equivalent

(1) TfT
∗
g : A2(D) 7→ A2(D) is bounded;

(2) PB(|g|2·) : L2(D, |g|2)→ L2(D, |f |2) bounded;
(3) P+

B (|g|2·) : L2(D, |g|2)→ L2(D, |f |2) bounded;
(4) (a) ‖P+

B (|g|21QI )‖L2(D,|f |2) ≤ C0‖1QI‖L2(D,|g|2),

(b) ‖P+
B (|f |21QI )‖L2(D,|g|2) ≤ C0‖1QI‖L2(D,|f |2),

for all Carleson boxes QI associated to intervals I ∈ T and with constant C0 uniform
on I.

Here, the first equivalence is Cruz-Uribe’s observation, the second equivalence is proved
in Section 3, and the last equivalence is consequence of the two weight characterization for
dyadic positive operators by Lacey, Sawyer and Uriarte-Tuero [17], details are provided in
Section 2. We will prove Theorem 1.15 in Section 4. Section 5 is devoted to an application
to the proof of sharp estimates for one-weighted Bergman projection.

Sufficient conditions close to Sarason’s condition 1.2 for the boundedness of Toeplitz prod-
ucts in the style of the so-called bump conditions can be found in [33] and in [21].

In spite of the formal similarities of the Sarason conjectures in the Hardy space and in the
Bergman space settings, the problem is quite different in both settings.

Some aspects of the Bergman space setting are easier, because cancellation plays much
less of a role in this setting, as already apparent from the equivalence of (1.9) and (1.10). To
characterise boundedness of Toeplitz products, our strategy is thus to replace PB by P+

B , and
to use established two-weight techniques for dyadic positive operators, via a suitable dyadic
model operator introduced in Section 2. Somewhat surprisingly, it turns out that this is
possible for the weights 1

|g|2 , |f |2 in (1.6). This is the equivalence of (2) and (3) in Theorem

1.16, which will be proved in Section 3, and allows us to finally characterise the boundedness
of Toeplitz products in Bergman space in terms of test function.

On the other hand, the special rôle played by weights coming from analytic functions,
which we exploit in Section 3 and which is in contrast to the situation on the Hardy space,
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makes it much more difficult to find a counterexample of the Sarason Conjecture on Bergman
space (1.2). We prove a counterexample to the Sarason conjecture 1.1 in Section 4. For non-
analytic symbols, or even one non-analytic symbol, such examples are much easier to find.
In this case, the function g in Lemma 4.3, the construction of which forms the main part of
the counterexample, can just be replace by 1− |z|.

2. A dyadic model for the maximal Bergman projection

In this section we aim to find a dyadic operator that models the behaviour of the maximal
Bergman projection. To be precise, we find a dyadic averaging operator that is pointwise
comparable to the maximal Bergman projection.

The use of translations of a dyadic system to extend results from a dyadic setting to a
continuous one is a well known tool. These ideas go back to the work of Garnett and Jones
[10], Christ [6] and also Tao Mei [20]. In our case, we will use two of these dyadic systems to
recover the maximal Bergman kernel from dyadic operators.

For β ∈ {0, 1/3}, we define

Dβ :=
{

[2−j2πm+ 2πβ, 2−j2π(m+ 1) + 2πβ) : m ∈ N, j ∈ N, j ≥ 0, 0 ≤ m ≤ 2j
}
.

The key fact is that any interval in the torus is contained in one interval belonging to these
two families of dyadic grids, moreover the measure of the two intervals is essentially the same.
We formulate the result below. Its proof is a well-known exercise that the reader can find in
many places, e.g. [20].

Lemma 2.1. Let I be any interval in T. Then there exists an interval K ∈ Dβ for some
β ∈ {0, 1/3} such that I ⊂ K and |K| ≤ 6|I|.

We define the family of dyadic operators that will control the maximal Bergman projection
(1.11) as the following.

Definition 2.2. Let Dβ be one of the dyadic grids in T described above. For all z, ξ ∈ D,
we define the positive dyadic kernel

(2.3) Kβ(z, ξ) :=
∑
I∈Dβ

1QI (z)1QI (ξ)

|I|2
,

where QI is the Carleson box associated to I, namely

(2.4) QI := {reiθ : 1− |I| ≤ r < 1 and eiθ ∈ I},

and |I| stands for the normalized length of the interval. Associated to this kernel we define
the following dyadic operator

(2.5) P βf(z) :=
∑
I∈Dβ
〈f, 1QI
|I|2
〉1QI (z),

where 〈·, ·〉 stands for the inner product in L2(D).
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The following proposition proves the relation between the kernels (2.8) and the dyadic
kernels described in (2.3).

Proposition 2.6. There exist constants C and C̃ such that for every β0 ∈ {0, 1/3}, every
f ∈ L1

loc and z ∈ D,

(2.7) C̃P β0f(z) ≤ P+
B f(z) ≤ C

∑
β∈{0,1/3}

P βf(z),

where P+
B is the maximal Bergman projection as defined in (1.11) and P β the dyadic operator

described in (2.5).

Proof of Proposition (2.6). LetK(z, ξ) denote the kernel associated to the maximal Bergman
projection, i.e.,

(2.8) K(z, ξ) =
1

|1− zξ̄|2
.

Then it is enough to prove that there exist constants C and C̃ such that for every β0 and
every z, ξ in D we have the following estimates on the kernel,

(2.9) C̃Kβ0(z, ξ) ≤ K(z, ξ) ≤ C
∑

β∈{0,1/3}

Kβ(z, ξ)

Let us first prove the left hand side of (2.9). We consider z = r0eiθ0 and ξ = s0eiϕ0 .
Without loss, we can assume that r0 ≤ s0. We choose I0 ∈ Dβ0 to be the minimal interval
such that |I0| ≥ 1 − r0 and eiθ0 , eiϕ0 ∈ I0. Then, it is easy to see that z, ξ ∈ QI0 . It could
be that such an interval doesn’t exist, in that case the inequality is trivially true. From
z, ξ ∈ QI0 we can deduce

(2.10)
∑
I∈Dβ

1QI(z)1QI(ξ)

|I|2
=
∑
I,I0⊂I

1

|I|2
≤ C

1

|I0|2
.

