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Abstract1

Intracellular signaling during oxidative stress is complex, with organelle-to-nucleus retrograde 2

communication pathways ill-defined or incomplete. Here we identify the 3’-phosphoadenosine3

5’-phosphate (PAP) phosphatase SAL1 as a novel and conserved oxidative stress sensor in plant 4

chloroplasts. Arabidopsis thaliana SAL1 (AtSAL1) senses changes in photosynthetic redox 5

poise, hydrogen peroxide, and superoxide concentrations in chloroplasts via redox regulatory 6

mechanisms. AtSAL1 phosphatase activity is suppressed by dimerization, intramolecular 7

disulfide formation and glutathionylation, allowing accumulation of its substrate, PAP; a8

chloroplast stress retrograde signal that regulates expression of Plastid Redox Associated 9

Nuclear Genes (PRANGs). This redox regulation of SAL1 for activation of chloroplast signaling 10

is conserved in the plant kingdom, and the plant protein has evolved enhanced redox sensitivity 11

compared to its yeast ortholog. Our results indicate that, in addition to sulfur metabolism, SAL1 12

orthologs have evolved secondary functions in oxidative stress sensing in the plant kingdom.13

Significance Statement14

Management of oxidative stress in plant chloroplasts involves signaling pathways to the nucleus 15

that trigger stress response mechanisms. Yet, how oxidative stress is initially sensed in the 16

chloroplast to activate accumulation of a stress signal remains enigmatic. We show that 17

inactivation of a phosphatase, SAL1, by oxidative stress in chloroplasts controls accumulation of 18

its substrate, as a plant stress signal. This regulatory mechanism is highly conserved across the 19

plant kingdom and confers a second function to this metabolic enzyme as an oxidative stress 20

sensor.21

22
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Introduction1

Alleviating oxidative stress is a common challenge across evolution, occurring at the cellular,2

organellar and systemic levels. In plant chloroplasts, drought and high light (HL) stress induce 3

production of reactive oxygen species (ROS) such as singlet oxygen (1O2) at Photosystem II 4

(PSII), and hydrogen peroxide (H2O2) as well as superoxide (O2
-) at Photosystem I (PSI) (1).5

There is also a shift from reducing to more oxidizing states in the redox poise of plastoquinone 6

(PQ) and other stromal redox couples such as glutathione (GSH/GSSG). All of these changes are 7

associated with adjustment of photosystem stoichiometry and chloroplastic metabolic enzymes8

by chloroplast-resident kinases (2) and redox-sensitive thioredoxins (3) respectively; as well as 9

activation of signaling pathways for the induction of common and unique sets of nuclear genes 10

(4, 5).11

The nuclear transcriptional response to stress in chloroplasts is mediated by chemical signals 12

emanating from the chloroplasts to the nucleus in a process called retrograde signaling (6). There 13

are at least seven distinct retrograde signaling pathways responding to changes in chloroplastic 14

ROS and redox state (7); including beta-cyclocitral for PSII-1O2 responses (8) and PAP-XRN 15

pathway which alters expression of 25% of the HL-associated transcriptome, many of which are 16

ROS and redox associated (9). The unique gene sets which expression are induced by PSI ROS 17

and changes in chloroplast redox poise are collectively referred to herein as PRANGs (Plastid 18

Redox Associated Nuclear Genes) (7); they include key and common stress marker genes such as 19

ASCORBATE PEROXIDASE 2 (APX2) (10, 11) and ZAT10 (12) critical for acclimation. The 20

nuclear regulators of PRANGs and the subsequent chloroplast-targeted stress responses, 21

including induction of chloroplast antioxidant and redox regulation enzymes such as redoxin 22

proteins, have been extensively elucidated for the different retrograde pathways (7, 12). Despite 23
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these advances, however, in all of the PRANG retrograde signaling pathways no chloroplastic 1

sensor(s) of ROS and redox state has been conclusively identified (7). For instance, a previously 2

hypothesized sensor kinase for the PQ redox state (2) has recently been re-ascribed to facilitate3

H2O2 production rather than redox sensing per se (13).4

A substantial proportion of PRANGs are regulated by the phosphonucleotide, 3’-5

phosphoadenosine 5’-phosphate (PAP), which acts as a mobile chloroplast-to-nucleus stress 6

retrograde signal (9). PAP accumulation is induced by drought and high-light stress, and the 7

metabolite signal moves between the chloroplast, cytosol and nucleus (9). PAP is produced by 8

sulfotransferase-catalyzed sulfation reactions in secondary sulfur metabolism, which transfer 9

activated sulfate from 3’-phosphoadenosine 5’-phosphosulfate (PAPS) to various key acceptor 10

molecules including peptides and hormones (14). This sulfate transfer generates PAP as a by-11

product that inhibits sulfotransferase activity and feedback-regulates overall sulfur flux (14, 15).12

During unstressed conditions, PAP is enzymatically degraded by the Arabidopsis thaliana SAL113

(AtSAL1) phosphatase in the chloroplast (9). AtSAL1 loss-of-function leads to constitutive PAP 14

accumulation, up-regulation of PRANGs, increased stress tolerance and altered sulfur 15

metabolism (9, 15). Hence, SAL1 and PAP perform dual functions in sulfur metabolism (15) and 16

stress signaling (9). The role of SAL1-PAP in chloroplast stress signaling is likely conserved 17

beyond Arabidopsis to other members of the plant kingdom, since transient silencing of SAL1 18

also enhanced stress tolerance in wheat (Triticum aestivum) (16).19

PAP controlling PRANG expression during drought and HL has known degradation and 20

production site(s) for the signal, a mechanism for signal movement, and a protein target for the 21

signal (7, 9). Yet, similar to all other PRANG-regulating retrograde pathways, the mechanism by 22

which chloroplast oxidative stress and redox state are initially sensed and transduced is 23
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unknown. Here we demonstrate that contrary to expectation for a metabolic enzyme, SAL1 can 1

in and of itself act as a molecular sensor for oxidative stress. The switches for accumulation of 2

the PAP chloroplast retrograde signal reside within the SAL1 protein, thereby providing a 3

common site of perception of PSI ROS and redox couples for regulating PRANGs. 4

Results 5

Accumulation of the stress signal PAP occurs via oxidative down-regulation of AtSAL1 6

activity7

Given the multiple redox couples altered in the chloroplast in response to HL and drought (1,8

14), we hypothesized that PAP accumulation during these stress conditions (9) can be regulated 9

by AtSAL1 if the enzyme acted as a sensor of, and its activity regulated by, oxidative stress.10

Indeed, PSI-sourced ROS that invoke PRANG regulation such as H2O2 and O2
- significantly 11

lowered in vivo AtSAL1 activity (Fig. 1A). This was replicated in plants exposed to the abiotic 12

stresses drought and HL that induce H2O2 and O2
- formation (Fig. 1A). These treatments did not 13

significantly alter AtSAL1 protein abundance however (Fig. 1A), suggesting that the regulation 14

of AtSAL1 activity in the chloroplast is therefore most likely via a post-translational 15

mechanism(s). 16

It is well established that in mutants deficient in regeneration of oxidized proteins, redox buffer17

homeostasis (NADPH/NADP+, GSH/GSSG), or the water-water cycle that degrades PSI O2
- and 18

H2O2 via ascorbate (1); there is increased ROS accumulation, shifts in redox balance towards 19

more oxidizing states, and /or deregulated PRANG expression (see Table S1). In six of such 20

mutants, in vivo AtSAL1 activity in response to HL-induced oxidative stress was further reduced 21

by up to 50% relative to wild type (WT) (Fig. 1B). 22
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AtSAL1 is redox-regulated by dual mechanisms of intramolecular disulfide formation and1

dimerization2

The suppression of in vivo AtSAL1 activity under oxidative stress conditions (Fig. 1A), co-3

regulation of PRANG expression by photosynthetic ROS and PAP (4, 5, 9), and redox regulation 4

of some sulfur metabolism enzymes in chloroplasts (14), led us to hypothesize that down-5

regulation of in vivo AtSAL1 activity is directly mediated by redox potential. Indeed, in vitro6

