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Michael Schecter1,5, DimitriMGangardt2 andAlexKamenev3,4

1 Center forQuantumDevices andNiels Bohr International Academy,Niels Bohr Institute, University of Copenhagen,
DK-2100Copenhagen,Denmark

2 School of Physics andAstronomy,University of Birmingham, B15 2TT,UK
3 School of Physics andAstronomy,University ofMinnesota,Minneapolis,MN55455,USA
4 William I Fine Theoretical Physics Institute, University ofMinnesota,Minneapolis,MN55455,USA
5 Author towhomany correspondence should be addressed.

E-mail: schecter@nbi.ku.dk

Keywords:mobile impurity, 1Dquantum liquids, Bloch oscillations, ultracold atoms, superfluidity

Abstract
Weoverview themain features ofmobile impuritiesmoving in one-dimensional superfluid
backgrounds bymodeling it as amobile Josephson junction, which leads naturally to the periodic
dispersion of the impurity. The dissipation processes, such as radiative friction and quantum viscosity,
are shown to result from the interaction of the collective phase difference with the background
phonons.We develop amore realistic depletonmodel of an impurity-hole bound state that provides a
number of exact results interpolating between the semiclassical weakly interacting picture and the
strongly interacting Tonks–Girardeau regime.We also discuss the physics of a trapped impurity,
relevant to current experiments with ultra cold atoms.

1. Introduction

The motion of mobile impurities in superfluid environments is a fascinating subject with a long history.
The field first came to prominence in the late forties with experiments on 4He–3He mixtures. It was
noticed that the super flow through the supra-surface film does not involve He3, leading to a substantial
purification of 4He leaking out of the container [1]. The phenomenon was initially attributed to the
absence of superfluidity in 3He. Soon after, Landau and Pomeranchuk [2] realized that the effect has
actually nothing to do with the quantum statistics of the impurities, but rather with the fact that foreign
atoms cannot exchange energy and momentum with the superfluid fraction. Instead, the rare impurities
ought to contribute to the normal fluid fraction. The nature of their interactions with the normal fraction
was not elucidated in the initial 1948 short paper [2], and was dealt with in subsequent publications of
Landau and Khalatnikov [3, 4] and Khalatnikov and Zharkov [5]. The latter authors realized that at small
temperatures the dominant interaction process is two phonon scattering by 3He atoms, leading to impurity
diffusion and equilibration with the normal fraction. Since the scattering mechanism relies on the
absorption of thermal phonons, the diffusion coefficient is sharply divergent at small temperature, T, and
the corresponding linear in velocity, V, viscous friction force scales as ~F T Vfr

8 . The theory was further
developed in a number of influential papers [6–10] and verified experimentally through precision
measurements of the velocity and attenuation of sound [11]. The subject was revived in the seventies in the
context of the storage of cold neutrons in superfluid 4He [12–14].

Recently thefield has received growing attention due to advances in cold atom experiments. Through a
number of techniques it became possible to place various impurity atoms in Bose–Einstein condensates (BEC) of
alkali atoms,manipulate theirmutual scattering strength and apply forces selectively to the impurity atoms. The
Cambridge group [15] has usedmicrowave pulses toflip the hyperfine state of a few spatially localized atoms in
the BECofmagnetically levitated 87Rb, turning them intomobile impurities. The impurities, created in the
hyperfinemF=0 state, were then accelerated through the BECby the gravitational force, not compensated by
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themagnetic trap. The Innsbruck [16] andBonn [17] groups have placed 133Cs impurities in a BECof 87Rb, and
magnetically tuned theirmutual scattering lengthwith a Feshbach resonance. The Florence group [18] created
mixtures of 41K and 87Rb, andmanipulated the two components with species-selective optical potentials.
Another line of research [19–21] deals with inserting a single ion into a BECof neutral atoms using a linear Paul
trap to control the ion and study themutual ion–atom interaction. Although at themoment the ion
micromotion leads to a continuous depletion of BEC atoms from the trap [19, 21], this setup offers a potential
benefit in terms of easymanipulations with the help of electrostatic fields.

One of the great advantages of themodernultra cold atomic experiments is the control over their
dimensionality byplacing atoms into one, twoor three-dimensional optical lattices. In particular, it has become
possible to study impurity dynamics in a one-dimensional (1D) atomic background,where the transversemotion
is fully quantized andonly the lowest transverse sub-band is occupied by the atoms [15, 18, 22]. Thepeculiarity of
the 1Dsetup is that every impurity atomeffectively ‘cuts’ thehost liquid, creating an effective tunneling Josephson
junction (JJ)between the two superfluids.Unlike a conventional JJ, however, the impurity ismobile and is
characterized by its coordinate andmomentum, in addition to the Josephsonphase,Φ, across it. Aswe explain
below, the Josephsonphysics (and inparticular theperiodic dependence of energy onΦ) leads to a qualitative
change of the impurity dispersion relation,which goes far beyonda simplemass renormalization usually
considered inhigher dimensions. The actual energy-momentumrelation ( )E P n, of amobile impurity in a 1D
superfluidwith densityn is a periodic functionof the totalmomentumPwith theperiod pn2 . This periodicity is
due to the fact that in a systemof size LwithnLparticles, themomentum p p´ =( )nL L n2 2 maybe transferred
to the 1DGalilean invariant host liquidwith the energy cost p´ ( ) ( )nL L m2 22 , negligible in the  ¥L
limit (here andbelowwe set = 1andm is the atomicmass of the host superfluid). Therefore, the groundstate
of a large systemwhosemomentum is an integermultiple of pn2 corresponds to a super-flowing host and an
impurity at restwith respect to it.Wenote that these considerations are not applicable in dimensions larger
than one.

By following the dispersion curve ( )E P n, adiabatically through the application of a small external force F to
the impurity, one expects to see Bloch oscillationswith period pn F2 in the absence of any periodic lattice. The
mechanismbehind these oscillations, first predicted in [23], was attributed to the emergence of an effective
crystalline order of the background atoms, robust against thermalfluctuations for sufficiently low temperatures
aswell as phonon radiation for sufficiently small external forces.

Although the dynamics ofmobile impurities in 1D atomic condensates has attracted a lot of attention [23–
34], a systematic pedagogical exposition of the consequences of the abovementioned periodic dispersion is still
missing. This paper serves to fulfill this gap.Herewe investigate the dynamics ofmobile impurities in a 1D
quantum liquid, exploring similarities and differences with the Josephson physics. Our particular focus is on the
conditionswhere the Bloch oscillationsmay be observed. To this endwe consider the thermal friction (i.e. due to
the normal fraction) alongwith the acceleration induced phonon radiation losses.We also put a special
emphasis on the consequences of being close to exactly integrable points in the parameter space of impuritymass
and impurity-host interaction strength. An amazing consequence of dealingwithGalilean invariant 1D systems
is that a number of exact results are available even away from such integrable points.Wewill show below that the
dispersion relation ( )E P n, , a static quantity available numerically or analytically in a number of limiting cases,
determinesmany dynamic characteristics exactly, including those going beyond the linear response theory.
Finally, we apply our results obtained for translationally invariant systems to the trap geometry with an external
adiabatic potential.We give a number of estimates for systemswhose parameters are taken from recent
experiments [15, 18] aswell as their immediate extensions.