To conclude the proof of the left hand side, we need to show

(2.11) |1− zξ̄|2 ≤ C|I0|2,
for some uniform constant C. We can write |1− zξ̄|2 as

(2.12) |1− zξ̄|2 = (1− r0s0)2 + 4r0s0 sin2(
θ0 − ϕ0

2
).

We distinguish two cases, when (1−r0s0)2 is the majorant term, and when 4r0s0 sin2( θ0−ϕ0

2
)

is the majorant.

(1) Case 1. If (1− r0s0)2 > 4r0s0 sin2( θ0−ϕ0

2
), then

|1− zξ̄|2 ≤ 2(1− r0s0)2 ≤ 8|I0|2,
as desired.
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(2) Case 2. Suppose on the contrary that (1−r0s0)2 ≤ 4r0s0 sin2( θ0−ϕ0

2
). Since eiθ0 , eiϕ0 ∈

I0, we know that |I0| ≥ |θ0 − ϕ0|. Then

|1− zξ̄|2 ≤ 8r0s0 sin2(
θ0 − ϕ0

2
) ≤ 2|θ0 − ϕ0|2 ≤ 2|I0|2,

as desired.

Therefore we have concluded the proof of the left hand side of (2.9). We now turn to the
right hand inequality in (2.9). Once again let us fix z, ξ ∈ D, and write them as before as
z = r0eiθ0 and ξ = s0eiϕ0 .

It is enough to prove the existence of an interval I0 in T such that z, ξ ∈ QI0 and |I0|2 '
|1 − zξ̄|2. If such an interval exists, by Lemma 2.1, we find K ∈ Dβ for some β ∈ {0, 1/3}
such that I0 ⊂ K and |K| ≤ 6|I0|. Now the proof of the proposition follows from the set of
inequalities below:

1

|1− zξ̄|2
.

1

|I0|2

.
1

36|K|2

≤ C
∑
I∈Dβ
K⊂I

1QI (z)1QI (ξ)

|I|2

≤ C
∑

β∈{0,1/3}

Kβ(z, ξ).

Thus we have reduced the problem to prove the existence I0 interval in T such that z, ξ ∈
QI0 and |I0|2 ' |1−zξ̄|2. Notice than we will always have |θ0−ϕ0| ≤ π, and since | sinx| ' |x|
for |x| ≤ π/2, we have

(2.13) |1− zξ̄|2 ' (1− r0s0)2 + r0s0|θ0 − ϕ0|2 ' (1− r2
0)2 + |θ0 − ϕ0|2.

by (2.12). Let us choose I0 to be a minimal interval such that

|I0|2 = max((1− r2
0)2, |θ0 − ϕ0|2)

and eiθ0 , eiϕ0 ∈ I0. It is easy to see that z, ξ ∈ QI0 . We have to prove that |I0|2 ' |1 − zξ̄|2.
But this follows directly from (2.13).

This finishes the proof of the proposition.
�

We now establish two-weight estimates for the maximal Bergman projection. We use a
two-weight characterization of boundedness for general dyadic positive operators in terms of
testing conditions. This characterization was provided by Lacey, Sawyer and Uriarte-Tuero
[17], based on previous work of Eric Sawyer in the continuous case [29, 30]. To conclude the
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desired characterization for the maximal Bergman projection, P+
B , we will use the the dyadic

result in combination with inequalities (2.7).
There are three equivalent formulations for two weighted inequalities that we will use in

turn. A weight function will be an nonnegative measurable function on Rn, not necessarily
locally integrable. Let w, v be weight functions in Rn, let 1 < p <∞ and p′ its dual exponent.
We define σ := v1−p′ , which is usually called the dual weight of v. Let T be an operator.
Then the following are equivalent:

(1) T : Lp(v) 7→ Lp(w)
(2) T (σ·) : Lp(σ) 7→ Lp(w)
(3) w1/pT (σ1/p′·) : Lp 7→ Lp.

In this section we will mostly use (2) above, although for the Sarason problem, (3) is more
natural and will frequently appear.

Theorem 2.14. Let Dβ be a fixed dyadic grid in T and let P β as defined in (2.5). Then

P β(w·) : Lp(w)→ Lp(σ)

is bounded, if and only if

(2.15)
∥∥∥∑
I∈Dβ
I⊂I0

〈w1QI0 ,
1QI
|I|2
〉1QI

∥∥∥p
Lp(σ)

≤ C0w(QI0),

and

(2.16)
∥∥∥∑
I∈Dβ
I⊂I0

〈σ1QI0 ,
1QI
|I|2
〉1QI

∥∥∥p′
Lp′ (w)

≤ C∗0σ(QI0),

for all I dyadic interval in Dβ, where QI represents the Carleson box associated to I and the
constants C0 and C∗0 are independent of the intervals I. Moreover, there exists a constant
c > 0 independent of the weights, such that∥∥P β(w·)

∥∥
Lp(w)p→Lp(σ)

≤ c(C0 + C∗0).

The proof of Theorem 2.14 in the disc D is essentially the one provided by Lacey, Sawyer
and Uriarte-Tuero in [17]. A simplified version is given by S. Treil in [32]. In the case of the
disc, our dyadic system will be described by the Carleson cubes associated to the intervals
in the dyadic grid Dβ in T. The details of the proof can be found in an earlier version of this
paper [2], Theorem 3.7, or in the survey paper [27].

We obtain the following corollary, which presents a two weight characterization for the
maximal Bergman projection.