AtSAL1 activity is decreased under oxidizing conditions (Fig. 2A). The amino acid sequence of 7

AtSAL1 includes four cysteine residues as potential targets for redox regulation (Cys21, Cys119,8

Cys167, and Cys190). When these cysteine residues were mutated to redox-insensitive alanine 9

residues, total activity decreased 50% but, more importantly, oxidative down-regulation of 10

AtSAL1 activity was lost (Fig. 2A). The down-regulation of AtSAL1 activity coincided with the 11

appearance of multiple protein bands on SDS-PAGE (Fig. 2A, bottom panels). Significantly, the 12

multiple band patterns of oxidized AtSAL1 on SDS-PAGE was reversible upon addition of 13

reducing agent (Fig. 2B); the altered migration of proteins with disulfide bond(s) due to 14

intramolecular loop formation is well established (17, 18).15

Combinatorial analysis of Cys to Ala mutations facilitated identification of the Cys pairs 16

involved in the dominant disulfide bonded bands (Fig. 2C). This revealed two important features 17

of the oxidation/inactivation process: first, full oxidation of recombinant AtSAL1 was not 18

possible and only a fraction of the protein was converted to anomalously migrating oxidized 19

bands; second, a specific, dominant, band that was observed when the WT protein was oxidized20

was lost when either Cys167 or Cys190 was mutated to Ala, suggesting that they form a 21

disulfide bond. Kinetic analysis of Cys to Ala mutations showed that when Cys119 or Cys190 22
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were mutated to Ala no loss of activity was observed in oxidizing conditions, suggesting that1

Cys167-Cys190 and Cys119 may be required for inactivation of AtSAL1 (Fig. 2A). 2

To investigate this redox sensing mechanism in more detail, we subsequently crystallized and 3

solved the molecular structure of AtSAL1 to 3.05 Å resolution in its apo form (PDB 5ESY, Fig.4

3, Table S2). AtSAL1 is an protein belonging to the carbohydrate phosphatase fold and 5

superfamily (19) showing the closest structural homology to the yeast (Saccharomyces 6

cerevisiae) PAP phosphatase ortholog, ScHAL2 [PDB 1KA1(20), r.m.s.d for C atoms = 2.4 Å,7

with amino acid sequence identity of 37% as calculated by the DALI server (21)]. Interestingly, 8

we found that AtSAL1 crystallized as a dimer; a crystallographic 2-fold interface was clearly 9

visible and detected with the Protein Interfaces, Surfaces and Assemblies (PISA) server (22).10

The dimer interface is centered on a symmetrical pair of Cys119 side chains from each monomer 11

in the dimer (Fig. 3A), suggesting a role for an intermolecular disulfide in dimerization. Each 12

monomer also contains a potential intramolecular Cys167-Cys190 disulfide pair located across 13

adjacent beta strands (Fig. 3A); such a cross-strand disulfide is often a metastable switch used to 14

control protein activity (23). Cys21 was not located near any potential disulfide bonding 15

partners. Notably, none of the cysteine residues are located in the vicinity of the active site, 16

suggesting that the regulation must be remote, or allosteric.17

Although previously reported to be a monomer (24), we found that AtSAL1 exists in monomer-18

dimer equilibrium in solution through size exclusion chromatography (SEC) and SEC-multi 19

angle laser light scattering (MALLS) (Fig. 4A, Fig. S1). Native PAGE analysis of recombinant 20

AtSAL1 reveals that the dimeric fraction is stable under oxidizing conditions, owing to the 21

presence of an intermolecular disulfide, but under sufficiently reducing conditions the protein 22

returns to equilibrium between monomer and dimer (Fig. 4B). Interestingly, the monomeric and 23
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dimeric species displayed strikingly different redox sensitivity: whereas the monomer displayed1

high catalytic activity and is resistant to oxidation and inactivation, the dimer is less active under 2

reducing conditions, but is extremely sensitive to oxidation and is rapidly inactivated, with 3

formation of disulfide bonds, including the intramolecular Cys167-Cys190 bond, in the presence 4

of oxidized DTT (Fig. 4C, Table 1). Thus, it appears that dimerization is a precursor to oxidative 5

inactivation, and that the oligomeric equilibrium can be altered under oxidizing conditions 6

through the formation of an intermolecular disulfide bridge. This result is consistent with the 7

data presented in Fig. 2 showing that the mixed oligomeric species of AtSAL1 do not undergo 8

full oxidation owing to the resistance of monomer to oxidation, and that the Cys119 and Cys190 9

residues are involved in separate disulfide bonds that are both important for inactivation. 10

Given that dimerization appears to be essential for the intramolecular Cys167-Cys190 disulfide11

bond formation, and that oxidation can inactivate AtSAL1, we sought to investigate the 12

mechanisms that underlie these processes. Allosteric regulation of protein activity is 13

commonplace (25), and frequently involves alteration of protein dynamics and trapping of 14

proteins in inactive conformations (26-29). Thus, we performed molecular dynamics (MD) 15

energy minimization to generate monomeric (reduced) and dimeric (oxidized) AtSAL1 models 16

to investigate the impact of dimerization and the disulfide bonds on the protein structure and 17

dynamics. Normal mode analysis of elastic network models (NMA-ENM) can effectively18

predict and analyze large-scale collective motions in proteins (30, 31), and was used here to 19

investigate the impact of the Cys119-Cys119 and Cys167-Cys190 disulfide bridges and 20

dimerization on the flexibility of AtSAL1.21

As shown in Fig. 3B, loop 1 overhangs the active site in an open conformation; the equivalent 22

loop to loop 1 in the AtSAL1 ortholog, ScHAL2, has been shown to close over the active site to 23
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stabilize substrate (20). In AtSAL1, NMA-ENM indicates that loop 1 fluctuates between open 1

and closed conformations in a manner common to active site loops in almost all phosphatases 2

(Fig. 3B) (32, 33), suggesting that this movement is likely to be important for catalytic activity.3

Loops 3 and 4 are located at the dimer interface and adjacent to loop 1, while loop 8 is also 4

adjacent to loop 1. 5

The mobility of these loops in the oxidized dimer and reduced monomer are strikingly different, 6

with loops 1, 3, 4, and 8 all being substantially rigidified through dimerization and disulfide bond 7

formation (Fig. 3C). The dynamic coupling of these loops is also significantly different between 8

the monomer and dimer, and these loops become significantly more hindered in the dimer (Fig. 9

S2). These data also allow a plausible explanation for the resistance of the monomer to 10

oxidation, since the formation of the Cys167- Cys190 disulfide bond will require the two 11

residues to be located in close proximity and to be relatively stable, which would be the case in 12

the dimer but not the monomer. Thus, the decreased activity of AtSAL1 in the 13

dimerized/oxidized state likely results from the rigidification of the active site loops, 14

allosterically inhibiting the enzyme by preventing it from adopting conformations that are 15

essential for activity and substrate binding. Indeed, both kcat and KM are affected by dimerization 16

and oxidation (Table 1). This result is consistent with the current view of allosteric inhibitory 17

regulation of proteins (28, 29), and provides a rapid means of reversible enzyme inactivation. 18

Formation of the intramolecular disulfide bond controlling AtSAL1 activity can be 19

mediated by the chloroplast redox buffer GSH/GSSG20

We then investigated whether in vitro AtSAL1 inactivation by the redox regulatory mechanisms 21

shown in Fig. 3 can be induced by in vivo redox couples present in the chloroplast, such as 22
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glutathione (GSH). During oxidative stress GSH can be oxidized to oxidized glutathione 1

(GSSG). GSSG is known to glutathionylate cysteine residues of chloroplast proteins to regulate 2

their activity (3), and it promotes formation of an intramolecular disulfide bond between 3

proximal cysteine residues via thiol-disulfide exchange (34) (Fig. S3). Therefore, we tested 4

whether glutathionylation may also induce formation of the Cys167-Cys190 bond in AtSAL1. 5

The GSSG-treated AtSAL1 was able to form the Cys167-Cys190 disulfide in all recombinant 6

proteins containing both residues (Fig. 5A). Additionally, decreased activity in GSSG-treated 7

