
 
 

University of Birmingham

Advanced non-alcoholic fatty liver disease and
adipose tissue fibrosis in patients with Alström
syndrome
Gathercole, Laura L; Hazlehurst, Jonathan M; Armstrong, Matthew J; Crowley, Rachel;
Boocock, Sarah; O'Reilly, Michael W; Round, Maria; Brown, Rachel; Bolton, Shaun; Cramb,
Robert; Newsome, Philip; Semple, Robert K; Paisey, Richard; Tomlinson, Jeremy W;
Geberhiwot, Tarekegn
DOI:
10.1111/liv.13163

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Gathercole, LL, Hazlehurst, JM, Armstrong, MJ, Crowley, R, Boocock, S, O'Reilly, MW, Round, M, Brown, R,
Bolton, S, Cramb, R, Newsome, P, Semple, RK, Paisey, R, Tomlinson, JW & Geberhiwot, T 2016, 'Advanced
non-alcoholic fatty liver disease and adipose tissue fibrosis in patients with Alström syndrome', Liver
International. https://doi.org/10.1111/liv.13163

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
This is the peer reviewed version of the following article: Advanced non-alcoholic fatty liver disease and adipose tissue fibrosis in patients
with Alström syndrome which has been published in final form at 10.1111/liv.13163. This article may be used for non-commercial purposes
in accordance with Wiley Terms and Conditions for Self-Archiving.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 20. Apr. 2024

https://doi.org/10.1111/liv.13163
https://doi.org/10.1111/liv.13163
https://birmingham.elsevierpure.com/en/publications/d39c656f-ae62-487b-8e94-931c10f2f67f


A
cc

ep
te

d
 A

rt
ic

le

This article has been accepted for publication and undergone full peer review but has not 
been through the copyediting, typesetting, pagination and proofreading process, which may 
lead to differences between this version and the Version of Record. Please cite this article as 
doi: 10.1111/liv.13163 
This article is protected by copyright. All rights reserved. 

Received Date : 07-Jan-2016 

Revised Date   : 07-Apr-2016 

Accepted Date : 23-Apr-2016 

Article type      : Original Articles 

 

 

Advanced non-alcoholic fatty liver disease and adipose tissue fibrosis in patients with 

Alström syndrome. 

Abbreviated title: Hepatic and adipose phenotype in Alström syndrome 

Laura L Gathercole*1, Jonathan M Hazlehurst*1, Matthew J Armstrong* 2, Rachel Crowley3, 

Sarah Boocock4, Michael W O’Reilly5, Maria Round6, Rachel Brown7, Shaun Bolton4, 

Robert Cramb4, Phillip N Newsome2, Robert K Semple8, Richard Paisey9, Jeremy W 

Tomlinson§1, Tarekegn Geberhiwot §4,5 

*Denotes equal contribution  

§ Corresponding authors and equal contribution 

Affiliations 

1. Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford 

Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK. 

2. Centre for Liver Research and NIHR Liver Biomedical Research Unit, University of 

Birmingham, Birmingham, UK. 

3. St Vincent’s Hospital, Elm Park, Merrion Rd, Dublin 4, Ireland and University 

College, Dublin, Ireland. 

4. Department of Endocrinology and Metabolism, University Hospitals Birmingham, 
Birmingham, UK. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 
5. Centre for Diabetes, Endocrinology and Metabolism, University of Birmingham, 

Birmingham, UK. 

6. Department of Gastroenterology, University Hospitals Birmingham, Birmingham, 

UK. 

7. Department of Pathology, University Hospital of Birmingham, Birmingham, UK. 

8. Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, 

Cambridge, UK. 

9. Diabetes Research Unit, Horizon Centre, Torbay Hospital NHS Foundation Trust, 

Torquay, UK. 