Corollary 2.17. Let P+
B be the maximal Bergman projection in the disc D, let 1 < p < ∞

and p′ its dual exponent and let w, σ be two weight functions. Then

Mw1/pP+
BMσ1/p′ : Lp(D)→ Lp(D)
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is bounded, if and only if

(2.18) ‖Mw1/pP+
BMσ1/p′ (1QIσ

1/p)‖Lp(D) ≤ C0‖1QIσ1/p‖Lp(D)

and

(2.19) ‖Mσ1/p′P+
BMw1/p(1QIw

1/p′)‖Lp′ (D) ≤ C∗0‖1QIw1/p′‖Lp′ (D),

for any interval I in T, where the constants C0 and C∗0 are independent of the choice of
interval.

Moreover, there exists a constant c > 0 independent of the weights, such that∥∥Mw1/pP+
BMσ1/p′

∥∥
Lp→Lp ≤ c(C0 + C∗0).

As in the introduction, the operators Mh stand for the operator of multiplication by the
symbol h.

Proof. We only have to prove one direction. By the first inequality in (2.7), the testing con-
dition (2.18) and (2.19) imply the corresponding testing condition for each P β, and therefore
the uniform boundedness of all Pβ by Theorem 2.14. The second inequality in (2.7) now
implies the boundedness of Mw1/pP+

BMσ1/p′ with the required norm bounds. �
We note that the positivity of P+

B and the left hand-side of (2.7) are crucial here to recover
the non-dyadic case from the dyadic one. This advantage is not present in the case of
cancellative operators such as the Bergman projection itself.

3. P and P+ are equivalent

Given f, g ∈ L2(D), we denote as before

bf,g = sup
z∈D

B1/2(|f |2)(z)B1/2(|g|2)(z).

Theorem 3.1. Let f, g ∈ A2(D). Then TfT
∗
g is bounded on A2(D) if and only if the operator

P+
f,g defined by

P+
f,gu(z) = |f(z)|

∫
D

|g(ζ)|u(ζ)

|1− ζz|2
dA(ζ)

is bounded on L2(D).

Notice that the boundedness of P+
f,g on L2(D) is equivalent to the two-weight estimate

P+
B (|g|2·) : L2(|g|2) → L2(|f |2) by (2) and (3) in page 8. For the proof of the theorem, we

need some preliminary estimates and begin with a completely elementary lemma which will
play the key role in our argument.

Lemma 3.2. For z, ζ ∈ D we have

1

|1− ζz|2
= − ζz

(1− ζz)2
+

1− |zζ|2

(1− ζz)|1− ζz|2

= −Re
ζz

(1− ζz)2
+

1− |zζ|2

2|1− ζz|2
+

(1− |zζ|2)2

2|1− ζz|4
.
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Proof. Let w = ζz ∈ D, and note that

1

(1− w)2
+

1

|1− w|2
=

2

(1− w)
Re

1

(1− w)

=
1

(1− w)
+

1

(1− w)
Re

1 + w

1− w
,

and the first identity follows from Re1+w
1−w = 1−|w|2

|1−w|2 . For the second, we just take the real part

on both sides of the first and use Re 1
1−w = 1

2
+ 1−|w|2

2|1−w|2 . �

The next two lemmas deal with estimates for integral operators whose kernels are involved
in the identities above.

Lemma 3.3. For f, g ∈ A2(D), u ∈ L2(D) and z ∈ D let

C1
f,gu(z) = |f(z)|

∫
D
|g|u(ζ)

1− |z|2

|1− ζz|2
dA(ζ) ,

C2
f,gu(z) = |f(z)|

∫
D
|g|u(ζ)

(1− |z|2)(1− |ζ|2)

|1− ζz|4
dA(ζ) ,

C3
f,gu(z) = |f(z)|

∫
D
|g|u(ζ)

1− |ζ|2

(1− ζz)|1− ζz|2
dA(ζ) ,

C4
f,gu(z) = |f(z)|

∫
D
|g|u(ζ)

(1− |ζ|2)2

|1− ζz|4
dA(ζ) .

Then for j = 1, 2

‖Cj
f,gu‖2 . bf,g‖u‖2 .

Moreover, for any measurable set E ⊂ D

‖C3
f,g|g|1E‖2 . ‖P+

f,g|g|1E‖
1/2
2 b

1/2
f,g ‖g1E‖1/2

2 ,

and

‖C4
f,g|g|1E‖2 . bf,g‖g1E‖2 .

Proof. By the Cauchy-Schwartz inequality we have

|C1
f,gu(z)| ≤ |f(z)|B1/2(|g|2)(z)‖u‖2 ≤ bf,g‖u‖2 .

Similarly,

|C2
f,gu(z)| ≤ |f(z)|B1/2(|g|2)(z)

(∫
D

|u(ζ)|2(1− |ζ|2)2

|1− ζz|4
dA(ζ)

)1/2

,

so that

‖C2
f,gu‖2

2 ≤ b2
f,g

∫
D

(∫
D

|u(ζ)|2(1− |ζ|2)2

|1− ζz|4
dA(ζ)

)
dA(z) . b2

f,g‖u‖2
2
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by a standard estimate for integrals (see for example page 10 in [11]). Another application of
the Cauchy-Schwartz inequality shows that it will suffice to prove the estimate for C4

f,g since
for nonnegative measurable functions u on D we have

|C3
f,gu(z)| ≤ (P+

f,gu(z))1/2C
1/2
4 u(z) .