AtSAL1 correlated with glutathionylation of Cys119 and Cys190 as detected by mass-8

spectrometry (Fig. 5B). Critically, glutathionylation down-regulated activity in both monomeric9

and dimeric AtSAL1 samples (Fig. 5C). The redox titration of both monomeric and dimeric 10

AtSAL1 with GSH/GSSG yielded redox midpoint potentials (Em) close to the physiological 11

glutathione redox potential (-317 ± 8 mV) in Arabidopsis chloroplasts (35) (Fig. 5C). Therefore, 12

two redox processes can decrease AtSAL1 activity: the first involving dimerization and 13

intermolecular disulfide bonding, and the second a dimerization-independent process involving 14

glutathionylation by the chloroplast redox couple GSH/GSSG. Both mechanisms result in the 15

formation of the Cys167-Cys190 intramolecular disulfide and down-regulation of AtSAL1 16

activity.17

In vitro redox regulatory mechanisms of AtSAL1 are recapitulated in vivo18

If the SAL1-PAP pathway is a primary regulator of PRANGs, and PAP concentrations are 19

controlled by redox regulation of SAL1 as hypothesized, then the multiple redox mechanisms 20

regulating AtSAL1 in vitro should be recapitulated in vivo in response to chloroplast redox cues 21

that initiate PRANG regulation. We tested this hypothesis by analyzing AtSAL1 activity, and 22
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intramolecular disulfide formation and dimerization, when photosynthetic ROS and the 1

chloroplast redox state were manipulated in various ways.2

First, we observed in vivo formation of the characteristic Cys167-Cys190 disulfide band in 3

AtSAL1 during drought stress. In vivo abundance of the Cys167-C190 disulfide bonded form of 4

AtSAL1 progressively increased in correlation with decreasing AtSAL1 activity and increasing 5

PAP accumulation in leaves of drought-stressed Arabidopsis (Fig. 6A). Second, across the 6

multiple abiotic stress treatments that increase abundance of PSI-sourced ROS and lead to 7

reduction of in vivo AtSAL1 activity shown in Fig. 1A, the proportion of dimeric AtSAL1 in 8

oxidatively-stressed Arabidopsis leaves increased relative to control (Fig. 6B). This is in 9

agreement with the observed Cys119 intermolecular disulfide-mediated dimerization under 10

oxidative conditions (Fig. 4B).11

To complement the in vivo results shown in Fig. 6, either one of two approaches can demonstrate 12

that redox regulation of AtSAL1 enables PAP accumulation and PRANG expression. First, 13

AtSAL1 Cys-Ala mutants that are redox-insensitive in vitro can be expressed in Arabidopsis,14

however abundance of the Cys-Ala proteins were lower than WT when expressed in E. coli (Fig. 15

S4). It is well established in plants that point mutations, let alone four mutations in a single gene, 16

can affect a variety of protein characteristics, including in vivo stability, activity, and/or protein-17

protein interactions (36). Indeed, two other SAL1 point mutations, alx8 and hos2, affect protein 18

stability and activity in a temperature-dependent manner, respectively (37, 38).19

A second approach involves analyzing the same gene across many species to identify strong 20

conservation of the same characteristic, which would indicate strong evolutionary selection to 21

maintain this function (39, 40). The SAL1-PAP pathway for PRANG regulation and stress 22
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tolerance is functional across dicotyledonous (9, 37) and monocotyledonous plants (16).1

Therefore, if AtSAL1 is genuinely redox-regulated in vivo, then the cysteine residues conferring 2

in vitro redox sensitivity in AtSAL1 should be strongly conserved in evolution beyond 3

Arabidopsis to other plant species; and distantly-related orthologs should also show redox-4

sensitive biochemical activity.5

We found that the redox-responsive cysteine residues in AtSAL1 are indeed highly conserved 6

(Fig. S5). The Cys167-C190 intramolecular disulfide pair is strongly conserved across the 7

representative bryophyte, chlorophyte, early angiosperm, eudicot and monocot species 8

examined. The Cys119 residue that mediates the intermolecular dimerization is less conserved,9

but is still present in 33% of eudicot SAL1 orthologs and in two monocot proteins. In the 10

distantly related Poaceae SAL1 orthologs including the Oryza sativa SAL1 (OsSAL1) protein,11

the position of the conserved AtSAL1 Cys190 is C-terminally shifted by 7 amino acids. 12

Interestingly, these proteins possess an additional conserved cysteine residue (Fig. S5).13

We investigated OsSAL1 in detail, given that it has been shown to have activity against PAP 14

(41), and monocots are estimated to have diverged from dicots 140 – 150 million years ago (42).15

Conserved similarities in redox sensitivity between dicot AtSAL1 and monocot OsSAL1 would 16

therefore be functionally and evolutionarily significant. As was observed for AtSAL1, OsSAL1 17

activity is inhibited by oxidation (Table 2) and redox titration of the protein shows a 18

physiologically-relevant Em (Fig. 7A). OsSAL1 conformation can also be modified by 19

glutathionylation (Fig. 7B). Homology modelling of OsSAL1 reveals that both the strongly 20

conserved cysteine residues are surface-exposed (Fig. 7C), which may potentiate redox 21

regulation.22
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Finally, a corollary to the results described above is that if a SAL1 ortholog lacks the redox-1

responsive cysteine residues, then introduction of these residues should enhance redox sensitivity 2

in the new protein. The activity of the yeast (Saccharomyces cerevisiae) ortholog, ScHAL2,3

shows some redox-sensitivity to glutathionylation (Table S3), possibly due to presence of a 4

surface-exposed cysteine (Fig. S6A). However, ScHAL2 lacks the three cysteines at positions 5

structurally equivalent to those of AtSAL1, including the Cys119 side chain that promotes 6

dimerization (Fig. S5) and the Cys167-Cys190 intramolecular disulfide (Fig. 8A). This suggests7

that the redox-sensing mechanisms regulating AtSAL1 activity in plants (Figs. 1-6) are absent in 8

yeast, and may have evolved in plants for chloroplast redox sensing and PRANG regulation. We9

therefore introduced three additional cysteine residues (Thr21Cys, Phe127Cys, Tyr196Cys) into 10

ScHAL2 (ScHAL2+3C).11

Phe127Cys is the equivalent of AtSAL1 Cys119 that promotes dimerization, while Tyr196Cys12

introduces a potential disulfide pair in the same position as the critical intramolecular disulfide 13

that regulates activity of the dimeric AtSAL1 (Fig. 8A). Indeed, ScHAL2+3C showed 14

significantly greater redox sensitivity compared to WT ScHAL2 in vitro (Fig. 8B, Table S3). 15

When expressed in vivo, the engineered ScHAL2+3C was as efficient as WT ScHAL2 in 16

degrading PAP under unstressed conditions (Fig. S6B). Critically, introduction of the 17

intramolecular disulfide also increases redox sensitivity in vivo compared to the WT form: yeast 18

hal2 overexpressing ScHAL2+3C significantly accumulated PAP when challenged with mild 19

H2O2 stress, whereas those overexpressing WT ScHAL2 did not (Fig. 8C). Thus, addition of the 20

cysteine residues alone is sufficient to induce enhanced redox sensitivity to the yeast SAL1 21

ortholog.22

23
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Discussion1

Redox regulation of AtSAL1 involves multiple structural mechanisms 2

A diverse range of proteins are specifically regulated by disulfide formation (23). The Cys167-3

Cys190 intramolecular disulfide in AtSAL1 is intriguing because it occurs across two antiparallel4

beta-strands immediately adjacent to one another, at the base of a hairpin loop connecting these 5

strands (Fig. 3A). Formation of a disulfide across adjacent beta strands is a form of Cross-Strand 6

Disulfide (CSD) that have been termed ‘forbidden disulfides’(23), since they disobey the 7

established rules of protein stereochemistry (43, 44) and introduce strain into the protein 8

structure that may be energetically and structurally unfavorable (44). However, recent findings 9

indicate that strain in local areas of a protein are tolerated for regulation of protein function (23).10