 

Corresponding Authors:   

Dr Tarekegn Geberhiwot, Department of Endocrinology, University Hospital of Birmingham, 

 Birmingham, UK. tarekegn.geberhiwot@uhb.nhs.uk Tel: 0121 371 3958 Fax: 01213716990  

Professor Jeremy W Tomlinson, Oxford Centre for Diabetes, Endocrinology and Metabolism, 

 University of Oxford, UK. jeremy.tomlinson@ocdem.ox.ac.uk Tel: 01865 857359 Fax: 

01865   857213  

 

Abbreviations: 

NAFLD :     non-alcoholic fatty liver disease  

AS:             Alström syndrome 

BMI:          body mass index  

NASH:       non-alcoholic steatohepatitis  

ELF:           Enhanced Liver Fibrosis  

LSE:           liver stiffness evaluations  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

PLAT:       plasminogen activator  

PLG:         plasminogen  

EDN1:      Endothelin-1 (EDN1)  

CTGF:      connective tissue growth factor  

TGF-β3:   transforming growth factor-β3 () 

BMP 7:   Bone morphogenetic protein 7 

CCL2 and CCL3: chemokine (C-C motif) ligand 2 and 3 

Competing interests:  The authors declare they have no competing interests. 

Disclosure summary: The authors have nothing to declare. This paper presents independent 

research and the views expressed are those of the author(s) and not necessarily those of the 

NHS, the NIHR or the Department of Health. 

 

Funding: 

This work was principally funded by Science Lottery Grant to ASUK and the NHS-England 
highly specialised service. Additional support was obtained from the Wellcome Trust 
(Clinical research Training fellowship to JMH ref. 104458/Z/14/Z) and through the NIHR 
Oxford Biomedical Research Centre. MOR was supported by Wellcome Trust Research 
fellowship (ref 099909). R.S. was supported by the Wellcome Trust [grant number 
WT098498] and the United Kingdom National Institute for Health Research (NIHR) 
Cambridge Biomedical Research Centre. PNN was supported by the National Institute For 
Health Research (NIHR) Birmingham Liver Biomedical Research Unit (BRU). 

Abstract 

Background and Aims: Alström syndrome (AS) is a recessive monogenic syndrome 

characterised by obesity, extreme insulin resistance and multi-organ fibrosis. Despite 

phenotypically being high risk of non-alcoholic fatty liver disease (NAFLD), there is a lack 

of data on the extent of fibrosis in the liver and its close links to adipose in patients with AS. 

Our aim is to characterise the hepatic and adipose phenotype in patients with AS. 

Methods: Observational cohort study with comprehensive assessment of metabolic liver 

phenotype including liver elastography (Fibroscan®), serum Enhanced Liver Fibrosis (ELF) 
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Panel and liver histology. In addition, abdominal adipose histology and gene expression was 

assessed. We recruited 30 patients from the UK national AS clinic. A subset of 6 patients 

underwent adipose biopsies which was compared with control tissue from 9 healthy 

participants. 

Results: Patients were overweight/obese (BMI 29.3 (25.95-34.05) kg/m2). 80% (24/30) were 

diabetic. 74% (20/27) had liver ultrasound scanning suggestive of NAFLD. As judged by the 

ELF panel, 96 % (24/25) were categorized as having fibrosis and 10/21 (48 %) had liver 

elastography consistent with advanced liver fibrosis/cirrhosis. In 7/8 selected cases, there was 

evidence of advanced NAFLD on liver histology. Adipose tissue histology showed marked 

fibrosis as well as disordered pro-inflammatory and fibrotic gene expression profiles. 

Conclusions: NAFLD and adipose dysfunction are common in patients with AS. The severity 

of liver disease in our cohort supports the need for screening of liver fibrosis in AS. 

Abstract Keywords: NAFLD, Alström syndrome, Adipocyte biology, Insulin resistance  

 

 

 

 

Introduction: 

Alström syndrome (AS) is a rare (1 per million) autosomal recessive [OMIM 203800] 

monogenic metabolic syndrome characterised by childhood onset obesity, extreme insulin 

resistance, diabetes, dyslipidaemia, hypertension and multi-organ fibrosis. Other features 

include retinal rod-cone dystrophy, hearing loss, and dilated cardio-myopathy [1]. Alström is 

Key points: 

• Alström Syndrome is a rare autosomal recessive monogenic ciliopathy 
• Liver fibrosis and adipose fibrosis are common in patients with Alström Syndrome 

• The liver fibrosis seen is more advanced than would be anticipated given the young 
age of the patients 

• The liver fibrosis in Alström Syndrome can be identified non-invasively 
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caused by mutations in ALMS1 gene which encodes an ubiquitously expressed centrosomal 

protein of the primary cilium [2,3]. Cilia are membrane-bound, microtubular projections 

emanating from the cell surface and found on almost all vertebrate cells. Cilia sense a variety 

of extracellular signals including hormones transducing them into intracellular signals [4]. 