This follows essentially the argument in [1] (proof of Lemma 3.1). Use the inequality |1 −
λw| ≤ |1− zw|+ |1− λz| to obtain

‖C4
f,gu‖2

2 ≤∫
D

∫
D

∫
D
|f(z)|2 |gu(λ)||gu(w)|(1− |λ|2)2(1− |w|2)2

|1− zw|4|1− zλ|4
dA(λ)dA(w)dA(z)

.
∫
D

∫
D

∫
D
|f(z)|2 |gu(λ)||gu(w)|(1− |λ|2)2(1− |w|2)2

|1− λw|4|1− zλ|4
dA(λ)dA(w)dA(z)

+

∫
D

∫
D

∫
D
|f(z)|2 |gu(λ)||gu(w)|(1− |λ|2)2(1− |w|2)2

|1− λw|4|1− zw|4
dA(λ)dA(w)dA(z)

= 2

∫
D

∫
D

∫
D
|f(z)|2 |gu(λ)||gu(w)|(1− |λ|2)2(1− |w|2)2

|1− λw|4|1− zw|4
dA(λ)dA(w)dA(z)

= 2

∫
D

∫
D
B(|f |2)(w)|gu(w)| |gu(λ)|(1− |λ|2)2

|1− λw|4
dA(λ)dA(w) .

When u = |g|v, v ≥ 0, the inequality |g|2B(|f |2) ≤ b2
f,g together with the standard estimate

for integrals mentioned above yield

‖C4
f,ggv‖2 . b2

f,g‖v‖∞‖g2v‖1 ,

and choosing v = 1E the result follows. �

In what follows we shall use the well known complex differential operators ∂ = ∂
∂z
, ∂ = ∂

∂z
.

Let us also note that if f, g ∈ A2(D) and TfT
∗
g is bounded on A2(D) then it is bounded on

L2(D) with the same norm, since for u ∈ L2(D) we have

TfT
∗
g u = TfT

∗
g PBu ,

where PB is the Bergman projection.

Lemma 3.4. For f, g ∈ A2(D) with f(0) = 0, u ∈ L2(D) and z ∈ D let

Ru(z) =

∫
D

|gu(ζ)|
|1− ζz|2

dA(ζ) ,

and let

Tu(z) =
1

z
Ru(z)− (1− |z|2)∂Ru(z) , Su(z) = Ru(z)− (1− |z|2)2

2
∂∂Ru(z) .

Then
‖fTg1E‖2 . (‖TfT ∗g ‖+ bf,g)‖g1E‖2 + ‖P+

f,g|g|1E‖
1/2
2 b

1/2
f,g ‖g1E‖1/2

2 ,
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and

‖fSg1E‖2 . (‖TfT ∗g ‖+ bf,g)‖g1E‖2 ,

for all measurable sets E ⊂ D.

Proof. Rewrite the first identity in Lemma 3.2 as

1

z|1− ζz|2
= − ζ

(1− ζz)2
+

1− |zζ|2

z|1− ζz|2
+

(1− |zζ|2)ζ

(1− ζz)|1− ζz|2

= − ζ

(1− ζz)2
+

1− |z|2

z|1− ζz|2
+

(1− |ζ|2)z

|1− ζz|2

+
(1− |ζ|2)ζ|z|2

(1− ζz)|1− ζz|2
+

(1− |z|2)ζ

(1− ζz)|1− ζz|2

Let M be the operator of multiplication by the independent variable on L2(D), Mv(z) =
zv(z). It is obvious that M is a bounded operator on L2(D). As it turns out it also satisfies
a bound from below in some cases, namely,

(3.5) ‖v‖L2(rD) . ‖Mv‖L2(rD) ,

and

(3.6) ‖v‖L2
(1−|z|2)2

(rD) . ‖Mv‖L2
(1−|z|2)2

(rD) ,

valid for all subharmonic functions v in D and all 0 < r ≤ 1. These estimates can be
easily deduced from the subharmonicity of v. For a measurable function h on D let φh(z) =

h(z)/|h(z)|, when h(z) 6= 0, and φh(z) = 1 otherwise, and denote by Uh the unitary operator
of multiplication by φh on L2(D). Multiply both sides by |gu(ζ)|, integrate on D w.r.t. dA(ζ),
and note that

∂Ru(z) =

∫
D

|gu(ζ)|ζ
(1− ζz)|1− ζz|2

dA(ξ) .

Using the above notations we obtain

|f |Tu(z) =
1

z
|f |Ru(z)− (1− |z|2)|f |∂Ru(z)

= −(UfTfT
∗
gU
∗
gM

∗|u|)(z) +
1

z
(C1

f,g|u|(z)) +M∗(C1
g,f )
∗|u|(z)

+ (M∗MC3
f,gM

∗|u|)(z) .

If we let u = g1E then the first estimate in the statement follows directly by Lemma 3.3
together with the fact that bf,g = bg,f and (3.6). The proof of the second estimate is similar.
We rewrite the second identity in Lemma 3.2 as

1

|1− ζz|2
= −Re

ζz

(1− ζz)2
+

1− |z|2

2|1− ζz|2
+
|z|2(1− |ζ|2)

2|1− ζz|2
+

(1− |ζ|2)2

2|1− ζz|4
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+
(1− |z|2)(1− |ζ|2)(|ζ|2 + |ζ|2)

2|1− ζz|4
+

(1− |z|2)2|ζ|4

2|1− ζz|4
,

multiply both sides by |gu(ζ)|, integrate on D w.r.t. dA(ζ), and note that

(1− |z|2)2∂∂Ru(z) = (1− |z|2)2

∫
D

|gu(ζ)||ζ|2

|1− ζz|4
dA(ζ) .

Thus with the notations above we have

|f |Su(z) = −Re(MUfTfT
∗
gU
∗
gM

∗|u|)(z) +
1

2
C1
f,g|u|(z) +

1

2
M∗M(C1

f,g)
∗|u|(z)

+
1

2
C4
f,g|u|(z) +

1

2
(C2

f,g(2M
∗M)|u|)(z) +

1

2
((I −M∗M)C2

f,gM
∗M |u|)(z) .

If we let u = g1E then the result follows by another application of Lemma 3.3. �

With the lemmas in hand we can now proceed to the proof of our theorem.