An increasing number of proteins have been characterized that contain CSDs; in most cases,11

these disulfides regulate function (23). These examples include proteins involved in chloroplast12

redox control such as thioredoxins (TRXs), which have a canonical CSD-containing motif that is 13

strongly conserved across evolution (23, 45). CSD formation directly blocks catalytic cysteines 14

in thioredoxins (46, 47), whereas the CSD decreases protein flexibility in AtSAL1 (Fig. 3).15

Formation of the intramolecular Cys167-Cys190 disulfide in response to oxidizing conditions is 16

dependent upon dimerization (Fig. 4C), which stabilizes the protein conformation (Fig. 3). The 17

dimerization interface between AtSAL1 monomeric subunits is relatively small (Fig. 3A), which 18

may result in a relatively weak or transient interaction in vivo and explain the monomer-dimer 19

equilibrium in solution under reducing conditions, until the interface is locked together through 20

the Cys119-Cys119 intermolecular disulfide bonding during oxidative stress. Interestingly, the 21

inactivation of both monomeric and dimeric AtSAL1 by GSH/GSSG, and formation of the 22
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Cys167-Cys190 disulfide by glutathionylation via thiol-disulfide exchange (Fig. 5), reveals an 1

additional mechanism for redox regulation of AtSAL1.2

AtSAL1 redox regulation allows both metabolic control of sulfur assimilation and oxidative 3

stress signaling 4

The flux of sulfur in plants is regulated partly via redox control of key enzymes in the sulfur 5

assimilation pathway (48-50). Oxidative stress is expected to increase sulfur flux into sulfur 6

reduction for production of the redox buffer GSH/GSSG, as two key enzymes in this primary 7

branch of sulfur metabolism, APS reductase (APR) and Glutamate-Cysteine Ligase (GCL) are 8

more active when oxidized (49, 50). Conversely, PAP biosynthesis in the parallel, secondary9

pathway should be down-regulated by oxidative stress since enzymatic synthesis of the PAP 10

precursor, PAPS, by APS kinase (APK) is decreased by oxidation (48).11

Within the present study we show that AtSAL1 is significantly less active when oxidized (Figs.12

1-6), thus providing a mechanism for the 30-fold accumulation of PAP seen in WT plants during13

drought (9), without necessitating increased sulfur allocation into secondary sulfur metabolism14

and PAP synthesis. We also show that metabolites from one sulfur metabolism branch can 15

influence biosynthesis of metabolites in the parallel pathway, since GSH/GSSG directly 16

regulates AtSAL1 activity (Fig. 5) and hence PAP levels. Significantly, the redox midpoint 17

potential (Em) of AtSAL1 (-308 ± 2 mV for monomer and -284 ± 5 mV for dimer at pH 7.5; Fig.18

5C) overlaps with those determined for the oxidation-activated primary sulfur metabolism19

(GSH/GSSG) enzymes (-330mV ± 10mV at pH 8.0 for APR and -318 ± 11 mV at pH 7.0 for 20

GCL) (49, 50) and oxidation-inhibited secondary sulfur metabolism (PAPS/PAP) APK enzymes21

(-286 ± 18 mV at pH 7.5) (48). Therefore, the same redox state in chloroplasts can concomitantly 22
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regulate multiple sulfur metabolism enzymes including AtSAL1. This could allow coordination 1

of flux through the sulfur pathway for redox buffering (GSH/GSSG) concomitant to stress 2

signaling (PAP).3

The redox-responsive cysteine residues in AtSAL1 are conserved in plant species that lack 4

glucosinolate biosynthesis, which constitute a major sink for sulfur (and source of PAP) in 5

Arabidopsis and its relatives in the Brassicaceae (14) (Fig. S5). Indeed, the redox regulation was 6

conserved in OsSAL1 (Fig. 7), despite O. sativa being monocotyledonous and lacking 7

glucosinolates. Another indication that the SAL1-PAP pathway functions independently of 8

glucosinolates is that it also mediates stress tolerance in wheat (16). Therefore, the redox 9

regulation of SAL1 can be uncoupled from sulfur metabolism.10

SAL1 acts as a general redox sensor in the chloroplast for retrograde signaling and 11

PRANG regulation12

Our results indicate that SAL1 activity in plants is sensitive to the overall redox state of the 13

chloroplast and not to a specific stimulus or sensor protein (Fig. 1). The SAL1 protein is 14

sensitive to ROS production and redox state of PSI, where O2
- is produced and detoxified via 15

Superoxide Dismutase (SOD)-mediated dismutation to H2O2, which is further detoxified by16

thylakoidal and stromal APXs (tAPX and sAPX). Deficiency in sAPX compromises H2O217

degradation and concomitantly increases O2
- abundance at PSI due to SOD inhibition (1); this18

increased the effect of HL stress on suppression of AtSAL1 activity (Fig. 1B). Indeed, direct 19

induction of O2
- production at PSI by methyl viologen inhibited AtSAL1 (Fig. 1A). Perturbing 20

multiple aspects of chloroplast redox homeostasis also influenced AtSAL1 activity (Fig. 1B).21

This includes the major oxidized protein regeneration pathway in chloroplasts involving 22
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NADPH-dependent Thioredoxin Reductase C (NTRC) (51), and the redox buffers NADPH 1

/NADP+ and GSH / GSSG. Mutants in these pathways are unsurprisingly hypersensitive to 2

oxidative stress (52, 53), but also deregulated in PRANG expression during stress (54). The latter 3

probably reflects the influence of redox poise on AtSAL1 activity and PAP accumulation.4

The convergence of photosynthetic ROS and redox cues on SAL1 has key implications for stress5

retrograde signaling and regulation of PRANGs. Our results here demonstrating the coupling of 6

SAL1 activity and PAP accumulation to chloroplastic redox poise presents this enzyme as an 7

unconventional oxidative stress sensor and hub for the convergence of H2O2, O2
- and redox cues 8

in the chloroplast that alter nuclear gene expression (4, 6, 7). That is, the primary function of9

SAL1 is not to sense ROS and redox state, yet its sensitivity to these chloroplast cues enables 10

them to be sensed by the nucleus via PAP, providing capacity for fine-tuning responses. Such a 11

hypothesis does not preclude parallel pathways that also sense or respond to ROS or redox state 12

in the chloroplast. For example, recent evidence shows that projections from chloroplasts called 13

stromules increase in abundance during stress and can enable transport of ROS from chloroplasts 14

to the nucleus (55, 56). The extent to which PAP and other ROS communication pathways 15

overlap is a subject of future research.16

The conserved secondary redox sensing by SAL1 suggests that these enzymes may be17

considered ‘moonlighting’ proteins (57). Many moonlighting proteins are evolutionarily-18

ubiquitous enzymes that have secondary functions in diverse processes including metabolism 19

and disease (57).  Intriguingly, to our knowledge SAL1 would constitute the first moonlighting20

oxidative stress sensor described in plants. The sensitivity of the sensor may be fine-tuned 21

differently across evolution to fulfill kingdom-specific functions, since Arabidopsis and rice 22
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SAL1 appears more responsive to ROS and redox state than yeast HAL2 due to presence of the 1

intramolecular Cys167-Cys190 disulfide (Figs. 3A, 8B-C, Table S3).2

Whether chloroplast communication necessitates additional layers of complexity in regulation of 3

SAL1 in plants requires further elucidation. Regardless, there is precedent for the evolution of 4

increased redox sensitivity in PAP/PAPS metabolism in plants. For instance, the adenosine 5’-5

phosphosulfate kinase (APK) enzyme catalyzing PAPS production evolved increased redox 6

sensitivity in the transition from cyanobacteria to higher plants (58). It is also fascinating that 7

WT ScHAL2 shares some conservation of redox-sensitivity (Fig. 8, Table S3), albeit to a lesser 8

extent, with AtSAL1 despite lacking the AtSAL1 redox-responsive cysteine residues. Instead, 9

ScHAL2 may be regulated via a different surface-exposed cysteine residue (Fig. S6). It may be 10

that PAP phosphatases in other kingdoms are redox-regulated via analogous mechanisms11

targeting different cysteine residues, and this will be interesting to explore.12

In summary, transient elevation of PAP levels as an oxidative stress signal in plants is coupled to 13

the redox state perceived by SAL1. That at least four different ROS/redox couples (H2O2, O2
-,14