The paper is organized as follows: in section 2we illustrate themain ideas behind the physics of quantum
impuritieswith a simple, yet a non-trivial,model of amoving Josephson Junction (mJJ). In section 3we introduce
the coupling of an impurity to thebackgroundmodeled as an elasticmedium (phonons).Wediscuss the
mechanismof energy andmomentum losses inducedby such coupling andderive the expression for the
mobility. The simplemodel is then generalized to describe the impurity dynamics in any interacting quantum
liquid at the expense of introducing an additional coupling to densityfluctuations in section 4.We illustrate this
formalism in section5 byderiving our previous results for the impurity dynamics in aweakly interacting
background.We then consider thebackground consisting of impenetrable bosons (theTonks–Girardeau (TG)
gas)where the impurity becomes a heavypolaron.Wederive thefirstmain result of the paper for themobility
of heavy polarons in section6. The secondmain result corresponds to the description of impurities in a
harmonically trapped backgroundand is presented in section7.We conclude anddiscuss open questions in
section 8.
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2.Moving Josephson junctionmodel

The essential physics of amobile impurity ismost easily illustrated by a strongly repulsive impuritymoving in a
background ofweakly interacting bosons. It can bemodeled by aweak link located at the positionX separating
two condensates6. The phase differenceΦ between the two condensates, figure 1, gives rise to the Josephson term
in the energy

mF = - F +( ) ( )H nV Ncos , 1d c

The critical velocity, denoted byVc, is defined as themaximal slope of the dispersion ¶ ¶E P at fixed density n,
and depends on the impurity-background interaction. The last term in equation (1) takes into account the
number of particlesN depleted by the impurity. Herewe are working in the grand-canonical ensemble with the
chemical potential m » gn fixed by the background density n and interaction parameter g.

The phase dropΦ inevitably creates a small background supercurrent Fn mL.While the contribution of the
supercurrent to the total energy is of the order of L1 , its contribution to the totalmomentumP is independent
of the system size, and is given by Fn . The total energy of themJJ is thus the combination of the Josephson term,
equation (1) and the kinetic energy of the localized impurity

F = - F + + F( ) ( ) ( ) ( ) ( )


H P X P n U X H, ,
1

2
. 22

d

where = - M mN is the totalmass of the impurity, including themass ofN particles it depletes from its
vicinity.We have also included an external potentialU(X), e.g. of gravitational or optical origin, acting on the
impurity.

The phase dropΦ represents a collective coordinate characterizing the state of the impurity’s depletion
cloud. In equilibrium its value is determined from the requirement of theminimumof the total energy (2):

- F = F( ) ( )P n V sin . 3c

The physicalmeaning of this condition is thematching between the current I=nV of the background particles
movingwith velocity = - F( ) V P n acrossmJJ and the Josephson current FnV sinc . Equation (3) admits a
solution F( )P n, thatmay be substituted into theHamiltonian (2) to obtain the dispersion curve

F =( ( )) ( )H P P n E P n, , , of themJJ in the absence of the external potentialU. Using theminimumcondition
equation (3) onemay show that the velocity of the impurity satisfies

= - F = ¶ ¶( ) ( )V P n E P, 4

which defines the group velocity of the impurity dressed by the depletion cloud.
Onemay notice a close similarity of themobile impurityHamiltonian (2) and the SQUIDor phase qubit

[35]. In this analogy n2 plays the role of the inductance of the SQUID loop, while the dimensional ratio P/n
is a direct analog of the externalflux (in units of theflux quantum), permeating the loop. As in the case of the
SQUID, the thermodynamic quantities are periodic functions of the external fluxwith the period p2 , implying
the periodicity of the dispersion relation p+ =( ) ( )E P n n E P n2 , , , see figure 2. For example, in the case of a

Figure 1.Mobile impuritymodeled by amoving Josephson Junction. The interaction between the impurity and the host liquid creates
a distortion of the local density and phase fields f( ) ( )n x t x t, , , of the host.When the impurity is driven out of equilibrium it excites
phonons that propagate away at the sound velocity, and the phase drop F( )t becomes a dynamical quantity. The density and phase
profiles are displaced vertically for clarity and represent, from top to bottom, snapshots of thefields as time evolves.

6
According to the Bogoliubov–Mermin–Wagner theorem the true condensate is absent in one spatial dimension.Nevertheless, for our

purposes the existence of a local superfluid order is sufficient to define the phase difference across the impurity.
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strong repulsive impurity,V cc  , we have from equation (3): F »( )P n P n, and
» -( )E P n nV, c m+( )P n Ncos .

Periodicity of the impurity’s energy–momentum relation has dramatic consequences for its dynamics: if the
momentum is linearly increased P=Ft by an external force = -¶F UX , the velocity of the impurity does not
increase indefinitely but changes periodically, exhibiting Bloch oscillations with the period t p= n F2B ,
[23, 25]. This spectacular phenomenon is a close relative of the AC Josephson effect: under an applied constant
force (voltage), the impurity velocity (current) is an oscillatory function of time. Themechanism is that once the
time-dependent phase shift F( )t reachesπ, the systemundergoes a phase slip from p p - , which channels
momentum pn2 into the superfluid background flow, and reverses the direction of the impurity’smotion.

Another useful analogy is that of an impurity propagating in a periodic potential with the period -n 1 (this
would be the case if the host gas forms a rigid 1D crystal). The energy spectrumof the impurity in such a lattice
consists of Bloch bands periodic across the Brillouin zonewith thewidth pn2 . Despite the fact that the
background liquid is not actually a lattice, the groundstate energy of the liquidwith an impurity is nevertheless a
periodic function of the totalmomentum P, analogous to the lowest Bloch band in a periodic potential. The
difference is that in the liquid there is a continuumof gapless excitations above the groundstate ( )E P n, , which
are due to the presence of the phononicmodes. In the case of the rigid lattice, excited states atfixedmomentum
are separated by an energy gap, so the leading deviation fromadiabaticity in the presence of an external force is
given by exponentially weak Landau–Zener tunneling processes. The gaplessmodes of the superfluid
backgroundmodify the adiabatic picture of Bloch oscillations in amuchmore substantial way. To capture the
dynamics of a driven impurity wemust generalize the static picture to the situationwhereΦ is a dynamical
variable. This is achieved in the next section by introducing the coupling of the impurity to phonons.

Wemention that equation (3)may admit several distinct solutions for some range ofmomentum Pwhen the
impuritymassM exceeds a critical valueMc (i.e. for >V n 1c ). This corresponds tomultiplemetastable
minima of the function F( )H P, , which, for the case of a SQUID, represent trapped flux states in a systemwith
large inductance. From equations (2) and (3) one can see that for > n Vc there are two exactly degenerate
groundstates when themomentum is an oddmultiple of pn (these two states reflect the two distinct solutions
for pF =( )P n ). By changing themomentumP across such a point the relative position of the twominima
interchange, leading to a discontinuous jump of F( )P . This leads to a cusp in the dispersion relation E(P),
figure 2, which for bosonic gases (with >K 1, see below) is not smeared by quantumfluctuations for sufficiently
weak impurity-host coupling ( <G Gc), as wasfirst realized in [36]. This is consistent with the notion of critical
mass discussed above, since the critical couplingGc is dependent on the impuritymassM (and the criticalmass is
coupling dependent). The specific dependence ofGc on systemparameters (e.g.M)was not discussed in [36].
Since  >( )M G 0 0c isfinite, wefind thatGc=0when < ( )M M G 0c (i.e. the cusp is absent for any
>G 0). The criticalmass ( )M G 0c depends only on the Luttinger parameter of the gas, and diverges in the

limits K 1and  ¥K , where the cusp is known to be absent for any < ¥M .When it exists, the cusp leads
to qualitative changes in the dynamics of a driven impurity due to the ‘overshooting’ of the groundstate branch
of the dispersion, andwas discussed in [26].

Another remarkable phenomenon is themacroscopic quantum tunneling of phase between successive
minima of F( )H P, [37]. It leads to the possibility of an impurity, trapped in such ameta-stable state, to transfer
its energy andmomentum to the host and thus experience an effective friction force Ffr even at zero temperature.
Such a friction force appears to be a highly nonlinear function of the impurity velocity [38, 39]. Itmay seem to
contradict the notion, discussed in the introduction, that only the normal fraction exerts friction on the

Figure 2. Schematic dispersion relation for amobile impurity in a 1Dquantum liquid. Left panel: when the impuritymass is
subcritical <M Mc the dispersion is smooth, and the energy function F( )H P, has a uniqueminimumat F( )P . At low temperatures,
two-phonon scattering processes (red arrows) lead to energy andmomentum relaxation of the impurity. Right panel: for >M Mc the
groundstate develops singular cusps at odd integermultiples of pn, and the function F( )H P, acquiresmetastableminima (the
dashed lines in ( )E P n, represent localmaxima of F( )H P, ).