ALMS1 protein is expressed in key metabolic tissue (liver, skeletal muscle, adipose and 

pancreas). In vitro, ALMS1 deletion is associated with hepatic lipid accumulation [5,6] and 

impaired adipocyte lipid storage [7,8]. Patients with AS have disordered lipid metabolism 

with elevated serum free fatty acids not suppressed by insulin [9] and have insulin resistance 

disproportionate to their BMI [10]. Additionally, we have described premature cardiovascular 

disease in patients with AS [11].  

NAFLD is a is a spectrum ranging from simple steatosis, through to non-alcoholic 

steatohepatitis (NASH), fibrosis and an increased risk of cirrhosis and hepatocellular 

carcinoma. NASH, including cirrhosis and hepatocellular carcinoma, are becoming 

increasingly prevalent mirroring the obesity epidemic [12]. The relationship between obesity 

and NASH is well recognised at a population level, but the mechanism linking obesity to the 

development of NASH remains mostly speculative, partly due to a lack of well-defined 

human disease models. Patients with lipodystrophy, where mutations in several genes result 

in marked loss of adipose tissue mass and perturbed adipocyte function, develop profound 

insulin resistance and accelerated liver disease [13]. These severe hepatic consequences of 

frank anatomical deficiency of adipose tissue have been conceptually linked to the 

consequences of obesity by the notion of "adipose expandability" [14].  It follows that the 

ability of adipose tissue to store excess energy is finite, and when this limit is reached, 

whether at low absolute levels in lipodystrophy or at high absolute levels as in common 

obesity, lipotoxicity of distant organs results. Plausibly the adipose tissue dysfunction seen in 
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AS may contribute to the liver phenotype although as ALMS1 is expressed within the liver 

and adipose it may also be via a direct effect of ALMS1 mutation within the liver. 

Case reports and series [1,15–17] as well as our experience within the national AS clinic, 

reveals unexpectedly high incidence of liver cirrhosis and associated morbidity at a young 

age. We have hypothesised that accelerated NAFLD in AS may relate to extreme insulin 

resistance and be driven (at least in part) by the inability of adipose tissue to provide a 

healthy adipose buffer. We have therefore undertaken the most detailed metabolic 

phenotyping of patients with AS published to date, and performed in-depth analysis of 

metabolic liver disease, incorporating adipose tissue morphology and gene expression 

profiles.  

 

Patients and Methods 

Patients and volunteers 

Patients with AS were recruited from the UK National centre for AS service, based at Queen 

Elizabeth Hospital, Birmingham, UK. The diagnosis of AS was confirmed on the basis of 

clinical features and genetic sequencing of ALMS1 gene (Supplementary table S1). 

Informed consent was obtained and the study protocol conforms to the ethical guidelines of 

the 1975 Declaration of Helsinki as reflected in ethical approval by the Cornwall and 

Plymouth NRES (UKCRN 9044, REC approval 10/H0203/33). Data collected included 

patient demographics anthropometric measurements including body mass index (BMI) and 

blood pressure. Clinical phenotypes were recorded as well as details of diabetes status and 

management. A subset of patients consented for adipose tissue biopsy to examine the 

morphology of the adipose tissue and the expression of profibrotic genes. Control adipose 
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tissue biopsies were taken from healthy individuals with ethical approval from West 

Midlands-Edgbaston NRES (LREC: 12/WM/0206). The liver biopsies included in this study 

were obtained for clinical reasons. 

Serum analysis 

Liver biochemistry, electrolytes, urea, creatinine, cholesterol, triglycerides, glycated 

haemoglobin, and full blood counts were measured using standard laboratory methods 

(Roche Modular system, Roche Ltd, Lewis, UK). Blood tests were taken in the non-fasting 

state. 