GSH/GSSG and DTTred/DTTox) regulate SAL1 enables a fine-tuning of SAL1 activity and thus 15

retrograde signaling to communicate the different fluctuations of chloroplast ROS balance/redox 16

poise in response to environmental stimuli. It is intriguing that a similarity in regulation of SAL1 17

orthologs relates more to the secondary function of redox sensing and stress signaling than 18

sulfation, and raises the question as to which function was the primary driver for evolutionary 19

conservation of this protein. Our results suggest that dual-function SAL1 orthologs may be 20

uniquely positioned as single-component integrators of sensing and signaling of aspects of21

oxidative stress in plants.22
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Materials and Methods1

Plant material and growth conditions 2

Arabidopsis seeds were germinated on soil and kept at 4 oC for 3 days to synchronize 3

germination. Plants were grown at 100-150 μmol photons m-2 s-1, 12 h photoperiod, 21-23 oC4

and 50-55 % humidity. Five-week old plants were used for all stress assays (SI Text). T-DNA 5

insertion lines for the redox homeostasis mutants sapx (1), ntrc (52), phs1 (53), and cos1 (59)6

(Table S1) were obtained from the Arabidopsis Biological Resource Centre (ABRC). The 7

amiRNA silencing line for tAPX (1) was provided by Prof. Christophe Laloi (Aix-Marseille) and 8

rax1-1 (54) was obtained from Prof. Phil Mullineaux (Essex) (Table S1).9

Protein purification from biological samples 10

Arabidopsis leaf native proteins were extracted using a protocol modified from Murguia et al.11

(60) (SI Text). Native proteins were kept on ice and used immediately in Clear-Native PAGE 12

and activity assays, as described later.13

For detection of the Cys167-Cys190 intramolecular disulfide in endogenous AtSAL1, native 14

proteins were incubated with 10 mM iodoacetamide in the dark for 1 h to prevent oxidation of 15

any cysteines that were reduced in vivo. Leaf protein was then precipitated in TCA / acetone, 16

washed twice with cold acetone and resuspended in solubilisation buffer (9 M urea, 4 % (w/v) 17

CHAPS, 1 % (w/v) DTT, 35 mM Tris base) before SDS-PAGE and western blotting (SI Text).18

Recombinant protein purification19

Recombinant WT AtSAL1 protein was expressed in Escherichia coli BL21 DE3 cells (New 20

England BioLabs, USA) and purified using standard metal affinity purification (SI Text). The 21
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purified recombinant proteins were stored in storage buffer [50 mM Tris-HCl pH 8.0, 150 mM 1

NaCl, 20 mM KCl, 1 mM MgCl2, 15% glycerol] at -80 oC.2

Protein gel electrophoresis 3

Recombinant protein, 0.5-1 μg, was incubated in degassed storage buffer [50 mM Tris-HCl pH 4

8.0, 150 mM NaCl, 50 mM KCl, 1 mM MgCl2, 15% glycerol] in the presence of either 5 mM 5

DTTred (reducing conditions) or 5mM DTTox (trans-4,5-Dihydroxy-1,2-dithiane; oxidizing 6

conditions) for 1 hour at RT, then resolved by SDS-PAGE and stained as described in SI Text.7

To visualize effects of GSH/GSSG, proteins were incubated in degassed storage buffer 8

containing 20mM GSH or 20mM GSSG, then run on gels and stained as before.9

For Clear-Native PAGE, proteins were incubated with redox agents as above but resuspended in 10

Native Sample Loading buffer [100 mM Tris-HCl, 10 % glycerol, 0.0025 % bromophenol blue, 11

pH 8.6) and resolved on a 3-12 % Novex NativePAGE gel (Life Technologies, USA) in Native 12

Running Buffer [25 mM Tris, 192 mM Glycine, pH 8.3] without denaturing agents. 13

Activity assays 14

Recombinant protein activity against PAP was assayed by incubating 0.2 μg protein in degassed15

Activity Buffer [100 mM Tris-MES pH 7.5, 1 mM Mg acetate] in presence of either reducing or 16

oxidizing equivalents of DTTred/DTTox (5 mM) or GSH/GSSG (20mM) for 1 hour at 25 oC, then 17

increasing concentrations of PAP was added to a final volume of 150 μL and initial activity 18

assayed at 25 oC (AtSAL1 and OsSAL1) or 30 oC (ScHAL2). The reaction was stopped by flash-19

freezing in liquid N2. AMP produced from degradation of PAP was quantified using the method 20

for derivatization and detection of adenosines via High Performance Liquid Chromatography as21

previously described (9). All Michaelis-Menten kinetics parameters were calculated using 22
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GraphPad Prism (GraphPad Software Inc., USA). For redox titration of activity, SAL1 protein 1

was incubated as above with different ratios of DTTred:DTTox (final total concentration of 5 mM) 2

or GSH:GSSG (final concentration of 20 mM). Values for redox midpoint potential, Em, was 3

calculated by fitting titration data to the Nernst equation using GraphPad Prism:4

Eh = Em + (RT/nF)(ln ([GSSG]/[GSH]2)) for glutathione5

And6

Eh = Em + (RT/nF)(ln ([DTTox]/[ DTTred])) for DTT7

with an RT/F of 25.7mV and n=2 (49, 61)8

For activity of AtSAL1 in native protein extracts from Arabidopsis, 10 μg of total native protein 9

extract was incubated in the same Activity Buffer as above with increasing concentrations of 10

PAP at 25 oC without any redox agents. 11

Crystallization, data collection and refinement12

AtSAL1 crystals were grown by vapor-diffusion in hanging-drops. Crystals formed at a protein 13

concentration of 20 mg/ml in 20-30 % PEG 2000-MME, 0.2 M (NH4)2SO4, 0.1 M HEPES pH 14

8.0 – 8.6. Diffraction data were collected at the Australian Synchrotron at the MX2 beamline (15

= 0.9537 Å). The resolutions limits of the data were assessed on the basis of the significance of 16

the CC1/2 at the P=0.001 level (62, 63). Diffraction data were integrated using XDS (64) and 17

scaled using SCALA from the CCP4 program suite (65). The crystals belonged to the P61 space 18

group and significant merohedral twinning was identified by xtriage (66)(twin operator h,-h-k,-l).19

Phases were obtained by molecular replacement in Phaser (67) using the yeast ortholog of SAL1 20

(PDB 1QGX) (20) as the search model. The crystallographic asymmetric unit contained two 21

copies of SAL1. Twin refinement was completed in Phenix (66, 68).22
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Simulation of the oxidized AtSAL1 dimer1

The intermolecular (Cys119-Cys119) and intramolecular (Cys167-Cys190) disulfides were 2

modelled using the GROMACS package (69) in conjunction with the GROMOS 53a7 force-3

field for condensed phases (70). To prepare the model, the crystallographic coordinates of the4

AtSAL1 dimer were immersed in a cubic shaped box of solvent with a minimum of 1 nm 5

between the protein and the box edge. The simple point charge model was used to represent 6

water (71) and the protein’s charge was neutralized by the addition of sodium ions. Electrostatic 7

energy was calculated using the particle mesh Ewald (PME) method (72) and cut-off distances 8

for the calculation of van der Waals and Coulomb interactions were set at 0.9 and 1.4 nm,9

respectively. To model the disulfide bonds between Cys167-Cys190 and Cys119-Cys119 the 10

AtSAL1 topology file was edited to include a bond between the sulfur atoms of the cysteines.11

The resulting system was energy minimized via steepest descent to the limit of machine 12

precision. During energy minimization the disulfide bond length decreased to an appropriate 13

length (2 ± 0.2 Å). For comparison the reduced AtSAL1 monomer was modelled. To prepare the 14

model the crystallographic coordinates of each monomer in the AtSAL1 asymmetric unit were 15

energy minimized. The same procedure was used to energy minimize the monomeric structure as 16

the dimeric structure, except disulfide bonds (Cys167-Cys190) were not included in the 17

monomer. To obtain an estimate of the flexibility of the energy minimized structures the 18

structures were submitted to the iMOD normal mode analysis webserver (73). To analyze the 19

coupling of AtSAL1 motions the covariance of C motions were plotted (74).20
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Figure Legends1