4
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impurity. The reason is that the condensate is, strictly speaking, absent in 1D even atT=0 due to long
wavelengthfluctuations of the phase.Moreover, once a heavy impurity reaches the lowestminimumof F( )H P,
itmoves indefinitely (super flows)with a small velocity up to p~ n M , without any friction atT=0. A light
impurity, <V n 1c , does not exhibitmetastableminima and is bound to relax to its only stableminimum

( )E P n, , where it does not experience anyT=0 friction, linear or nonlinear.
Another frequentmisconception associatedwith a lightmobile impurity, as opposed to a static impurity or a

tunneling barrier, is the interaction-induced renormalization of its tunneling transparency. Tomake an extreme
version of the argument, consider an impurity in a repulsively interacting Fermi gas. According toKane and
Fisher [40] the tunneling transparency renormalizes to zero in the limit of zero temperature, independent of the
initial bare value. This seemingly suggests that such an impenetrable impurity cannotmove and its dispersion
must beflat. Theflaw in this argument is that the Kane–Fisher renormalization is based on the p=k n2 2F

backscattering processes, which for afinitemass impurity are associatedwith the recoil energy
p= ( ) ( )E n M2 2R

2 . The renormalization thus terminates at this finite energy scale [41], leaving the tunneling
transparency and dispersion bandwidthfinite. As a result, afinitemass impurity has a non-flat ( pn2 periodic)
dispersion relation ( )E P n, even in a repulsive Fermi gas.

Below, we focus on the experimentallymost relevant case, where themass is subcritical and the dispersion is
a smooth periodic function ofmomentum,while F( )H P, has a unique stableminimumat F = F( )P n, . For
the case of impurities with a supercriticalmasswe refer the reader to [26].

3. Impurity-phonon coupling and dissipation

The static picture of the previous section needs to bemodified if the Josephson phaseΦ becomes time-
dependent. Since instanteneoous changes of the phase in the left/right condensates are impossible, onemust
take into account the generated gradients of the phasefield, i.e. local currents which, in turn, lead to the density
transport in the formof phononic excitations, as illustrated infigure 1.

For nonzero phononic fields, the impurity is subject to themodified local supercurrent. The Josephson
Hamiltonian (1) should bemodified by the tilting term

d= - F ( )H I , 5int

where d d d= -( ˙ ˙ )I N N 2L R is the current through the impurity, given by the rate of change of the excess
number of particles to the left, dNL, and to the right, dNR, of the impurity. Expressing these numbers via the
integral of the density field

òd d r
p
J= - = =

-¥
( ) ( ) ( )N N x t x X t, d

1
, , 6

X

L R

and using the standard bosonization definition [42] r J p= ¶x of thefield J ( )x t, , we obtain

p
J

p
J= - F = F( ) ˙ ( ) ( ) ( )H

t
X t t X t

1 d

d
,

1
, , 7int

where the full time derivative was omitted. Obviously, this term is only relevant for a time-dependent Josephson
phase F ¹˙ 0. Notice that it does not involve any coupling constants and thus represents a universal coupling of
the collective variableΦ to the phononic degrees of freedomdescribed by the field J ( )x t, and its canonical
conjugate superfluid phasefieldj ( )x t, . Their dynamics can be linearized near equilibrium, resulting in the
Luttinger liquidHamiltonian [42]

òp
J j= ¶ + ¶( ) ( ) ( )

⎡
⎣⎢

⎤
⎦⎥H

c
x

K
K

2
d

1
. 8x xph

2 2

Here p=K n mc is the Luttinger parameter, proportional to the compressibility of the background liquid. For
aweakly interacting superfluid K 1 , while for impenetrable bosonsK=1.

Wenow integrate out the phononic degrees of freedomusing theKeldysh technique [43] as explained in
[25]. As a result we obtain a quantumdissipative action, similar to that of the Caldeira–Leggettmodel [37]. The
dissipation arises naturally from the continuous spectrumof phononswith a constant density of states at small
energy, described by equation (8). This procedure results in a generically time non-local effective action for the
impurity degrees of freedomX(t) andP(t), coupled to the collective variable F( )t .

3.1. Zero-temperature dynamics andnonlinearmobility
Postponing a discussion of fluctuation effects until section 3.2, we focus here on the deterministic part of the
corresponding equations ofmotion, which are obtained by variation of the effective actionwith respect to the
‘quantum’ components [25] of F( )t andX(t) degrees of freedom. The phase variable exhibits over-damped
dynamics with the effective ‘friction’ coefficient pK 2 ,

5
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p
F = -

¶
¶F

˙ ( )K H

2
, 9

where theHamiltonianH is given by equation (2). If the initial phase drop is off-equilibrium, it will evolve
towards the valuewhichminimizesH by radiating away the excess phase difference in the formof phonons, see
figure 1. This results in an energy loss with the instantaneous rate

p
=

¶
¶F

F = - F˙ ˙ ( )W
H K

2
. 102

In addition to the energy loss, the radiation of phonons also leads to the loss ofmomentum, i.e. a radiation
friction force, Frad. The equation for themomentum for themobile impurity becomes

p
= + = -

¶
¶

- F˙ ˙ ( )P F F
U

X

K V

c2
. 11rad 2

2

Themain effects of the energy andmomentum losses are to renormalize the period of oscillations tB and to
introduce afinite drift velocityVD, [25]. The latter can be obtained from calculating the power radiated to the
phononic bath averaged over one period of oscillations and equating it to thework done by the external force:

òt p
= -á ñ = - Ft

t
˙ ( )FV W

K
t

1

2
d . 12D

B 0

2
B

B

Using F = ¶F ¶˙ ( ) ˙P P and »Ṗ F , we see that the drift velocity is proportional to the external force s=V FD .
The proportionality coefficient is the nonlinearmobilityσ, given by the integral over the Bloch oscillation period

òs
p p p

=
¶F
¶

»
p

( )⎜ ⎟⎛
⎝

⎞
⎠n

K

P
P

K

n

1

2 2
d

2
, 13

n

0

2 2

2

where the last approximate equality is obtained assuming that F » P n. This result can be interpreted as an
inverse resistance using the analogywith electrical current: in the co-moving frame the impurity experiences
current =I nVD and the power dissipated on the impurity should be supplied by the external force, =I R FV2

D,
hence s p= =R n K1 22 . It is exactly the electrical resistance of a clean Luttinger liquid [42], =R h e K2 , if
one uses units such that = = e 1 7.

By nomeans should equation (13) be interpreted in terms of linear response theory: the driftmotion of the
impurity is superimposedwith the nonlinear Bloch oscillations, see figure 3. Themodified period of the
oscillations can be calculated from the relation

òp t= = - á ñ
t

t˙ ( ) ( )n P t F F2 d . 14
0

B rad

B

B

Using sá ñ »tF F F crad
2 2 2

B
we obtain the renormalized period

t
p

=
- ( )

( )n

F F F

2 1

1
. 15B

max
2

Figure 3. Schematic velocity as a function of time for various forces listed in the legend ( F in units of =F nmc2max
2). As F increases,

the drift velocity and frequency of oscillations increases.

7
The inverse proportionality to the Luttinger parameter is consistentwith the fact that the ‘wire’ length is infinite and the effects of the ‘leads’

discussed in [61] are irrelevant in our case.
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This expression can be trusted only for small forces F Fmax , where the characteristic force Fmax is given by

s
= » ( )F

c
mc n2 . 16max

2

Beyond this characteristic force the drift velocity exceeds the speed of sound c and impurity emits Cherenkov
radiation of phonons, which dramatically increases its energy andmomentum losses. Since the Bloch oscillations
do not take place in this regime, we shall not discuss it here.