Proof of Theorem 3.1. Of course, the interesting part is to prove the boundedness of P+
f,g

under the assumption that TfT
∗
g is bounded. By Corollary 2.17 it suffices to show that

(3.7) ‖P+
f,g|g|1QI‖2 . ‖|g|1QI‖2 , ‖P+

g,f |f |1QI‖2 . ‖|f |1QI‖2 ,

for all Carleson boxes QI with I an interval in T. To this end, let us assume first that
f(0) = 0, and that u ∈ L2(D) is compactly supported. We shall focus our attention on the
function

(3.8) E(z) = (1− |z|2)2∂∂(P+
f,g|u|)

2(z)− Re

(
(1− |z|2)

z
∂(P+

f,g|u|)
2(z)

)
The standard growth estimate for Bergman space functions (see page 54 in [11]) shows that
under our assumptions we can apply Stokes’ formula and one of the Green’s identities to
conclude that∫

D
E(z)dA(z) =

∫
D
(P+

f,g|u|)
2(z)(∂∂(1− |z|2)2) + Re

(
1

z
∂(1− |z|2)

)
dA(z)

=

∫
D
(P+

f,g|u|)
2(z)(4|z|2 − 3)dA(z) ,

so that

(3.9)

∫
D
E(z)dA(z) ≤

∫
D
(P+

f,g|u|)
2(z)dA(z) .

With the notation in Lemma 3.4 we have (P+
f,g|u|)2 = |f |2R2u, and a direct computation

gives

∂(P+
f,g|u|)

2 = f ′fR2u+ 2|f |2Ru∂Ru .
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In the formulas below we will commit a convenient abuse of notation and write z also for the
identity function on D. Use Lemma 3.4 to obtain

1

z
∂(P+

f,g|u|)
2(z) =

1

z
f ′(z)f(z)R2u(z)+2(1−|z|2)|f |2(z)∂Ru(z)∂Ru(z)+2|f |2(z)Tu(z)∂Ru(z) .

Obviously, (1− |z|2)|∂Ru| ≤ 2Ru, and ∂Ru∂Ru ≥ 0, hence

Re

(
(1− |z|2)

z
∂(P+

f,g|u|)
2(z)

)
≤ (1− |z|2)Re

1

z
f ′(z)f(z)R2u(z)(3.10)

+ 2(1− |z|2)2|f |2∂Ru∂Ru+ 4|f |2Ru|Tu| .

Similarly, we compute

∂∂(P+
f,g|u|)

2 = |f ′|2R2u+ 4Ref ′fRu∂Ru+ 2|f |2∂Ru∂Ru+ 2|f |2Ru∂∂Ru .

and apply Lemma 3.4 to obtain

(1− |z|2)2∂∂(P+
f,g|u|)

2(z) = (1− |z|2)2|f ′|2(z)R2u(z)(3.11)

+ 4(1− |z|2)Re

(
1

z
f ′(z)f(z)R2u(z)

)
+ 2(1− |z|2)2|f |2(z)∂Ru(z)∂Ru(z)

+ 4|f |2(z)R2u(z)− 4(1− |z|2)Re
(
f ′(z)f(z)Ru(z)Tu(z)

)
− 4|f |2(z)Ru(z)Su(z) .

¿From (3.10) and (3.11) we have

E ≥ (1− |z|2)2|f ′|2(z)R2u(z) + 3(1− |z|2)Re

(
1

z
f ′(z)f(z)R2u(z)

)
(3.12)

+ 4|f |2(z)R2u(z)− 4(1− |z|2)Re
(
f ′(z)f(z)Ru(z)Tu(z)

)
− 4|f |2(z)Ru(z)Su(z)− 4|f |2(z)Ru(z)|Tu(z)| .

Fix δ ∈ (3
4
, 1) and use the inequalities

δ(1− |z|2)2|f ′|2(z)R2u(z) + 3(1− |z|2)Re

(
1

z
f ′(z)f(z)R2u(z)

)
≥ − 9

4δ|z|2
|f |2(z)R2u(z)

= − 9

4δ
|f |2(z)R2u(z)− 9

4δ|z|2
|f |(z)Ru(z)C1

f,g|u| ,

(1−δ)(1−|z|2)2|f ′|2(z)R2u(z)−4(1−|z|2)Re
(
f ′(z)f(z)Ru(z)Tu(z)

)
≥ − 4

1− δ
|f |2(z)|Tu|2(z)

that come from completing squares to conclude that

E(z) ≥ (4− 9

4δ
)|f |2(z)Ru2(z)− 4

1− δ
|f |2(z)|Tu|2(z)− 4|f |2(z)Ru(z)Su(z)

− 4|f |2(z)Ru(z)|Tu|(z)− 9

4δ|z|2
|f |(z)Ru(z)C1

f,g|u|(z) .
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Now recall that |f |2R2u = (P+
f,g|u|)2, and use the previous inequality in (3.9) together with

the Cauchy-Schwartz inequality and the estimates (3.5) and (3.6) to obtain

(3− 9

4δ
)‖P+

f,g|u|‖
2
2 ≤

4

1− δ
‖fTu‖2

2 + 4‖P+
f,g|u|‖2‖fSu‖2

+ 4‖P+
f,g|u|‖2‖fTu‖2 +

9k

4δ
‖P+

f,g|u|‖2‖C1
f,g|u|‖2 ,

where k is the constant in (3.5). Now let u = g1E for a measurable set E with E ⊂ D. By
the last inequality and the lemmas 3.4 and 3.3 we have

(3− 9

4δ
)‖P+

f,g|g|1E‖
2
2 . (‖TfT ∗g ‖+ bf,g)

2‖g1E‖2
2(3.13)

+ ‖P+
f,g|g|1E‖2(‖TfT ∗g ‖+ bf,g)‖g1E‖2 + ‖P+

f,g|g|1E‖
3/2
2 b

1/2
f,g ‖g1E‖1/2

2 .

Since (3− 9
4δ

) > 0, this immediately implies that

‖P+
f,g|g|1E‖2 . (‖TfT ∗g ‖+ bf,g)‖g1E‖2 .