Fig. 1: In vivo AtSAL1 activity is down-regulated by oxidative stress.2

(A) In vivo AtSAL1 activity is down-regulated by oxidative stress with negligible change in 3

protein abundance (WW: Well-watered, MD: Mid-Drought, LD: Late-Drought, HL: High-light, 4

MV: Methyl Viologen, H2O2: Hydrogen peroxide). Activity was measured without any reducing5

agent, while protein electrophoresis and western blotting were performed under reducing 6

conditions for optimal protein transfer from gel to membrane. Similar results were obtained from 7

two independent experiments. Means and standard error for three to four biological replicates per 8

treatment are shown. a,b,c (p<0.05) show significant differences between treatments. (B) In vivo 9

AtSAL1 activity is sensitive to redox state. Disrupting redox homeostasis at Photosystem I 10

water-water cycle, ascorbate detoxification of ROS, cellular redox buffers or regeneration of 11

oxidized proteins (also see Table S1) result in significantly greater (*: p<0.05, **: p<0.01) down-12

regulation of AtSAL1 activity compared to WT under high-light stress. Some mutants only show 13

a trend of down-regulation in activity but the differences were not significant. Means and 14

standard error for averaged relative activities of two biological replicates at three different 15

concentrations of PAP per genotype are shown. 16

Fig. 2: Regulation of AtSAL1 activity by redox state via its intramolecular Cys167-Cys190 17

disulfide.18

(A) Down-regulation of AtSAL1 activity by oxidation requires oxidation of cysteines, as 19

mutagenesis of cysteines to alanine in AtSAL1 abrogated redox sensitivity. The redox sensitivity 20

correlates with a band directly beneath the full length reduced protein (black arrow), which was 21

determined to be a Cys167-Cys190 intramolecular disulfide (see Fig. 2C). Vertical dashed lines 22

indicate splicing and truncation of the gel shown in full in Fig. 2C. Asterisk indicates p<0.1. 23
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Activity of all proteins were assayed in the presence of 13.4μM PAP. Means and standard error 1

of two independent experiments are shown. (B) Formation of disulfides in AtSAL1 by oxidation 2

is rapidly reversed by returning the redox state to reducing conditions. Vertical dashed lines 3

indicate splicing of the gel to show these three samples side-by-side; all samples were run on the 4

same gel. (C) Determination of Cys-Cys disulfide pairs observed in WT AtSAL1 using cysteine 5

to alanine substitution mutants of AtSAL1 under oxidation. Oxidized AtSAL1 proteins migrate at 6

different rates to reduced AtSAL1 protein. The different Cys-Cys disulfide pairs were identified 7

by cross-comparison to cysteine mutants: AtSAL1 containing a Cys167-Cys190 intramolecular 8

disulfide (black triangles) migrates closest to reduced AtSAL1. The oxidized form is absent in all 9

AtSAL1 mutants lacking either or both of Cys167 and Cys190. Other combinations such as the 10

Cys21-Cys167 and Cys21-Cys190 disulfide did not correlate with the down-regulation of 11

AtSAL1 activity by oxidation (Fig. 2A). These are likely non-specifically formed during protein 12

denaturation and SDS-PAGE. AtSAL1 containing the Cys167-Cys190 intramolecular disulfide is 13

the only oxidized AtSAL1 species detected in endogenous plant protein samples pretreated with 14

iodoacetamide to block reduced cysteines during protein extraction to prevent non-specific 15

disulfide formation (Fig. 6). Experiments were performed twice, with identical results. 16

Fig. 3: Structural basis for redox regulation of AtSAL1 activity. 17

(A) Structural elucidation of AtSAL1 reveals a dimerization interface, and three potentially 18

redox-sensitive cysteine residues. Middle inset shows a view of the 2mFo-dFc map (blue lines, 19

contoured at 1.020

sticks) and chain B (green sticks), or a view of the 2mFo-dFc map centered on Cys167 and 21

Cys190. Right inset shows the disulfide bonds present in an energy minimized model of the 22

oxidized AtSAL1 dimer. (B) Closure of Loop 1 of AtSAL1, as predicted by normal mode 23
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analysis (NMA). The lowest frequency normal mode is shown. Positions of C atoms are shown 1

as coloured spheres, from the crystal structure (blue) to the most closed conformation (31).  (C) 2

Dimerization and disulfide formation reduces the mobility of key loops (loops 1, 3, 4, 8) in 3

AtSAL1. Energy minimized models of the oxidized AtSAL1 dimer (left) or the reduced AtSAL1 4

monomer (middle) are colored according to mobility (blue least mobile to red most mobile) for 5

details of energy minimization and normal mode analysis see methods. Right: plot of normal 6

mode analysis (NMA) mobility by residue for the oxidized dimer and reduced monomer. 7

Fig. 4: AtSAL1 is also regulated via dimerization involving Cys1198

(A) AtSAL1 in monomer-dimer equilibrium detected during size exclusion chromatography of 9

purified recombinant protein. Dimers were detected in at least three independent purification 10

runs. Inset:SDS-PAGE gel of monomeric and dimeric AtSAL1 indicating the proteins were of 11

similar purity. The masses of the monomer and dimer were confirmed by SEC-MALLS (Fig.12

S1). (B) The monomer-dimer equilibrium can be shifted by an intermolecular disulfide under 13

oxidizing conditions resulting in increased dimer abundance, or reduction of the disulfide by 14

DTT dissociating the dimer. Whereas DTT is sufficient to achieve dimer separation, GSH is not. 15

This is consistent with the relative redox potentials of these compounds: -264 mV at pH 7.4 for 16

GSH compared to DTT (-360 mV) and the redox potential of disulfide bonds (ranging from -33017

to -95 mV in thiol-disulfide oxidoreductases). Oxidation (DTTox, GSSG) increased dimer 18

abundance to 100%, indicating formation of an intermolecular disulfide dimer under oxidation. 19

Reversing the oxidation with reductant (DTTox + DTT and GSSG + DTT lanes) that breaks 20

disulfide bonds shifts the equilibrium to monomer. The low resolution and fuzzy appearance of 21

the higher MW bands are likely due to the type of gel (Tris-Glycine) as well as lack of detergent 22

(SDS) and reductant (DTT) that inhibit resolving native, folded proteins that are also oxidized. 23
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Similar results were obtained in two independent experiments. (C) Under redox titration by 1

DTTox in vitro, which induces formation of the Cys167-Cys190 disulfide, only dimeric AtSAL1 2

showed significant down-regulation of activity. Identical results were obtained from two 3

independent experiments. Inset: Dimerization is required for formation of the Cys167-Cys190 4

intramolecular disulfide that regulates AtSAL1 activity.5

Fig. 5: AtSAL1 can be regulated by glutathionylation at redox-sensitive cysteines.6

(A) Glutathionylation of AtSAL1 with oxidized glutathione (GSSG, yellow arrows) results in 7

formation of the intramolecular C167-C190 disulfide (black arrows), presumably via the thiol-8

disulfide exchange mechanism (34). Identical results were obtained in two independent 9

experiments. (B) m/z spectrum of AtSAL1 treated with GSSG and an untreated AtSAL1 sample, 10

showing a shift in mass consistent with glutathionylation of the redox-sensitive Cys119 (red).11

Charge is indicated in brackets. In AtSAL1 treated with GSSG, glutathionylation was also 12

detected on the Cys190 residue involved in intramolecular disulfide formation (not shown). (C)13

Both monomeric and dimeric AtSAL1 are sensitive to glutathionylation, with decrease in activity 14

in redox titration with GSH/GSSG (a less negative redox potential indicates more oxidizing 15

conditions). The redox midpoint potential (Em) was close to physiological GSH/GSSG redox 16

potential of Arabidopsis chloroplasts (35). Although activity of dimeric AtSAL1 is only 17

decreased to 40% under fully oxidizing conditions compared to 10% for monomeric AtSAL1, the 18

basal activity of dimeric AtSAL1 is already significantly lower than monomeric AtSAL1 under 19

the same redox state (Table 1). Measurements were performed twice. 20

Fig. 6: AtSAL1 is redox-regulated via intramolecular disulfide formation and dimerization 21

in vivo, and it is sensitive to the chloroplast redox state.22
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(A) Down-regulation of AtSAL1 activity and concomitant PAP accumulation correlates with 1

formation of the Cys167-Cys190 intramolecular disulfide (black triangles) in endogenous 2