We note that for the experiment of [15], which used two hyperfine states of 87Rb for the impurities and
background gas, the coupling is rather strong ~mg n 7. In this case themobility is close to
s p p= »K n n2 1 22 2. The external force is provided by the gravitational field, which gives a drift velocity

~V c 8D . The gravitational force thus exceeds themaximal force p=F n m2max
2 3 by a factor of 8, and our low-

energy theory is inapplicable. The Bloch oscillations do not occur, and instead the impurities become supersonic
before exiting the gas.However, owing to the strong density dependence of Fmax , a gas twice as dense (or
sufficiently lighter, e.g. Li andNa)would provide amaximal force comparable to the gravitational one andBloch
oscillations become possible, see table 1. The crossover between strong andweak force at =F Fmax was studied
numerically and reported in the arXiv version of [28]. These results are qualitatively consistent with our
theoretical predictions.

3.2. Fluctuations
So farwe have considered the zero temperature dynamics of an accelerated impurity.We turn now to the finite
temperature regime and focus on the thermalfluctuations of the host liquid. In doing sowe shall assume that the
liquid is at thermal equilibriumwith temperatureT in the laboratory reference frame, and thus acts as a bath for
the impurity. In a generic (non-integrable) case one expects that an excited impurity should thermalize by losing
its excess energy andmomentum to the bath in the formof phonon emission.

The problem, however, is that due to the velocitymismatch, <V c, the emission of a single phonon is
energetically forbidden since w w-  <∣ ( ) ( )∣E P n E P c n, , (here± refers absorption of a right/leftmoving
phononwith energyω). The leading process of energy andmomentum exchange is therefore the two-phonon
process. In this case the impurity first absorbs a thermal phononwith energy w » T , bringing it to the virtual
state withmomentum wP c , and then emits aDoppler shifted phononwith the energy w w» 

c V

c V

 , see

figure 2.One notices that, while both processes happen at the same rate, there is a netmomentum loss between
them in the amount w w w- µ -- +( ) ( )c V c V2 2 . At small velocityV c , this implies a linear in velocity
thermal friction force

k= - ( ) ( )F T V 17fr

acting on the impurity.
The above considerations indicate that: (i) since the two-phonon process relies on thermal phonons, the

friction coefficient k ( )T is strongly temperature dependent and vanishes atT=0; (ii) the thermalization
process is not uni-directional, but is rather diffusive with a drift in themomentum space. Indeed, the same
procedure of integrating out the phonons, described in section 3, leads naturally to the additional stochastic
terms in the equations ofmotion. They originate from the parts of the action that are quadratic in the ‘quantum’

Keldysh components of the fields J ( )X t, andj ( )X t, , evaluated at the impurity coordinate. Thesefields can be
conveniently decomposed into two independent (chiral) auxiliary fields x( )t , whose equilibrium correlation
functions

Table 1.Maximal force and critical densities related to observing
Bloch oscillations of an impurity created in themF=0 hyperfine
state for various quantumgaseswith typical gas parameters. Top
row: ratio of themaximal force over the gravitational force assum-
ing a density of background particles m= -n 0.65 m 1 in the strong
coupling regime g » 7 (as used in [15] for Rb)where

»F n m8max
3 . At this density, Bloch oscillations are expected to

occur for Li andNa, corresponding to >F F 1max grav (bold
entries). Bottom row: critical density of various gases atfixed cou-
pling g = 7. For >n ncrit Bloch oscillations are expected to occur.

Li Na K Rb Cs

F Fmax grav 25 1.7 0.54 0.12 0.05

m -( )n mcrit
1 0.22 0.55 0.80 1.32 1.75
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x w x w w
w

á - ñ = 


( ) ( ) ( )K
T

coth
2

18

depend on theDoppler-shifted temperature = ( )T T V c1  . The corresponding equations ofmotions for
the phase F( )t andmomentum P(t) aremodified to become

p
x xF = -

¶
¶F

+ ++ -
˙ ( ) ( )K H

2
, 19

p
x x= - F + F -+ -

˙ ˙ ˙ ( ) ( )P F
K V

c c2

1
. 20

2

2

Notice that, since the impurity interacts with the liquid through the time dependent phase shift, equation (7), the
stochastic term in its equation ofmotion also comeswith themultiplicative Ḟ factor, understood in the sense of
Ito calculus. The friction force, due to the two-phonon processes discussed above,may be obtained from
equations (19) and (20) as follows.We solve equation (19) as a frequency (time-derivative) expansion as

p x x x xF = - + - + +¼G
+ -

G
+ -

˙ (˙ ˙ ) ( )K 2 ¨ ¨ ,
2 4

2

where pG = - ¶-
F( )K H1 2 , or according to equation (2),

pG » - K n2. Substituting this expansion into the last termof equation(20) and averaging over the noise
according to equation (18), one finds to the leading order inV/c

ò
p

x x x x
w
p

w
w

p
=

G
á ñ - á ñ -

G
= - G+ + - -

¥
[ ] ( )F

Kc c
T

V

cT c
T V

2
¨ ¨

4

d

2 sinh
2

2

15
. 21fr

2 2

0

4

2

3

2
2 4

As a result the friction coefficient in equation (17) is given by

k
p

= G( ) ( )T
c

T
2

15
. 22

3

2
2 4

TheT4 dependence of the friction coefficient in 1D, at low temperatures, was first found byCastro-Neto and
Fisher [41]. This result is a 1D generalization of 3DKhalatnikov’sT8 result [3–10], mentioned in the
Introduction.Wewill show below that, beyond the simplemodel discussed here, the amplitudeΓmay be
expressed exactly in terms of the impurity dispersion relation ( )E P n, . One can then check explicitly that for all
known exactly solvablemodels G = 0 [52], consistent with the idea that integrable systems do not thermalize.

Atfinite temperaturewe therefore have two distinct regimes: for k< = ( )F F T Vmin c Bloch oscillations do
not occur and after some initial acceleration the impurity attains a steady state with the drift velocity

k s= =( )V F T FD Kubo . In the low temperature regime considered here, the linear Kubomobility s sKubo 
is large, see table 2. In the range < <F F Fmin max , Bloch oscillations appearwith the renormalized period

t p= -n F F2B
2

min
2 , while the corresponding drift velocity is approximately given by

s s» +V F F F2D Kubo min
2 . As a result, the drift velocity is a non-monotonous function of the applied force with

a sharp localmaximum »V VD c at »F Fmin . Alternatively at afixed force, the drift velocity is a non-
monotonous function of temperature with amaximumattainedwhen k =( )T F Vc.

An additional consequence of the noise terms in equations (19) and (20) is dephasing of the oscillations even
at zero temperature due to quantum fluctuations. Using the last term in equation (20), together with F » P n,
we have

ò ò x xF ¢ ¢ + ¢ -+ -( ) ˙ ( ) ( ) ( )
⎡
⎣⎢

⎤
⎦⎥t

n
t P t

F

n
t

c
t

1
d

1
d . 23

t t

0 0
 

Table 2.Ratio of theminimal force over the gravitational force andmobi-
lities for various quantumgaseswith typical gas parameters.We assume
the impurity is created in a distinct hyperfine state of the gaswith the
impurity-gas scattering length differing from the gas–gas scattering length
by 10% (when they are equal, or if the background gas is in the Tonks–
Girardeau limit s= = ¥F 0,min Kubo due to integrability). In all cases we
have assumed a temperature =T mc0.5 2, density m= -n 0.65 m 1 and
coupling strength g = 7. Due to the closeness to integrability, the gravita-
tional force always greatly exceeds theminimal force, and gives rise to
Bloch oscillations if <F Fgrav max (see table 1).

Li Na K Rb Cs

´ -[ ]F F 10min grav
5 7.4 0.69 0.22 0.05 0.02

s m[ ]m2 2.4 2.4 2.4 2.4 2.4

s m ´[ ]m 10Kubo
2 5 1.5 1.5 1.5 1.5 1.5
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As a result, the oscillatory part of the noise-averaged velocity decays as a power law at long times m >t 1:

m
á ñ = + á F ñ = +

a
( ) ( )

( )
( )V t V V t V

V

t

Ft

n
sin sin , 24D c D

c

where a p= ( )( )K F F4 max
2 . The behavior of the impurity velocity is illustrated infigure 4. Atfinite

temperature the same calculation results in the exponential decay for the envelope of the Bloch oscillations:

á ñ » + p m
p

a( )( ) ( )
( )

V t V V Ft nsin T

TtD c sinh
, whichmay lead to complete blurring of Bloch oscillation phenom-

enon, in contrast to the power law dephasing atT=0.