The assumption that E ⊂ D is easily removed by an approximation argument and Fatou’s
lemma, while the assumption f(0) = 0 can be removed by another use of (3.5). Finally,
the remaining estimate in (3.7) is obtained by interchanging f and g, so that the proof is
complete. �

4. A counterexample to Sarason’s conjecture for Bergman space

Recall that for f, g ∈ A2(D), we have denoted by bf,g the supremum of the product of the
Berezin transforms of |f |2 and |g|2. In this section we will prove Theorem 1.15. The proof
requires several steps. We begin with the following notations. The Dirichlet space D consists
of analytic functions u in D whose derivative belongs to A2(D), and the norm is defined by

‖u‖2
D = |u(0)|2 + ‖u′‖2

2 .

Given f ∈ A2(D) we denote by

γ2(f) = sup
I

log
2π

|I|

∫
QI

|f |2dA ,

where the supremum is taken over all arcs I ⊂ T, and by

δ2(f) = sup
‖u‖D≤1

∫
D
|fu|2dA .

It is well known and easy to prove that

γ(f) . δ(f) .

The fact that these quantities are not comparable was discovered by Stegenga [31] and will
play an essential role in our argument.
The next lemma relates these numbers to the boundedness of Toeplitz products and products
of Berezin transforms.
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Lemma 4.1. Let f ∈ A2(D), and let g be a Lipschitz analytic function in D with

(4.2) |g(z)| ≥ c(1− |z|) ,
for some constant c > 0 and all z ∈ D.
(i) If fg ∈ H∞ and γ(f) <∞ then bf,g <∞.
(ii) If TfT

∗
g is bounded then δ(f) <∞.

Proof. (i) Since g is Lipschitz we have

B(|g|2)(z) . |g(z)|2 + (1− |z|2)2

∫
D

|g(ζ)− g(z)|2

|1− ζ̄z|4
dA(ζ)

. |g(z)|2 + (1− |z|2)2

∫
D

1

|1− ζ̄z|2
dA(ζ)

. |g(z)|2 + (1− |z|2)2 log
2

1− |z|
.

Similarly,

|g(z)|2B(|f |2)(z) . (1− |z|2)2

∫
D

|g(ζ)− g(z)|2|f(ζ)|2

|1− ζ̄z|4
dA(ζ) +B(|fg|2)(z)

. ‖f‖2
2 + ‖fg‖2

∞ .

Moreover, let
Ak(z) = D ∩ {2k(1− |z|) ≤ |1− zζ| ≤ 2k+1(1− |z|)} ,

and note that

(1− |z|)2 log
2

1− |z|
B(|f |2)(z) ∼ log

2

1− |z|
∑

2k(1−|z|)≤2

2−4k

∫
Ak(z)

|f |2dA

≤
∑

2k(1−|z|)≤2

(log
2

2k(1− |z|)
+ k)2−4k

∫
Ak(z)

|f |2dA ,

Each set Ak(z) is contained in a Carleson box of perimeter comparable to 2k(1−|z|). Indeed,
if 2k(1 − |z|) > 1

2
, we take the box to be the whole unit disc and if 2k(1 − |z|) ≤ 1

2
, we

note that Ak(z) is the intersection of the unit disc with an annulus centered at 1
z
, which is

contained in a disc centered at z
|z| , of radius comparable to 2k(1− |z|). Then it is easy to see

that such a disc is contained in a Carleson box with a comparable perimeter.

(log
2

2k(1− |z|)
+ k)

∫
Ak(z)

|f |2dA . γ2(f) + k‖f‖2
2

which implies

sup
z∈D

(1− |z|2)2 log
2

1− |z|
B(|f |2)(z) . γ2(f) + ‖f‖2

2 .

Thus
bf,g . ‖f‖2

2 + ‖fg‖2
∞ + γ2(f) .
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(ii) Let

Ru(z) =

∫
D

(1− |ζ|)u(ζ)

(1− ζ̄z)2
dA(ζ) , u ∈ A2(D) , z ∈ D .

It is well known and easy to show that R is a bounded invertible operator from A2(D) onto
the Dirichlet space D. Moreover, if g satisfies (4.2) we have the obvious inequality

|f(z)Ru(z)| ≤ P+
f,g|u|(z) .

If TfT
∗
g is bounded then by Theorem 3.1 we have

‖P+
f,g|u|‖2 . ‖u‖2 ,

for all u ∈ A2(D), hence, by the above argument

‖fv‖2 . ‖v‖D ,
for all v ∈ D, and the proof is complete. �

We now construct a special Lipschitz function g with the property (4.2).
Consider sequences α = (αj) , where all but finitely many terms are zero, and the remaining
ones are equal to one. Let

λ0 = 1 , λj = 2−2j , j = 1, 2 . . . .

Given a sequence α as above, let

xα =
∑
j≥1

αj(1− λj)λ0 · · ·λj−1 ,

and let E1 ⊂ R be the closure of the set of points xα. Finally, let E be the preimage of
E1 by the conformal map φ(z) = i1+z

1−z , from the unit disc onto the upper half-plane. The
following lemma is a direct application of a result in [8] and was suggested to us by Konstantin
Dyakonov.

Lemma 4.3. There exists a Lipschitz analytic function g in D which satisfies (4.2) and
vanishes on E ∪ {1}.

Proof. We claim that E satisfies the condition (K) in [8], that is

|I| . sup
z∈I

dist(z, E) ,

for all arcs I ⊂ T. If we assume the claim, then by Theorem 4 in [8] there exists an outer
function w1/2 in D such that

|w1/2(z)| ∼ dist(z, E)1/2 , |w′1/2(z)| . dist(z, E)−1/2 , z ∈ D .