Liver fibrosis 

Patients underwent an abdominal ultrasound to looking for hepatic steatosis and for structural 

abnormalities associated with more advanced liver disease (splenomegaly, irregular portal 

vein blood flow and an irregular or nodular liver). Serum samples from AS patients were 

analysed for the Enhanced Liver Fibrosis panel (ELF), a well validated non-invasive 

biomarker to identify fibrotic liver disease [18].  Transient elastography was performed using 

Fibroscan® (Echosens, France). Only valid liver stiffness evaluations (LSEs) were recorded 

as per manufacturers guidance (10 readings, IQR <30% of the median LSE, success rate 

>60%).  The cut-off of >7.9kPa was chosen as predictive for fibrosis as this has been shown 

to correlate well with histological findings in NAFLD [19]. 

Histological analysis of liver and adipose tissues 

Liver histology was available for retrospective, review of the diagnosis, fibrosis stage 

(Kleiner) and NAFLD Activity Score (NAS) in 5 Alström syndrome patients and an 

additional 3 more histology reports were available for analysis. Liver biopsies were clinically 

indicated. 
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Six (20%) patients with AS and 9 controls had an abdominal subcutaneous adipose tissue 

biopsy performed under local anesthetic (1-2mL of 1% lidocaine), to obtain approximately 

250-500mg of adipose tissue. The patients with AS who had adipose tissue biopsies were 

representative of the cohort as a whole (Supplementary table 2). The samples were divided 

into two and either placed in RNALater® (Ambion Inc., Austin, TX, USA) (initially for 24h 

at room temperature and then at -20ºC) for subsequent gene expression analysis or placed 

into formalin for histological analysis.  

Adipose tissue histology and gene expression  

Adipose biopsies that were formalin-fixed were embedded in paraffin and cut at a thickness 

of 4µm on a Leica RM2235 microtome (Leica, Milton Keynes, UK) and stained with H&E 

and Van Gieson's to assess fibrosis.   

RNA was prepared using RNeasy Lipid Tissue (QIAGEN). cDNA was generated from the 

RNA (QIAGEN RT² First Strand Kit) and expression of profibrotic genes was assessed using 

real-time reverse transcription array (RT² Profiler™ Arrays: Human fibrosis). 

Statistical analysis 

Unless otherwise stated data expressed is median (interquartile range). Gene expression data 

were obtained as Ct values (Ct is the cycle number at which logarithmic PCR plots cross a 

calculated threshold line) and used to determine ΔCt values [ΔCt = (Ct of the target gene) − 

(Ct of the housekeeping gene)]. Fold change was calculated as 2^ -ΔΔCt [ΔΔCt = (ΔCt of the 

control group) − (ΔCt of the patient group)]. Gene expression was analysed using available 

online software (http://www.sabiosciences.com/pcrarraydataanalysis.php). 
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Results 

Demographic, genetic and metabolic characteristics 

Demographic, anthropometric and metabolic data are presented in Table 1 (mutation analysis 

Supplementary Table 1). Patients were predominantly male 70% (21/30) with a median age 

of 24 (21.5-37) years and a BMI of 29.3 (25.95-34.05) kg/m2. The diabetes prevalence within 

the cohort was 80% with the duration of diabetes 11 (7.5-14.75) years. The prevalence of 

dyslipidaemia was high (total cholesterol 4.95 (4.2-6.3) mmol/L; high density lipoprotein 

cholesterol 0.89 (0.75-1.06) mmol/L; mean triglycerides 3.25 (2.1-4.75) mmol/ L). C-peptide 

to glucose ratios were elevated consistent with the anticipated insulin resistance and 

preserved β-cell function (4.72 (2.67-8.75) (ng/ml)/(mg/dl)*100).  

Hepatic phenotype 

Hepatic phenotypic data for individual patients is provided in Table 2 with histology 

presented in Figure 1 and Table 3.  Median AST and ALT 32 (26-44) and 50 (33-76) IU/ L, 

respectively. 27/30 patients underwent abdominal ultrasound scanning. 20 of 27 (74%) had 

either an echobright liver consistent with hepatic steatosis or features suggestive of more 

advanced disease; in the absence of excess alcohol intake. Of these, 6 patients had 

splenomegaly (>13.5 cm) and 6 had ultrasound features suggestive of advanced fibrosis 

(coarse echotexture, irregular contour). The Enhanced Liver Fibrosis panel was performed in 

25 patients, of whom 96 % were categorized as having either moderate or severe fibrosis. 21 

patients underwent hepatic elastography (Fibroscan®, Echosens, France) with a valid liver 

stiffness evaluations (LSE), 48% (10/21) had a LSE of ≥7.9 kPa suggestive of hepatic 

fibrosis [20]. 