AtSAL1 during drought stress. Means and standard error are shown for n=4 biological replicates 3

for well-watered and n=3 for drought. In contrast to Fig. 1A, leaf protein extracts were blocked 4

with iodoacetamide and then protein electrophoresis and western blotting were performed under 5

non-reducing conditions to visualize the Cys167-Cys190 disulfide. Loading control was 6

Coomassie Blue staining. Similar results were obtained in two independent experiments. (B) The 7

monomer-dimer equilibrium of AtSAL1 in vivo is shifted in favor of the dimer during oxidative 8

stress, suggesting formation of the Cys119-Cys119 intermolecular disulfide to stabilize the 9

dimer. Total leaf protein pooled from four biological replicates per treatment was resolved on 10

Native-PAGE, immunoblotted and the relative quantities of dimeric to monomeric AtSAL1 11

estimated by image analysis on ImageJ. 12

WW: Well-watered, MD: Mid-Drought, LD: Late-Drought, HL: High-light, MV: Methyl 13

Viologen, H2O2: Hydrogen peroxide.14

15

Fig.7: Biochemical and structural evidence for conservation of redox sensitivity in a rice 16

SAL1 ortholog. 17

(A) Redox titration on OsSAL1 shows that the protein is redox sensitive and has a redox 18

midpoint potentials (Em) in the physiologically-relevant range. A less negative redox potential 19

indicates more oxidizing conditions. (B) Oxidation of AtSAL1 and OsSAL1 with GSSG 20

similarly result in glutathionylation of the proteins, increasing their apparent molecular weight 21

when resolved on non-reducing SDS-PAGE (yellow triangles). Vertical dashed lines indicate 22

splicing and truncation of the gel to remove additional lanes not relevant to this result. (C)23
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Comparison between redox-sensitive cysteine residues detected in structures of AtSAL1 and1

modelling of OsSAL1. Unlike AtSAL1 which contains both surface-exposed and intramolecular 2

disulfide cysteines, OsSAL1 is predicted to contain surface exposed cysteines (marked in 3

yellow). Both Cys203 and Cys221 of OsSAL1 are strongly conserved in Poaceae SAL1 4

orthologs (see Fig. S5).5

Fig. 8: Enhancement of redox sensitivity in yeast ScHAL2 by introduction of the AtSAL1 6

intramolecular disulfide7

(A) Structural alignment-guided introduction of the intramolecular disulfide from AtSAL1 8

(orange) into yeast ScHAL2 (gray) by the Tyr176Cys mutation. Thiol groups are indicated in 9

yellow. (B) Introduction of additional disulfide in ScHAL2+3C results in increased redox 10

sensitivity in vitro compared to WT ScHAL2. Means and standard error from two independent 11

experiments for specific activity at 3.35μM PAP are shown. For full results, see Table S3.12

Asterisks indicate significant differences (p<0.05). (C) Introduction of additional disulfide in 13

ScHAL2+3C results in increased redox sensitivity and faster initiation of PAP accumulation in 14

vivo when expressed in yeast hal2 cells under mild oxidative stress. Significant differences are 15

indicated by a,b (p<0.05). Error bars indicate standard error; n=3 independent cultures for all 16

experiments. n.s. = no significant difference17



Fig. 1

Fig. 1: In vivo AtSAL1 activity is down-regulated by oxidative stress.
(A) In vivo AtSAL1 activity is down-regulated by oxidative stress with negligible change in protein abundance (WW: Well-
watered, MD: Mid-Drought, LD: Late-Drought, HL: High-light, MV: Methyl Viologen, H2O2: Hydrogen peroxide). Activity was 
measured without any reducing agent, while protein electrophoresis and western blotting were performed under reducing 
conditions for optimal protein transfer from gel to membrane. Similar results were obtained from two independent 
experiments. Means and standard error for three to four biological replicates per treatment are shown. a,b,c (p<0.05) show 
significant differences between treatments. (B) In vivo AtSAL1 activity is sensitive to redox state. Disrupting redox 
homeostasis at Photosystem I water-water cycle, ascorbate detoxification of ROS, cellular redox buffers or regeneration of 
oxidized proteins (also see Table S1) result in significantly greater (*: p<0.05, **: p<0.01) down-regulation of AtSAL1 activity 
compared to WT under high-light stress. Some mutants only show a trend of down-regulation in activity but the differences 
were not significant. Means and standard error for averaged relative activities of two biological replicates at three different 
concentrations of PAP per genotype are shown. 
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Fig. 2: Regulation of AtSAL1 activity by redox state via its intramolecular Cys167-Cys190 disulfide.
(A) Down-regulation of AtSAL1 activity by oxidation requires oxidation of cysteines, as mutagenesis of cysteines to alanine in 
AtSAL1 abrogated redox sensitivity. The redox sensitivity correlates with a band directly beneath the full length reduced protein 
(black arrow), which was determined to be a Cys167-Cys190 intramolecular disulfide (see Fig. 2C). Vertical dashed lines 
indicate splicing and truncation of the gel shown in full in Fig. 2C. Asterisk indicates p<0.1. Activity of all proteins were assayed 
in the presence of 13.4μM PAP. Means and standard error of two independent experiments are shown. (B) Formation of 
disulfides in AtSAL1 by oxidation is rapidly reversed by returning the redox state to reducing conditions. Vertical dashed lines 
indicate splicing of the gel to show these three samples side-by-side; all samples were run on the same gel. (C) Determination 
of Cys-Cys disulfide pairs observed in WT AtSAL1 using cysteine to alanine substitution mutants of AtSAL1 under oxidation. 
Oxidized AtSAL1 proteins migrate at different rates to reduced AtSAL1 protein. The different Cys-Cys disulfide pairs were 
identified by cross-comparison to cysteine mutants: AtSAL1 containing a Cys167-Cys190 intramolecular disulfide (black 
triangles) migrates closest to reduced AtSAL1. The oxidized form is absent in all AtSAL1 mutants lacking either or both of 
Cys167 and Cys190. Other combinations such as the Cys21-Cys167 and Cys21-Cys190 disulfide did not correlate with the 
down-regulation of AtSAL1 activity by oxidation (Fig. 2A). These are likely non-specifically formed during protein denaturation 
and SDS-PAGE. AtSAL1 containing the Cys167-Cys190 intramolecular disulfide is the only oxidized AtSAL1 species detected 
in endogenous plant protein samples pretreated with iodoacetamide to block reduced cysteines during protein extraction to 
prevent non-specific disulfide formation (Fig. 6). Experiments were performed twice, with identical results. 
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Fig. 3