If we set g1 = w2
1/2 then clearly,

(1− |z|) ≤ dist(z, E) ∼ |g1(z)| , |g′1(z)| = 2|w′1/2w1/2(z)| . 1 , z ∈ D ,

i.e. g1 is Lipschitz, vanishes on E and satisfies (4.2). Since 1 /∈ E it follows that g(z) =
(1− z)g1(z) has the properties required in the statement.
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To verify the claim, note first that since φ−1 is analytic and one-to-one in a neighborhood of
E1, it will suffice to verify the condition (K) for E1 and all intervals I ⊂ R. To this end, we
use the obvious inequality

(4.4) τ = sup
j≥1

∑
m>j(1− λm)λ0 · · ·λm−1

(1− λj)λ0 . . . λj−1

<
1

2
.

Indeed, ∑
m>j(1− λm)λ0 · · ·λm−1

(1− λj)λ0 . . . λj−1

<
λj

1− λj

(
1 +

∑
m>j+1

2−m

)
<

1

3
(1 + 2−2) .

In particular, (4.4) shows that if xα < xβ then there exists j ≥ 1 such that βj − αj = 1, and
αm = βm for m < j. Moreover, in this case we have that

(4.5)

∣∣∣∣xα + xβ
2

− xα′
∣∣∣∣ > k(xβ − xα) ,

for some k > 0 independent of α, α′, β. To see this note that the inequality holds with k = 1
2
,

when xα′ lies outside (xα, xβ). When xα′ lies inside this interval, with j given above we have
by (4.4)∣∣∣∣xα + xβ

2
− xα′

∣∣∣∣ > 1

2
(1− λj)λ0 · · ·λj−1 −

∑
m>j

(1− λm)λ0 · · ·λm−1

> (
1

2
− τ)(1− λj)λ0 · · ·λj−1

>
1
2
− τ

1 + τ
(xβ − xα) .

Finally, (4.5) immediately implies (K). If (a, b) is any interval and

dist(a,E1), dist(b, E1) >
1

3
(b− a) ,

then (K) holds with constant 1
3
. If

dist(a,E1), dist(b, E1) <
1

3
(b− a) ,

we can find xα, xβ ∈ E1 such that

|xα − a| , |xβ − b| <
1

3
(b− a),

and then
xα+xβ

2
∈ (a, b), and xβ − xα > 1

3
(b− a), so that the result follows from above.

�

Proof of Theorem 1.15. Assume the contrary. Fix a function g as in Lemma 4.3, this function
clearly belongs to A2(D), and consider the space Xg consisting of functions f ∈ A2(D) with

‖f‖ = ‖fg‖∞ + γ(f) <∞ .
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It is obviously a Banach space. By Lemma 4.1 (i) we have bf,g < ∞ for all f ∈ Xg, by
assumption this implies that TfT

∗
g is bounded on A2(D) whenever f ∈ Xg, and finally, by

Lemma 4.1 (ii) we obtain that δ(f) < ∞, f ∈ Xg. Since the space of functions u ∈ A2(D)
with δ(u) <∞ and norm given by u→ δ(u) is at its turn a Banach space, we can apply the
closed graph theorem to conclude that there exists c > 0 such that

(4.6) δ(f) ≤ c(‖fg‖∞ + γ(f)) ,

for all f ∈ Xg. We will show that this leads to a contradiction.
Recall that φ(z) = i1+z

1−z is the conformal map from the unit disc onto the upper half-plane.
With the notations preceding Lemma 4.3, D. Stegenga ([31], p. 136) has constructed a
sequence (fn) in A2(D) of the form

fn(z) = 2−n/2pn

2n∑
k=1

1

(φ(z)− znk)2
φ′(z) ,

where pn = λ0 . . . λn, Imznk < 0, with

(4.7) dist(znk, E1) = −Imznk ∼ pn

such that

(4.8) lim sup
n→∞

γ(fn) <∞ ,

(4.9) lim
n→∞

δ(fn) =∞ ,

(4.10) sup
z∈D
n∈N

2−n/2pn

2n∑
k=1

1

|φ(z)− znk|
<∞ .

A simple calculation gives

φ′(z)

φ(z)− znk
=

2i

(znk + i)(1− z)(z − φ−1(znk))
,

and by (4.7) there exist points ζnk ∈ E with

|φ−1(znk)− ζnk| ∼ |φ−1(znk)| − 1 = dist(φ−1(znk),T) .

Since g has the properties in Lemma 4.3,that is, it is Lipschitz and vanishes at 1, ζnk, it
follows immediately that ∣∣∣∣ g(z)φ′(z)

φ(z)− znk

∣∣∣∣ ≤ C ,

for some absolute constant C > 0, all k, n ∈ N with 1 ≤ k ≤ 2n, and all z ∈ D. From
(4.10) we have that fng are uniformly bounded in H∞. Thus by (4.8) we have that (fn)
is a bounded sequence in Xg, hence (4.9) and (4.6) yield a contradiction which proves the
theorem. �
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5. The class B∞ and improved estimates in terms of the Békollé constant

In our last section we include an application of the two weight result for the maximal
Bergman projection, namely we obtain sharp Békollé estimates by establishing sharp esti-
mates for the testing conditions (2.15) and (2.16). We provide sharper estimates than the
ones discussed by Pott and Reguera in [26].

5.1. The classes Bp and B∞. Following Békollé and Bonami [5], we say that a weight, i.e.,
a measurable positive function w, belongs to the class Bp for 1 < p <∞, if and only if

(5.1) Bp(w) := sup
I interval
I⊂T

(
1

|QI |

∫
QI

wdA

)(
1

|QI |

∫
QI

w1−p′dA

)p−1

<∞

The following result was proved in [26]:

Theorem 5.2. Let w ∈ B2 be a Bekollé weight with constant B2(w) and let P+
B be the positive

Bergman projection. Then

(5.3) ‖P+
B f‖L2(w) ≤ CB2(w)‖f‖L2(w),

with C independent of the weight w. Moreover, this result is sharp, in the sense that the
power of the Bekollé constant B2(w) cannot be improved.

However, in the following we will improve this result by replacing the B2 constant partially
by an appropriately defined B∞ constant.