Formal histological analysis was available in 5 patients (17% study subjects) including the 

Kleiner fibrosis score and NAFLD activity score (Table 3). Additionally 2 post mortems and 
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1 liver biopsy report were available for inclusion although the tissue was not available for 

central reporting with Kleiner fibrosis score. These 2 post mortems confirmed cirrhosis of the 

liver with varices in these patients and the biopsy showed extensive fibrosis. In addition, 

subject 10 who is 19 years old had a liver biopsy at the age of 8 with extensive steatohepatitis 

predating diabetes by 9 years, indicating early onset severe NAFLD. 

Adipose tissue gene expression and histology 

The sub-group of patients who underwent adipose tissue biopsy (n=6, male/female=4/2) were 

representative of the AS cohort (Supplementary Table S2). The control volunteers (n=9) 

were exclusively female but were BMI- and age-matched to the patients. 

Histology 

Adipose tissue architecture and morphology were disrupted in patients with AS. Throughout 

the biopsies, there was extensive fibrosis evident on H & E staining (Figure 2b.) and 

confirmed using a Van Gieson stain (Figure 2c).  

Gene expression 

The abnormal adipose histology was reflected in the pattern of gene expression. The 

expression of multiple groups of genes involved in fibrosis was altered (Figure 2d). Genes 

important for fibrin degradation were reduced including tissue plasminogen activator (PLAT) 

and plasminogen (PLG). The expression of pro-inflammatory cytokines varied including 

reduction in IL-4 and IL-13 that are involved in promoting a pro-inflammatory macrophage 

population, as well as reductions in Endothelin-1 (EDN1) and connective tissue growth factor 

(CTGF) (fibroblast/myofibroblast activators). Furthermore, mRNA expression of 

transforming growth factor-β3 (TGF-β3) was also decreased. In contrast, the expression of 
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the genes encoding the chemotactic proteins, CCL2 and CCL3 (chemokine (C-C motif) 

ligand 2 and 3) increased.  

 

Discussion  

We have carried out the largest and most detailed metabolic and hepatic phenotypic 

description of patients with AS to date. Our study highlights that patients with AS are at an 

increased risk of advanced NAFLD and cirrhosis, which seems disproportionate to age, BMI 

and duration of diabetes. Our results indicate that their extreme insulin resistance and its 

attendant complications such as advanced NAFLD and cardiovascular events occur at a very 

young age in the presence of disorganised and dysfunctional adipocytes.  

Consistent with previous data we have observed high levels of obesity and insulin resistance 

in AS patients. There are similarities between the clinical and biochemical profiles of 

individuals with AS and those with common obesity [1]. In contrast to common obesity, 

patients with AS invariably have childhood onset obesity, severe insulin resistance and very 

early occurrence of coronary heart disease before the age of 40 [11]. 

NAFLD ranges from relatively benign steatosis to cirrhosis. Our data revealed that a large 

proportion of patients with AS have evidence of NAFLD and advanced fibrosis at an early 

age. This supports published case reports and series that reveal unexpectedly high incidence 

of liver cirrhosis and associated mortality in Alström patients [1,15,16,21,22]. Our data, 

supports the need for early screening of liver fibrosis in patients with AS. Due to the rarity of 

the condition it is very difficult to validate the use of non-invasive markers of fibrosis in this 

setting. However, given the consistent accuracy and reproducibility of liver elastography 

(Fibroscan) in other liver diseases, we would advocate its use in AS to identify those in need 
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of closer monitoring (i.e. for portal hypertension, liver cancer) and intensive metabolic 

optimisation. 