4.Mobile impurity in a generic superfluid background: the depletonmodel

The phenomenology and the formalism, outlined above, are in noway restricted to themJJmodel. The generic
description is obtained by acknowledging that in addition to the phase F( )t there is another collective degree of
freedom,whichmay be chosen as the number of depleted particlesN(t). The presence of two slow collective
variables follows from the presence of two conservation laws:momentum and particle number. For a system
conditioned tofixed values ofΦ andN, all other degrees of freedom equilibrate quickly on the timescale m -1 to
form an optimal depletion cloud.On the other hand, changingΦ andN is only possible by channeling
momentum and particles into excitations of the liquid.When the time variation of F N, is slow (e.g. due to a
small external force), these excitations consist of soft phononswhosewavelength greatly exceed the size of the
depletion cloud ξ leading to the appearance of a fast time scale x c . This time scale, being comparedwith the
period of Bloch oscillations t p= n F2B , provides the upper bound on the external force F. This bound is
identical to the previously formulated condition <F Fmax andwe use such an adiabatic approach to develop an
analytically tractable theory for the low-energy impurity dynamics [25]. Recently this adiabatic approachwas
critisized in [30, 31, 33, 44], where the Bloch oscillationswere found to be absent for a sufficiently light impurity
andwhere, for a heavy impurity, the drift velocity was found to bemuch larger than the one predicted by the
linear law s=V FD .

This critiquewas based on the apparent lack of adiabaticity due to the absence of the energy gap to low-
energy excitations.We note here, however, that these excitations are phonons that travel quickly away from the
depleton and thus leave it in a state of local equilibrium, sufficient for using the concept of adiabaticity. In our
approach the adiabaticity (in the sense of depleton being close to its instantaneous ground-state) is assumed and
then proven self-consistently by calculating the energy andmomentum transferred to the host liquid, leading
naturally to the upper bound on the external force equation (16).

TheHamiltonian (2) is generalized to

mF =
- F
-

+ + + F( ) ( ) ( ) ( ) ( )H P X N
P n

M mN
U X N H N, , ,

1

2
, . 25

2

d

The quantity F( )H N,d is the so-called depleton energy and is constructed in such away that theminimization
of F( )H P N, , (withoutU(X))with respect to F N, forfixedmomentum P and density n yields the equilibrium
dispersion ( )E P n, of the impurity. Conversely, if the exact groundstate energy ( )E P n, is known, F( )P n, and

( )N P n, can be determined from the partial derivatives of ( )E P n, by solving the equations

Figure 4. Schematic noise-averaged velocity as a function of time including the effects of fluctuations. For <F Fmin the impurity
velocity saturates below the critical velocity and Bloch oscillations do not occur. For < <F F Fmin max Bloch oscillations occur, but are
attenuated in time due to dephasing, see equation (24).
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=
- F
-

=
¶
¶

= - F + ( )E

P

P n

M mN
V

E

n
V

mc

n
N; , 26

2

where the density dependence of the speed of sound = ( )c c n is implied. Thefirst of equations (26) is identical to
equation (4), while the second relation in equation (26) follows from taking the density partial derivative of
equation (25) in equilibrium, defined by ¶ = ¶ =FH H 0N .

The equilibrium values of F( ) ( )N P n P n, , , are also directly related to the edge exponents of the impurity
spectral function w( )A P, , which represents the probability for an impurity withmomentum P and energyω to
tunnel into the ground state of the liquid [36, 45–51]. Because ( )E P n, defines the lower edge of themany-body
spectrum in the presence of the impurity, we have w w wµ Q - - b( ) ( ( ))[ ( )] ( )A P E P n E P n, , , P n, , where
b p= F + -[( ) ( ) ]K N K2 2 2 12 2 . The power law behavior at the spectral threshold is a consequence of the
orthogonality catastrophe andwas discussed extensively in the review [51] in terms of the phonon scattering
phase shifts d p p p= - F K K N . These relations provide an interpretation of the phase dropΦ
and the number of depleted particlesN beyond the semiclassical regime ofweakly interacting bosons. Indeed,
the phase shifts d of the chiral low energy excitations across amoving impuritymay be defined for any
interaction strength.

The coupling, equation (7), must nowbe generalized to include the dynamics ofN. The formof the coupling
remains universal and is given by

p
J j= F +˙ ( ) ˙ ( ) ( )H X t N X t

1
, , . 27int

Togetherwith theHamiltonian in equation (25) the last equation defines the depletonmodel. Integrating out the
phononicmodes leads to the coupled dynamical equations for FP X N, , , . Their solution in the limit F 0
yields the exact nonlinearmobility

òs
p p
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For the thermal friction force onefinds

p
= - G

+
-

∣ ∣ ( )
⎛
⎝⎜

⎞
⎠⎟F

c

c V

c V
T V

2

15
. 29fr

3

2
2

2 2

2 2
4

It has the same form as equation (21)with the only difference that the phononic backscattering amplitudeΓ
depends on derivatives of both collective variables

G = -
¶F
¶

+ F
¶
¶

-
¶F
¶

+
¶
¶

( ) ( )⎜ ⎟⎛
⎝

⎞
⎠P n

c

M

m P

N

P
N

P

N

n
,

1
. 30

As discussed below, the backscattering amplitude and therefore the thermal friction force vanish for integrable
models [52].

It is remarkable that finding dynamical quantities, such asσ and sKubo, only requires knowledge of the
dispersion ( )E P n, , which is a purely thermodynamic quantity! The lattermay be evaluated in various limiting
cases. The previously consideredmJJmodel can be obtained by considering a particlemoving in aweakly
interacting bosonic gas by taking the limit of strong repulsion between the impurity and the atoms in the
background. The latter can bemodeled semiclassically by a Bose–Einstein condensate as we explain in the next
section. In this case the depleton parametersN andΦ are obtained directly from the solution of theGross–
Pitaevskii equation (GPE). In the case of a strongly interacting background, quantumfluctuations play a
dominant role and one has to use a full quantum-mechanical calculation for the dispersion ( )E P n, . This can be
done in the extremeTG limit which is equivalent to free fermions aswe show in section 6.

5. Impurity in aweakly interacting background

For the case of aweakly interacting background the energy andmomentumof the impurity can be determined
using the classical solution =( )X t Vt of the impurity’s coordinate. Here the the condensate wavefunction
acquires the travelingwave form Y = Y -( ) ( )x t x Vt, in the framemovingwith the impurity and satisfies the
GPE

d- ¶ Y = - ¶ Y - - Y Y + Y( ∣ ∣ ) ( ) ( )V
m

g n G xi
1

2
, 31x x

2 2

where g is the interaction coupling constant between the background atoms andG is the impurity-background
interaction constant. Due to the presence of the repulsive contact interaction term, themoving impurity creates
a depletion cloudwhich is effectively bound to it.
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The shape of the depletion cloud can be obtained by constructing a solution from two impurity free
solutions (i.e. thosewithG= 0) that satisfy the proper boundary conditions at location of the impurity:
Y¢ - Y¢ = Y+ -( ) ( ) ( )mG0 0 2 0 . This strategy is facilitated by the fact that for <V c the bareGPE (G= 0 in
equation (31)) admits a one-parameter family of soliton [53, 54] solutions:

Y = - -( ) ( )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟x n

V

c

V

c

x

l
i 1 tanh , 32s

2

2

where = --l m c V1 2 2 . The solitons can be visualized as a density dip having a core size l, as well as a
corresponding phase drop. By appropriatelymatching two solitonic solutions at the impurity location one solves
equation (31) [25] as illustrated infigure 5.