Definition 5.4. We say that a weight w belongs to the class B∞, if and only if

(5.5) B∞(w) := sup
I interval
I⊂T

1

w(QI)

∫
QI

M(w1QI ) <∞,

where M stands for the Hardy-Littlewood maximal function over Carleson cubes.

This definition of B∞ is motivated by the version of the Muckenhoupt A∞ condition given
by Fujii in [9] and Wilson in [34–36]. This A∞ definition appears in the recent works of
Lerner [19], Hytönen and Pérez [14] and Hytönen and Lacey [13] among others, where it is
used to find sharp estimates in terms of the Muckenhoupt Ap and A∞ constants.

In particular, B∞ contains any of the classes Bp:

Proposition 5.6. Let w be a weight and 1 < p <∞. Then

B∞(w) ≤ Bp(w).

Proof. Let w ∈ Bp and recall that Bp(w) = Bp′(w
′)

1
p′−1 , where w′ = w1−p′ . Hence for any

Carleson cube QI ,∫
QI

M(1QIw) ≤
(∫

QI

M(1QIw)p
′
w′
)1/p′ (∫

QI

w

) 1
p

≤ ‖M(w·)‖Lp′ (w)→Lp′ (w′)w(QI)
1/p′w(QI)

1/p
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= ‖M‖Lp′ (w′)→Lp′ (w′)w(QI) ≤ Bp(w
′)

1
p′−1w(QI),

where we have used the estimate (4.7) from [26] for the maximal function in the last line. �

5.2. B2 −B∞ estimates. The main result in this section is the following:

Theorem 5.7. Let w ∈ B2 be a Bekollé weight with constant B2(w) and let P+
B be the positive

Bergman projection. Then

(5.8) ‖P+
B f‖L2(w) ≤ CB2(w)1/2(B∞(w)1/2 +B∞(w−1)1/2)‖f‖L2(w),

with C independent of the weight w.

Corollary 5.9. The same result holds for the Bergman projection PB.

The method of proof will be as follows. We will consider the dyadic operators P β and use
Theorem 2.14 to obtain the sharp bound in the Békollé constants, which will be independent
of the choice of the grid. An averaging operation will now yield the desired result.

The following lemma is known for Muckenhoupt A∞ weights in case that the collection
of cubes appearing in the sum is sparse, this can be found in [14]. In our case, we consider
Carleson cubes associated to a fixed dyadic grid Dβ. This is a sparse family of cubes on the
disc. The lemma reads as follows.

Lemma 5.10. Let σ ∈ B∞, then

(5.11)
∑

K:K⊂I
K∈Dβ

σ(QK) ≤ 2B∞(σ)σ(QI).

Proof. Given K ∈ Dβ, we denote the top-half of the Carleson cube QK by TK , that is,
TK := {reiθ : 1 − |K| ≤ r < 1 − |K|/2 and eiθ ∈ K}, and |K| stands for the normalized
length of the interval. Notice that, given I ∈ Dβ, the top halves TK where K ⊂ I and
K ∈ Dβ tile the whole Carleson cube QI .∑

K:K⊂I
K∈Dβ

σ(QK) =
∑

K:K⊂I
K∈Dβ

σ(QK)

|QK |
|QK |

≤ 2
∑

K:K⊂I
K∈Dβ

σ(QK)

|QK |
|TK |

≤ 2
∑

K:K⊂I
K∈Dβ

∫
TK

M(σ1QI )dm

≤ 2B∞(σ)σ(QI)

�

We turn to proving the desired bound for the two testing conditions.
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Proof of Theorem 5.7. We use Theorem 2.14 for the weights w and σ = w′ = wp
′−1. We only

have to show the appropriate bounds for the test function conditions, and we will only focus
on one of the conditions, as the study of the other is analogous. In what follows, let I ∈ Dβ,
all other intervals interfering in this proof also belong to Dβ . We want to prove

(5.12)
∥∥∥ ∑
K:K⊂I

〈w−11QI ,
1QK
|K|
〉1QK
|K|

∥∥∥2

L2(w)
. B2(w)B∞(w−1)w−1(QI),

where the implicit constant does not depend on the chosen grid Dβ or the weight w.

∥∥∥ ∑
K:K⊂I

〈w−11QI ,
1QK
|K|
〉1QK
|K|

∥∥∥2

L2(w)
=

∫
QI

∣∣∣∣∣ ∑
K:K⊂I

〈w−11QI ,
1QK
|K|
〉1QK
|K|

∣∣∣∣∣
2

wdA

=

∫
QI

∑
K:K⊂I

〈w−11QI ,
1QK
|K|
〉2 1QK
|K|2

wdA

+ 2

∫
QI

∑
K′:K′⊂I

∑
K:K⊂K′

〈w−11QI ,
1QK
|K|
〉〈w−11QI ,

1QK′
|K ′|
〉 1QK
|K||K ′|

wdA

:=D + 2OD,

where the terminology for D and OD comes from the diagonal and the off-diagonal. Let
us treat each term in turn.

D =
∑

K:K⊂I

w−1(QK)2

|K|2
w(QK)

|K|2

≤ B2(w)
∑

K:K⊂I

w−1(QK)

≤ B2(w)B∞(w−1),

where the last inequality follows from Lemma 5.10. The off-diagonal term is equally simple,

OD =
∑

K′:K′⊂I

∑
K:K⊂K′

w−1(QK′)

|K ′|
w−1(QK)

|K|
w(QK)

|K||K ′|

=
∑

K′:K′⊂I

w−1(QK′)
1

|K ′|2
∑

K:K⊂K′

w−1(QK)

|K|2
w(QK)

|K|2
|K|2

≤ B2(w)
∑

K′:K′⊂I

w−1(QK′)
1

|K ′|2
∑

K:K⊂K′
|K|2

≤ CB2(w)
∑

K′:K′⊂I

w−1(QK′)
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≤ 2CB2(w)B∞(w−1),

where in the second line we have multiplied and divided by |K|2 to use the Bekollé constant.
�
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