Accelerated liver disease has also been reported in patients with lipodystrophies [13], and 

indeed this has been reported to be a major contributor to premature mortality in these 

disorders.  Like AS lipodystrophies are characterized by severe dyslipidaemic insulin 

resistance with attendant complications, and are exquisitely sensitive to variations in caloric 

and fat intake [23]. In contrast to AS, lipodystrophies are defined by partial or complete 

absence of adipose tissue, and often, though not always, feature low levels of adipocyte-

derived hormones such as leptin. Lipodystrophies have thus been cited as monogenic 

evidence of the "adipose expandability" hypothesis [13,14,24]. Importantly, in some 

lipodystrophies, severe NAFLD arises even though the functional defect is restricted to 

adipose tissue, proving that NAFLD is not necessarily a liver autonomous process. 

Unlike lipodystrophies, AS has been reported to feature excess obesity with abundant adipose 

tissue. It is plausible, however, that an adipose autonomous pro-fibrotic tendency in AS leads 

to a state of "relative" adipose failure more akin to the metabolic disease seen at high levels 

of "common" obesity.  In keeping with this, patients with AS, like "common" obesity 

patients, can successfully ameliorate metabolic syndrome with lifestyle changes to offload 

adipose tissue [23]. The histological studies we report in a subset of AS patients may provide 

tissue-level support for this hypothesis: The increase in adipose tissue fibrosis may impair 

adipose lipid storage, increasing the likelihood of ‘spill-over’. This is supported by increasing 

evidence of the adverse impact of adipose tissue fibrosis on metabolic flexibility [25], and 

recently published data suggest that adipose tissue fibrosis contributes to hepatic steatosis 

[26]. One example of this in a model organism is afforded by collagen VI-null ob/ob mice 

where reduced adipose tissue extracellular matrix permitted increased adipose depot size and 
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adipocyte hypertrophy in response to high fat diet, and conferred metabolic protection even 

in the face of hyperphagia driven by leptin deficiency [25]. 

The pattern of gene expression that we observed in the adipose tissue was complex although 

several of the altered genes have been implicated in the pathogenesis of fibrosis, adipose 

dysfunction and global metabolic homeostasis.  The TGF-β / BMP7 pathway is an important 

regulator of fibrogenesis and we observed decreased expression of TGF-β3 and BMP7 in 

adipose tissue from AS patients. BMP7 inhibits fibrogenesis [27] and, although TGF-βs are 

predominantly profibrotic, TGF-β3 supports tissue repair and limits scar formation [28] . 

BMP7 also has metabolic effects on the adipose tissue driving adipogenesis in mesenchymal 

stem cells [29] and increasing mitochondrial activity and fatty acid oxidation in brown 

adipose tissue [30]. Additionally, it is an anorectic factor with a decrease in food intake [31] 

as well as increased energy expenditure [32] contributing to weight loss in mice with 

increased BMP7. 

CCL2, whose expression was increased, has been implicated in steatohepatitis and metabolic 

dysfunction. CCL2 null mice have reduced hepatic fibrosis and markers of oxidative stress on 

a methionine/choline-deficient diet [33]. CCL2 overexpression leads to adipose inflammation 

and macrophage accumulation, systemic insulin resistance and hepatic steatosis [34].  

The precise role of ALMS1 in adipocytes is not fully understood with expression falling early 

in differentiation yet unchanged by differentiation modulating agents [35]. Knockdown 

experiments have shown that reduced ALMS1 expression decreases adipogenesis with 

preserved insulin action [8]. ALMS1 knockout mice gain weight rapidly on an obesogenic 

diet (6 weeks) with adipose tissue mass expansion. However, over time, adipose tissue mass 

fails to expand further, contrasting with observations in wild type animals, and increasing 

body weight is driven by increased hepatic lipid loading [6]. ALMS1 has also been shown to 
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regulate fibroblast function. In dermal fibroblasts derived from patients with AS, extracellular 

matrix production including collagen production was increased and the cells resisted 

apoptosis [36]. 

Given the available pre-clinical data the adipose phenotype that we have characterized may 

represent a combination of effects both on adipocyte development, but also modification of 

the inflammatory and fibrotic response. The net effect is likely to be an impaired ability of 

adipocytes to effectively store lipid that may then be delivered to the liver to fuel the 

development of advanced NAFLD. 