From the solution Y -( )x Vt the equilibrium values of the collective coordinates FN , can be computed
directly in terms of the couplingG and velocityV, as shown infigure 5. As expected, these values are in complete
agreementwith the thermodynamic definitions in equations (26). This can be shown by first solving for the
energy ( )E V n, andmomentum ( )P V n, as functions ofVusing the equations

ò= + ¶ Y + - Y + Y∣ ∣ ( ∣ ∣ ) ∣ ( )∣ ( )
⎡
⎣⎢

⎤
⎦⎥E MV x

m

g
n G2 d

1

2 2
0 , 33x

2 2 2 2 2

ò= + Y ¶ Y + F ( )*P MV x ni d . 34x

By inverting equation (34) onefinds ( )V P n, , which can be substituted into the energy to yield the dispersion
=( ( ) ) ( )E V P n n E P n, , , . The same procedure independently yields the equilibrium values of the collective

coordinates F( ) ( )N P n P n, , , as functions of the totalmomentum,which allows one to check that the
thermodynamic relations (26) are indeed fulfilled.

With the impurity dispersion now in hand, one can proceed to compute the nonlinearmobilityσ using
equation (28) and the backscattering amplitudeΓ given by (30). For aweak impurity, G c , themain
contribution to equation (28) comes from the regions ofmomentumwhere the velocity ismaximal » »V V cc ,
leading to

s » ( )
nmG

G c
1

, 1. 35

which is enhanced compared to equation (13) obtained formJJmodel. This enhancement ofmobility can be
attributed to the fact that in the present case the impurity is almost transparent to phononic excitations.

For calculation of the backscattering amplitudewe can concentrate onP∼0 region and use the
perturbation theory inG/c to obtain » F »N G g PG Mc, 2. Then equation (30) leads to the backscattering
amplitude

G = -( ) ( )⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟P n

mc

G

c

mG

Mg
,

1
1 , 36

2

vanishing identically for the integrable caseM=m,G=g.
In the case of a strongly repulsive impurity, G c , the critical velocity =V c G cc

2  is small andwe have
= F =N n mc P n2 , for essentially anymomentum P, due to the small bandwidth of the impurity dispersion.

The nonlinearmobility

Figure 5. Solution of equation (31) obtained bymatching two gray solitons. Left panel: the density profile. Right panel: the phase
profile. The collective variablesN andΦ are shown.
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is only slightly different from themJJ result equation (13). For the same reason the backscattering amplitude is
approximatelymomentum independent and given by

G = -( ) ( )⎜ ⎟⎛
⎝

⎞
⎠P n

mc

Mc

n
,

1
1 . 38

2

Assuming Mc n 1 leads to G = mc1 2 which coincides with the value pG = - K n2 derived in
section 3.2 for themJJmodel with = - = - mN n c2 .

6. Impurity in a Tonks–Girardeau gas

In the case of aweakly interacting bosonic gas, the formation of the depleton and its corresponding periodic
dispersion law can be understood as a consequence of the binding of a soliton to the impurity. The large number
of depleted particles µN K 1 allows one to develop a semiclassical description of this binding, inwhich the
density and phasefields can be described using themean-fieldGPE.

As the bosonic gas becomesmore strongly interacting the number ofmissing particles in the depletion cloud
diminishes and themean-field description becomes inappropriate: both the soliton and its binding to the
impuritymust be treated quantummechanically. As long as the impuritymass is sub-critical (see section 2) the
transition fromweak to strong coupling is a smooth crossover and the impurity-soliton bound state remains
intact. In this sectionwe illustrate this continuity by considering the extreme case of bosonswith infinite
repulsion, widely known as the TG gas [55].

Onemay represent the TG gas of nL hard-core bosons by free fermions withmomentum creation/
annihilation operators satisfying d=¢ ¢{ }†c c,p p pp . This leads to the followingHamiltonian

å å= -
¶
¶

+ + +ˆ ( )† †H
M X

p

m
c c

G

L
c c

1

2 2
e . 39

p
p p

p q
p p q

qX
2

2

2

,

i

Wenote that the abovemapping to free fermions is valid for interactions of the density–density type, whichwe
have assumed to be local in space.

To understand the low-energy properties of equation (39), consider a state of the systemwith total
momentum >P 0. If < º { }P P Mv kmin ,0 F F , where kF=πn and vF= kF/m the low energy states are those
wheremost of themomentum is carried by the impurity. Indeed, the impurity kinetic energy P M22 is less than
that of soft particle–hole excitations above the Fermi sea~v PF . On the other hand, for >P P0 the low energy
states are thosewhere hole excitations carry a significant fraction of the entiremomentumP. Themany-body
ground state adiabatically connects between these two limits, thus signaling strong impurity-hole hybridization
atPP0. Aswe showbelow, the strong hybridizationmanifests itself in the formation of an impurity-hole bound
state. This non-perturbative process is responsible for the smoothness of the impurity dispersion relation, which
in turn gives rise to Bloch oscillations under the application of an external force.

To illustrate this effect, it is sufficient to consider a subspace of the fullmany-body space containing a single
hole excitationwithmomentum < <k k0 2 F, in addition to the impurity withmomentumP−k. This
restriction is justified in the limit of weak coupling, G vF , where the number of particle–hole pairs created by
the impurity in the ground-state is suppressed. The basis vectors of this subspace are

ñ = Y ñ-
-∣ ∣ ( )( ) †k P c c; e , 40P k X

k k k
i

FSF F

where Y ñ∣ FS denotes the unperturbed Fermi sea ground-state. The corresponding Schrödinger equation
y yå á ¢ ñ ¢ =¢ ∣ ˆ ∣ ( ) ( )k P H k P k E k; ;k P P takes the formof a two-particle problemwith an attractive delta-interaction

(formally the attraction arises from anti-commuting the fermionic operators in the last term in equation (39)),
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Here = -( )E k v k k m2h F
2 is the hole kinetic energy (wemeasure E relative to NE 3F ). This problem admits a

unique bound-state solution, whose energy = +( )E E P nGb is found from the integral equation
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The resulting bound-state dispersion, shown infigure 6, is a smooth periodic function of the totalmomentum,
which is split from the scattering continuum + -( ) ( )E k P k M2h

2 by the gapΔ.
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The hard gap between the bound-state and the continuum is an artifact of restricting the particle in
equation (40) to be created right at the Fermimomentum kF. Allowing for slight deviations  +

† †c ck k pF F
, enlarges

theHilbert space to include, in addition to the bound-state, low energy,~v pF , particle–hole excitations. It is
well known [36, 47, 51] that interactions with these excitations transforms the bound-state into the quasi bound-
state with the power-law (instead of the pole) spectral function w( )A P, . These low energy excitations are also
responsible for radiation losses and thus for the finitemobilityσ. As long as the external force is sufficiently
small, <F Fmax , they do not destroy the Bloch oscillations associatedwith the impurity following the quasi
bound-state.

6.1. Results for the exactly integrablemodelM=m
It is worth noticing that the one-hole bound-state solution (42) is in quantitative agreementwith the available
exact results. For example, forM=m, the integrability of themodel given by equation (39) allows one to
determine the exact ground-state energy ( )E P n, [36]. It is defined implicitly through the integral relations
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where onemust eliminateΛ in the upper equation using L( )P from the lower equation.
In the vicinity of ~P kF, where the one-hole bound-state is expected to be valid, onefinds

 = - p -( ) ( )E P k E v

G

P k

mF F
2

3 2
F F

2

. Onemay indeed verify from equation (42) that

 + » ( ) ( )E P k nG E P kb F F . The effectivemass of the bound-state, = -
p

*M mG

v

3

2 F
, therefore agrees with

the exact result (up to perturbative corrections of ( ) G2 which are subleading for G vF ). This shows that the
single hole binding to the impurity is indeed the leading physical effect in theweak coupling limit.