There are several limitations of the present study.  Firstly, although our single-centre national 

service is the largest centre in the world, the ultra-rare nature of the syndrome led to the small 

numbers of study subjects precluded the ability to analyse clinical variables that may predict 

NAFLD progression to fibrosis within AS (i.e. multi-variate analysis). Although as in our 

cohort 28/29 (96.6%) patients had biallelic nonsense or frameshift mutations we have not 

found evidence that site of mutation dictates the extent of liver disease. Secondly, as this is a 

cross-sectional study not all patients’ data is complete. However, as we were able to 

undertake several indices (biomarkers, transient elastography and histology) to assess the 

nature of NAFLD, we are able to offset missing variables. Thirdly, the control adipose 

biopsies were taken from female volunteers, however they were age and BMI matched. 

Finally, there is growing interest in genetic variants associated with NAFLD and in particular 

in patatin like phospholipase domain containing 3 (PNPLA3) which is associated not only 

with hepatic steatosis but in progression to fibrosis [37]. Additional genetic tests were beyond 

the scope of this study and would not alter the management of our patients who develop liver 

fibrosis at a much younger age than those seen in genome wide association studies. In 

general, its strengths lie: a) in the coherence of the patient group for an extremely rare 
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monogenic metabolic disease; b) the in-depth characterisation of NAFLD and c) the link with 

adipose tissue structural and gene expression study. 

In conclusion, our study highlight the importance of detailed assessment of the liver in 

patients with AS, as many harbour asymptomatic advanced fibrotic disease. This may have 

relevance to other related ciliopathies including Bardet Biedl syndrome where similar 

mechanisms may operate [38]. It is possible that adipose tissue dysfunction is an important 

contributor to the severe NAFLD that we have described, but a causal link cannot be 

conclusively demonstrated from our cohort. Further studies are warranted to define the 

precise molecular pathways that are responsible for these observations in both liver and 

adipose tissue, and this may ultimately lead to the identification of regulatory pathways and 

novel therapeutic targets for the treatment of NAFLD.  
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Figure legends 

Figure 1. Liver histology from a patient with Alström syndrome Representative histology 

is shown for patient 15. A. 200 x magnification image of H&E stain showing macrovesicular 

steatosis and inflammation, inset panel is staining for cytokeratin. B. 200 x magnification 

image of Sirius Red stain. 

Figure 2. Abdominal subcutaneous adipose tissue gene expression is deregulated in 

patients with Alström syndrome (n=6). Representative histological sections are presented 

in panels A-C (A. Control adipose H & E staining, B. Alström syndrome adipose H & E 

staining, C.  Alström syndrome adipose Van Gieson staining D.) gene expression in panel E. 

(PLG=plasmingogen, PLAT=tissue plasminogen activator, ILIα= interleukin 1α, 

IL4=interleukin 4, IL13=interleukin 13, IL13RA2=interlukin 13 receptor α 2, CCL2= 

chemokine ligand 2, CCL3= chemokine ligand 3, CCL11=chemokine ligand 11, 

IFNϒ=intergeron ϒ, EDN1= endothelin 1, CTGF=connective tissue growth factor, MMP-1= 

matrix metallopeptidase 1, MMP-3= matrix metallopeptidase 3, BMP7= bone morphogenetic 
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protein 7, TGF-β3= transforming growth factor β 3, LTBP=latent transforming browth factor 

β binding protein 1, INHBE=inhibin β E, VEGFA=vascular endothelial growth factor A). 

Table 1. The demographic and metabolic characteristics of 30 patients with Alström 

syndrome (BMI=body mass index; HbA1c=glycosylated haemoglobin; BP=blood pressure; 

HDL=high density lipoprotein cholesterol) 

Table 2. The hepatic phenotype of 30 patients with Alström Syndrome. (M=male; 

F=female; N=no; Y=yes; Spleen=spleen enlarged; AST= aspartate aminotransferase; 

ALT=alanine aminotransferase; Plts=platelets; ELF=Enhanced liver fibrosis panel; None=not 

suggestive of fibrosis; Mod=predictive of moderate fibrosis; Severe=predictive of severe 

fibrosis; LSE=liver stiffness evaluation; NP=not predictive of fibrosis; Predictive=predictive 

of fibrosis; IQ=interquartile range; *Patients with liver histology available). 