At strong coupling the impurity becomes dressed bymultiple particle–hole pairs and the above one-hole
ansatz loses its quantitative applicability. Nevertheless, the concept of the depleton as the impurity-hole bound
state is expected to survive, in the sense that the impurity drags with it a depletion cloudwith precisely one
missing particle (i.e., a localized hole). This statement can bemade precise by studying the ground-state pair
correlation function á ñ( ) ( )n x n 0i , whichmeasures the fermion density a distance x away from the impurity (here
ni is the impurity density operator).

For the integrable caseM=m the pair correlation functionwas studied analytically byMcGuire [56], with
the strong coupling G vF result

á ñ = -( ) ( ) ( )
⎛
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⎞
⎠⎟n x n n

k x

k x
0 1

sin
. 44i

2
F

F
2 2

Integrating the deviation of equation (44) from the background density n over all space yields the number of
depleted particles ò= - á ñ =( ( ) ( ) )N n n x n 0 1

x i .

McGuire also studied the pair correlation function and ground-state energyE for arbitrary coupling, in the
case of zeromomentum P=0. It is interesting to note that fromMcGuire’s solution the number of depleted
particles, as defined through the pair correlation function ò - á ñ( ( ) ( ) )n n x n 0

x i , is identical to the

Figure 6.The bound-state Eb(P), equation (42), (thick black line) and scattering continuum +- ( )( ) E kP k

M h2

2
for a set of k (thin gray

lines) for the light impurity =M m 1 2 (a) and heavy impurity =M m 2 (b). In both cases =mG n 0.7.
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thermodynamic expression ¶mE (m = k

m2
F
2

is the chemical potential of the background fermions)

ò p
= ¶ = - á ñ =m ( ( ) ( ) ) ( )N E n n x n

G

v
0

2
arctan

2
. 45

x
i

F

This result substantiates our intuition thatN, as defined through the thermodynamic relation (26) (at P= 0 in
the present case), is indeed related to the real space depletion of particles in the vicinity of the impurity, despite
the absence of its semiclassical description. The corresponding lengthscale ξ of the depletion cloud is of course
just the Fermiwavelength, see equation (44), in agreementwith the general expectation x = mc1 [25]
where c= vF.

6.2. Exact nonlinearmobility
The above results confirm the idea that the ground-state properties of themodel can be understood in terms of
the impurity-hole bound state. The dynamic response of the bound-state can be describedwithin the depleton
framework of section 4, where it was discussed that the response to an external force F, can be characterized by
the purely thermodynamic quantity ( )E P n, . By computing the dispersion from the integral equation (43)we
may determine the exactmobility using equations (26) and (28). Atweak or strong coupling themobility is given
by

s
p

=

+

( )

⎧

⎨
⎪⎪

⎩
⎪⎪

n

v

G
v

G

G v

v

G
G v

1

2

4

ln
4

, ;

1
32

9
, .

46
2

F
2

2 F
F

F
2

2 F





These asymptotic formulae provide rather tight bounds on the exactmobility deduced numerically from the
integral equations (43), as shown infigure 7. One can arrive to equation (46) in the limit of strong coupling
G vF by expanding the functions F( ) ( ) ( )V P n N P n P n, , , , , to the leading order in vF/G. Substitution of
the resulting expressions into equation (28) gives the second line of equation (46).

In the limit of weak coupling the dispersion acquires amore complicated form: it consists of essentially
unperturbed parabolae centered atmomenta =P jk2 F for integer jwithweak anti-crossings at = +( )P j k2 1 F.
The value of the collective coordinates F( ) ( )N P n P n, , , thus remain close to zero at smallmomentum <P kF

and change rapidly to pF ( )N , 1 in the vicinity of kF in awindowofwidthmG. Themomentumderivatives
p¶ ¶ F( )N ,P P which enter themobility formula (28) are strongly peaked at = -P k mG 2F , with height

µ mG1 . Onemay thus approximate for G vF

òs »
¶
-

~
- -

~

-

( )
( )

( )
( )

P

n

N

V v nmG V k mG v

n

v

G v G

d

1

1 1

1 2

1

ln 4
, 47

k mG

k
P

2

2

2
F
2 2

F F
2

2
F
2

2
F

F

F

where - » -
p

( )V k mG v2 1 lnG

v

v

GF F 2

4
2

F

F can be obtained from second order perturbation theory, see e.g.

equation (2) of [36], and essentially coincides with »V vc F in this limit (at strong coupling =V v G2 3c F
2 ).

Figure 7.Nonlinearmobility for the equalmass impurity in a Tonks–Girardeau gas. The dashed lines are the asymptotic limits given
by equation (46).
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Keeping track of the numerical prefactor in equation (47) leads to thefirst line of equation (46). Deviations away
from the integrable pointM=m do not significantly affect equation (46) provided - <∣ ∣M m G v1 F. Aswe
shall see in the next section, however, the backscattering amplitude, and thus theKubomobility, is strongly
sensitive to the deviation from integrability.

6.3. Backscattering amplitude
As shownpreviously [23, 25] the backscattering amplitude vanishes at points of exact integrability. For the TG
gas this implies that G µ - M m1 when ~M m. Belowwe verify this behavior and obtain the exact prefactor
in various limiting cases where the analytic form is available.

In the limit of strong couplingwemay setN=1 and neglect terms proportional to µ*M G1 1 in
equation (30).We thenfind

p
G = - - ( )⎜ ⎟⎛

⎝
⎞
⎠mv

M

m
G v1 , . 48

F
2 F

This result is independent ofmomentum to leading order, owing to the essentially flat dispersionwith
bandwidthµ G1 .

At small coupling the backscattering amplitude acquires a complicatedmomentumdependence andwe
restrict ourselves to its behavior in the vicinity of the analytically accessible points =P k0, F. At small
momentumonemay resort to second order perturbation theory to obtain m» +( ) *E P n P M, 22

d with
p= = +( ) ( ( ) )*M P M G v0 1 F

2 and m = nGd . Substituting this dispersion into equation (30) gives

p
p

G = = - -( ) ( )⎜ ⎟
⎛
⎝⎜

⎞
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⎛
⎝

⎞
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mv

G

v

M

m
G v0

2
1 , . 49

F
2

F

2

F

At =P kF we instead use = »( )E P k k

MF 2
F
2

and neglect terms of order - =( ) ( )*M mN M P k 1F  . Recalling

that = µ -( )*M P k mG vF F, these approximations are seen to be valid for small deviations away from the
integrable point, - <∣ ∣M m G v1 1F  . Substituting them into equation (30) gives

p
G = = - -( ) ( )⎜ ⎟⎛

⎝
⎞
⎠P k

mv

M

m
G v

2
1 , . 50F

F
2 F

In all cases the backscattering amplitude scales as - M m1 , thus vanishing at the exactly integrable point
M=m. This implies the vanishing of the thermal viscosity and the divergence of theKubomobility sKubo at
finite temperature. In this case the response to even an infinitesimal external force is nonlinear: the velocity
exhibits Bloch oscillations superimposedwith the drift s=V FD .

7. Impurity in a trapped condensate

Wenow consider the dynamics of an impurity coupled to a 1Dquantum liquid confined by aweak harmonic
potential w=( )V x m x1

2
2 2 with w m , whereμ is the chemical potential of the 1D gas in the trap center. In this

case the spatial extent L of the gas ismuch larger than the healing length ξ and onemay use the local density
approximation (LDA), for which the local chemical potential is given by m m w= -( )x m x1

2
2 2 for

< ºm
w

∣ ∣x L
m

2
2 , while m = =( ) ( )x n x 0 for >∣ ∣x L. In the LDA, onefirst solves the homogeneous problem at

fixed density for the depleton dispersion law ( )E P n, and then substitutes in it the local density n(X) to obtain
the adiabatic depletonHamiltonian

w= +( ) ( ( )) ( )H P X E P n X M X, ,
1

2
. 51Itrap

2 2

Herewe introduced an additional harmonic potential, acting on the impurity only, as a control field that can
tune the system into different regimes of stability (this can be achieved using e.g. a species or state selective
potential).

In the limit w  ¥I the impurity is strongly localized in the trap center, while for w  0I it is instead
expelled from the center by the repulsive potential produced by the inhomogeneous density profile of the host
particles. The transition between these two regimes occurs at a critical value of the trapping frequency, which can
be deduced by expanding equation (51) in small deviations away from = =X P 0

w w» + - +( ) ( ) ( )
*

H P X
P

M
M mN X E,

2

1

2
, 52Itrap

2
2 2 2

0

wherewe used equation (26) and defined = ( )E E N0,0 (note that the inverse effectivemass = ¶*M E1 P
2 is

distinct from 1 used above, see e.g. equation (4)). From equation (52)we see that both the impuritymass and
trapping potential are renormalized by interactions with the background particles, and act tomake themotion
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of the impurity slower (generally >N 0 and >*M M nearP=0). The effective oscillation frequency of the
impurity is

w w
wW =

-
< ( )

*
M mN

M
. 53I

I

2 2

As one lowers wI , the oscillation frequencyΩ decreases and crosses zero at the critical value of the trapping
frequency

w w= ( )mN

M
. 54c

This signals the frequency at which the trap center near P=0 becomes an unstablemaximumand hereΩ
becomes purely imaginary (illustrated by the saddle point infigure 8 for w w<I c). Setting w = 0I for simplicity,
we see that in the limit of weak coupling, G c , the lifetime of the impurity initiated at rest in the trap center
can be estimated as W-Im 1using equation (53). This is appropriate because themaximal displacement from the

center on the separatrix orbit is already roughly the trap size: ~ ~
w

-pX LE E

mN
0

2 , ( m- ~pE E N0 at weak

coupling), thus allowing the impurity to reach the trap edge and escape.
At strong coupling, however, themaximal displacement on the separatrix ismuch smaller,

~X L c G L , owing to the small impurity bandwidth, m- ~p ( )E E N c G0 , see figure 8. This implies
that the impurity becomes ‘self-trapped’ in a high energymetastable state by the background gas, and can only
escape by releasing energy into phonon excitations. This dissipation allows the impurity to rapidly cross the
separatrix and enter the runningmomentumphase, accompanied by a drift towards the trap edge and small
amplitude Bloch oscillations in the velocity, shown by the thick red curve in figure 8.Here, Bloch oscillations are
driven by the gradient of the inhomogeneous density profile of the gas. The timescale and trajectory of the escape
can be estimated by noting that since the force is an increasing function of the displacement,

w= -¶ ~F H mN XX trap
2 , the displacement, in turn, satisfies the differential equation s= ~ w

m
Ẋ F X

2

(at

strong coupling s =
nmc

1

2
, and one can neglect the amplitude of velocity oscillations). This leads to the

exponential increase of the impurity displacement, µ w m( )X t e t2
, on the timescale m w ~ 1702 ms for the

parameters used in the experiment of [18], discussed below.Wenote that in the extreme limit  ¥G ( V 0c )
the impurity cannot escape, since the number of particles in the left and right condensates become conserved
quantities. This implies that the lifetime of the trapped impurity sharply increases beyond m w2 as a function of
coupling, once <mV L1c . For the system studied in [18] this yields a crossover coupling ( ~G g 100) that
greatly exceeds the experimental values, sowe do not pursue this special limit further.

The above results can be tested experimentally by localizing an impurity in the center of a trapped gas, and
measuring thewidth of the subsequent impurity distribution á ñ( )X t2 as a function of time. This was done in [18]
using a species selective dipole potential to initialize a 41K impurity in a gas ofmoderately interacting 87Rb atoms
( ~mg n). The ratio of the trapping frequencies was fixed at w w = 1.3I , while the K–Rb scattering lengthwas

Figure 8. Impurity trajectory in a trapped quantum liquid. The black curves represent schematic constant energy contours of
equation (51). Left panel: for w w>I c the adiabatic orbits are stable in the vicinity of the energyminimumat =( ) ( )X P, 0, 0 .
Impurity acceleration leads to phonon damping and thus a decreasing energy and oscillation amplitude (thick blue curve). Right
panel: for w w<I c (w = 0I shown) the orbits are instead stable near the energymaximum p=( ) ( )X P n, 0, . In the case of strong
coupling, themaximal displacement on the separatrix orbit ismuch smaller than the trap size L. In this case the impurity escapes by
radiating phonons in the runningmomentumphase (hereP is plottedmodulo pn2 ), where the velocity exhibits Bloch oscillations
plus drift (thick red curve).
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varied by amagnetic field using a Feshbach resonance. From equation (54)wefind a critical coupling strength
given by w w~ = ~N G g M m 1Ic c

2 2 , abovewhichwe have w w<I c and below w w>I c.
At stronger coupling, >G g , we thus expect the self-trapping behavior to become pronounced, which

appears consistent with the results of [18] showing a rapid decrease of the initial oscillation amplitude for >G g
(see figure 4 of [18]). The characteristic timescale for the increase of thewidth at the largest coupling in [18]
( =G g 30) is a factor of∼8 faster than m w2. Aside from a possible numerical prefactor (that goes beyond the
accuracy of the above discussion), this discrepancy could also be explained by the fact that the temperature in
[18] is rather large m~T , making the thermal dissipation channel highly relevant (the system is far from
integrability due to theK–Rbmass difference), thus giving a faster decay time. The high temperaturemakes a
quantitative comparisonwith [18]difficult since at weak coupling G g ,T is already substantially larger than
theK–Rb interaction energy nG T , while at strong coupling G c 1 the temperature is comparable to or
exceeds the impurity bandwidth >T nVc. Accessing lower temperatures, or perhaps closeness to integrability
(using e.g. internal hyperfine states of Rb)wouldmake a direct quantitative comparison to the above theoretical
results possible (see also [57–59] for different approaches to the problemof a quantum impurity in a
trapped gas).

8. Conclusions and open questions

In this paper we have provided an overview of the physics ofmobile impurities in 1Dquantum liquids using the
simplifiedmobile JJmodel and generalizing it to the phenomenological depletonmodel. Our description is based
on the existence of the equilibriumdispersion relation ( )E P n, , defined as the ground state of the combined
systemof an impurity and the superfluid background, at a givenmomentumP and background density n. This
dispersion curve can be understood in terms of the thermodynamics of a quantum liquidflowing past an
impurity.We have exploited the periodicity properties of the dispersion to predict the existence of adiabatic
Bloch oscillations in the absence of an underlying lattice. The interaction of themobile impurity with low energy
phononic excitations was described in terms of two slow collective variables, which allowed us to address, in
particular, the effects of dissipation and dephasing. Based on these results, wewere able to show that the
dynamics of impurities in uniform and trapped systems can be fully characterized.

Using our exact general results, we have providedmodel-specific calculations of the linear (Kubo) and
nonlinearmobilities in the tractable limits of aweakly interacting and a strongly interacting background. It is
interesting to see that both these limits lead to a clear physical picture of a depleton consisting of the repulsive
impurity binding to an effective ‘hole’ in the background. In this way the depleton properties, such as the
effectivemass, become strongly interaction andmomentumdependent.

A spinless particle interactingwith a scalar background represents the simplest case of amobile impurity.
Including internal degrees of freedomof the impurity and those of the background particles are expected to
change qualitatively the low energy physics, like in the case of spin 1/2 impuritymoving in the backgroundmade
of spin 1/2 fermions [60]. In this case the spin-spin interactions become singular at low energy due to the
formation of aKondo polaron and lead to themobility behaving as -T 2 at low temperatures. Extending these
studies to bosonic backgrounds and other values of spinmay result in interesting effects of entanglement and
strong correlationswhich can be probed experimentally by radio-frequency pulses.

Our descriptionwas limited to small applied forces and low temperatures, where the concept of remaining
close to the equilibrium zero-temperature dispersion remainsmeaningful. One open question is to understand
towhat extent our results apply to the cases of stronger forces or higher temperatures that are typical of current
experiments in ultracold atoms. Another open question is the physics of depleton formation relevant at initial
stages of dynamical experiments with impurities.
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