Table 3. Histological analysis of livers of patients with Alström syndrome. (M=male; 

F=female; IQR=interquartile range; NP=not predictive of fibrosis; NAS=non alcoholic fatty 

liver disease activity score.) 
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Table 1. The demographic and metabolic characteristics of 30 patients with Alström 
syndrome 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

n (Male/Female) 30 (21/9) 

Age 24 (21.25-37) 

BMI (kg/m2) 29.3 (25.95-34.05) 

Fat mass (kg) 20.3 (18.4-27.2) 

Lean mass (kg) 59.2 (49.2-67.2) 

Diabetes  24/30 

HbA1c (mmol/mol;%) 52 (40-70); 6.9 (5.8-8.6) 

Systolic BP (mmHg) 121 (111-127) 

Diastolic BP (mmHg) 74 (67.5-80) 

C-Peptide/Glucose 
(ng/ml)/(mg/dl) 

0.047 (0.027-0.088) 

Total cholesterol 
(mmo/l) 

4.95 (4.2-6.3) 

HDL (mmol/l) 0.89 (0.75-1.06) 

Triglycerides (mmol/l) 3.25 (2.1-4.75) 
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Table 2. The hepatic phenotype of 30 patients with Alström Syndrome.  
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1 24 M Norm N N N 29 33 0. 21 47 4 8.7 Mo   
2 27 M Norm N N N 32 37 0. 18 45 3 8.7 Mo 7.8 NP 
3 40 M Norm N N N 18 17 1. 22 45 3     
4 23 F Fatty N N N 11 21 0. 30 44 5 8.3 Mo 4.4 NP 
5 30 F Norm N N Y 49 73 0. 32 49 8 9.3 Mo 9.0 Predic
6 44 M Coars Y N N 25 53 0. 15 40 5 9.9 Sev 4.8 NP 
7 30 M Fatty N N N 29 83 0. 24 55 5 7.7 Mo 5.1 NP 
8 22 M Fatty N N N 29 10 0. 24 47 6 9.2 Mo 12.6 Predic
9 34 F Fatty N N N 16 25 0. 30 44 4 9.7 Mo   
1 19 M Fatty N N N 38 76 0. 16 45 4 9.2 Mo   
1 19 M Fatty Y Y N 32 48 0. 23 54 5 7.5 No 13.9 Predic
1  M Fatty N N N 34 77 0. 12 41 11 10. Sev 6.3 NP 
1 22 M Fatty N N N 44 76 0. 29 48 9 8.6 Mo 5.1 NP 
1 20 M Norm N N N 32 43 0. 24 47 4 10. Sev 6.0 NP 
1 19 M Fatty N Y N 35 76 0. 18 44 7    11.1 Predic
1 22 M Fatty N Y N 58 14 0. 24 49 5 10. Sev 11.8 Predic
1 21 M Fatty N Y N 12 20 0. 30 47 4 9.4 Mo   
1  M Coars Y N N 55 29 1. 92 36 5 9.5 Mo 9.2 Predic
1 20 M Fatty N N N N/   22 47 5    5.2  
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2 27 F Norm N N N 17 16 1. 20 43 5 8.0 Mo 7.2 NP 
2 22 F Fatty N N N 26 66 0. 25 46 6 10. Sev 14.4 Predic
2 51 M Coars Y N N 28 37 0. 24 49 4 10. Sev 9.6 Predic

2 21 M Fatty N N N 34 67 0. 28 46 9 8.6 Mo 4.9 NP 
2 47 M Fatty N N N 17 21 0. 20 48 10 7.9 Mo 12.9 Predic
2 21 F Cirrh Y Y N 27 34 0. 27 45 7 9.8 Sev 13 Predic
2 25 M Fatty Y Y Y 96 65 1. 20 39 32     
2 4 M     31 80 0. 13 43 31 12. Sev   
2 2 M     73 50 1. 36 35 28     
3 3 F     49 46 1. 15 40 6 9.4 Mo   
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Table 3. Histological analysis of livers of patients with Alström syndrome.  
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