Fig. 3: Structural basis for redox regulation of AtSAL1 activity. 
(A) Structural elucidation of AtSAL1 reveals a dimerization interface, and three potentially redox-sensitive cysteine residues. 
Middle inset shows a view of the 2mFo-dFc map (blue lines, contoured at 1.0 ) centered on Cys119 which is located at the 
interface between chain A (orange sticks) and chain B (green sticks), or a view of the 2mFo-dFc map  centered on Cys167 and 
Cys190. Right inset shows the disulfide bonds present in an energy minimized model of the oxidized AtSAL1 dimer. (B)
Closure of Loop 1 of AtSAL1, as predicted by normal mode analysis (NMA). The lowest frequency normal mode is shown. 
Positions of C atoms are shown as coloured spheres, from the crystal structure (blue) to the most closed conformation (31).
(C) Dimerization and disulfide formation reduces the mobility of key loops (loops 1, 3, 4, 8) in AtSAL1. Energy minimized 
models of the oxidized AtSAL1 dimer (left) or the reduced AtSAL1 monomer (middle) are colored according to mobility (blue 
least mobile to red most mobile) for details of energy minimization and normal mode analysis see methods. Right: plot of 
normal mode analysis (NMA) mobility by residue for the oxidized dimer and reduced monomer. 
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Fig. 4: AtSAL1 is also regulated via dimerization involving Cys119
(A) AtSAL1 in monomer-dimer equilibrium detected during size exclusion chromatography of purified recombinant protein. Dimers 
were detected in at least three independent purification runs. Inset:SDS-PAGE gel of monomeric and dimeric AtSAL1 indicating 
the proteins were of similar purity. The masses of the monomer and dimer were confirmed by SEC-MALLS (Fig. S1). (B) The 
monomer-dimer equilibrium can be shifted by an intermolecular disulfide under oxidizing conditions resulting in increased dimer 
abundance, or reduction of the disulfide by DTT dissociating the dimer. Whereas DTT is sufficient to achieve dimer separation, 
GSH is not. This is consistent with the relative redox potentials of these compounds: -264 mV at pH 7.4 for GSH compared to DTT 
(-360 mV) and the redox potential of disulfide bonds (ranging from -330 to -95 mV in thiol-disulfide oxidoreductases). Oxidation 
(DTTox, GSSG) increased dimer abundance to 100%, indicating formation of an intermolecular disulfide dimer under oxidation. 
Reversing the oxidation with reductant (DTTox + DTT and GSSG + DTT lanes) that breaks disulfide bonds shifts the equilibrium to 
monomer. The low resolution and fuzzy appearance of the higher MW bands are likely due to the type of gel (Tris-Glycine) as well 
as lack of detergent (SDS) and reductant (DTT) that inhibit resolving native, folded proteins that are also oxidized. Similar results 
were obtained in two independent experiments. (C) Under redox titration by DTTox in vitro, which induces formation of the Cys167-
Cys190 disulfide, only dimeric AtSAL1 showed significant down-regulation of activity. Identical results were obtained from two 
independent experiments. Inset: Dimerization is required for formation of the Cys167-Cys190 intramolecular disulfide that 
regulates AtSAL1 activity.
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Fig. 5: AtSAL1 can be regulated by glutathionylation at redox-sensitive cysteines.
(A) Glutathionylation of AtSAL1 with oxidized glutathione (GSSG, yellow arrows) results in formation of the intramolecular C167-
C190 disulfide (black arrows), presumably via the thiol-disulfide exchange mechanism (34). Identical results were obtained in two 
independent experiments. (B) m/z spectrum of AtSAL1 treated with GSSG and an untreated AtSAL1 sample, showing a shift in 
mass consistent with glutathionylation of the redox-sensitive Cys119 (red). Charge is indicated in brackets. In AtSAL1 treated with 
GSSG, glutathionylation was also detected on the Cys190 residue involved in intramolecular disulfide formation (not shown). (C)
Both monomeric and dimeric AtSAL1 are sensitive to glutathionylation, with decrease in activity in redox titration with GSH/GSSG 
(a less negative redox potential indicates more oxidizing conditions). The redox midpoint potential (Em) was close to physiological 
GSH/GSSG redox potential of Arabidopsis chloroplasts (35). While dimeric AtSAL1 activity was only decreased to 40% under fully 
oxidizing conditions compared to 10% for monomeric AtSAL1, the basal activity of dimeric AtSAL1 was already significantly lower 
than monomeric AtSAL1 under the same redox state (Table 1). Measurements were performed twice. 



Fig. 6

Fig. 6: AtSAL1 is redox-regulated via intramolecular disulfide formation and dimerization in vivo, and it is sensitive to 
the chloroplast redox state.
(A) Down-regulation of AtSAL1 activity and concomitant PAP accumulation correlates with formation of the Cys167-Cys190 
intramolecular disulfide (black triangles) in endogenous AtSAL1 during drought stress. Means and standard error are shown 
for n=4 biological replicates for well-watered and n=3 for drought. In contrast to Fig. 1A, leaf protein extracts were blocked with 
iodoacetamide and then protein electrophoresis and western blotting were performed under non-reducing conditions to 
visualize the Cys167-Cys190 disulfide. Loading control was Coomassie Blue staining. Similar results were obtained in two 
independent experiments. (B) The monomer-dimer equilibrium of AtSAL1 in vivo is shifted in favor of the dimer during 
oxidative stress, suggesting formation of the Cys119-Cys119 intermolecular disulfide to stabilize the dimer. Total leaf protein 
pooled from four biological replicates per treatment was resolved on Native-PAGE, immunoblotted and the relative quantities 
of dimeric to monomeric AtSAL1 estimated by image analysis on ImageJ. 

WW: Well-watered, MD: Mid-Drought, LD: Late-Drought, HL: High-light, MV: Methyl Viologen, H2O2: Hydrogen peroxide.
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Fig. 7
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Fig.7: Biochemical and structural evidence for conservation of redox sensitivity in a rice SAL1 ortholog. 
(A) Redox titration on OsSAL1 shows that the protein is redox sensitive and has a redox midpoint potentials (Em) in the 
physiologically-relevant range. A less negative redox potential indicates more oxidizing conditions. (B) Oxidation of AtSAL1 and 
OsSAL1 with GSSG similarly result in glutathionylation of the proteins, increasing their apparent molecular weight when resolved 
on non-reducing SDS-PAGE (yellow triangles). Vertical dashed lines indicate splicing and truncation of the gel to remove 
additional lanes not relevant to this result. (C) Comparison between redox-sensitive cysteine residues detected in structures of 
AtSAL1 and modelling of OsSAL1. Unlike AtSAL1 which contains both surface-exposed and intramolecular disulfide cysteines,
OsSAL1 is predicted to contain surface exposed cysteines (marked in yellow). Both Cys203 and Cys221 of OsSAL1 are strongly 
conserved in Poaceae SAL1 orthologs (see Fig. S5).
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Fig. 8

Fig. 8: Enhancement of redox sensitivity in yeast ScHAL2 by introduction of the AtSAL1 intramolecular disulfide
(A) Structural alignment-guided introduction of the intramolecular disulfide from AtSAL1 (orange) into yeast ScHAL2 (gray) 
by the Tyr176Cys mutation. Thiol groups are indicated in yellow. (B) Introduction of additional disulfide in ScHAL2+3C 
results in increased redox sensitivity in vitro compared to WT ScHAL2. Means and standard error from two independent 
experiments for specific activity at 3.35μM PAP are shown. For full results, see Table  S3. Asterisks indicate significant 
differences (p<0.05). (C) Introduction of additional disulfide in ScHAL2+3C results in increased redox sensitivity and faster 
initiation of PAP accumulation in vivo when expressed in yeast hal2 cells under mild oxidative stress. Significant 
differences are indicated by a,b (p<0.05). Error bars indicate standard error; n=3 independent cultures for all experiments. 
n.s. = no significant difference
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Table 1: Effect of dimerization on  redox sensitivity and enzyme kinetics of AtSAL1 under different redox states. 
All enzymatic assays were performed with 0.2μg recombinant protein in the presence of 5mM DTT (reduced) or DTTox
(oxidized) at 25°C. Results shown are means and standard error from two independent experiments.

Table 1

Kinetic parameters
Monomeric AtSAL1 Dimeric AtSAL1

Reduced Oxidized Reduced Oxidized

KM (μM PAP) 9.9 ± 3.3 8.3 ± 1.2 8.7 ± 5.2 4.2± 1.8

kcat (min-1) 123 ± 18 119 ± 13 24.4 ± 1.1 4.3 ± 1.3

kcat / KM (μM-1 min-1) 12.4 14.2 2.8 1.0



Table 2

Table 2: Effect of oxidation on enzyme kinetics of  the riceSAL1 ortholog, OsSAL1. 
Enzymatic assays were performed with 0.2 μg recombinant protein in the presence of 20mM GSH (reduced) or 
GSSG (oxidized) at 25°C. Experiment was performed twice, with similar results.

Kinetic parameters
OsSAL1

Reduced Oxidized

KM (μM PAP) 20 ± 6.9 61 ± 23.6

kcat (min-1) 44 ± 3.9 11 ± 1.5

kcat / KM (μM-1 min-1) 2.2 0.2



Fig. S1

Fig. S1:  AtSAL1 exists in a monomer-dimer equilibrium.
Purified AtSAL1 was exchanged  into assay buffer and analysed by MALLS following separation by size exclusion 
chromatography . Differential refractive index is shown as a blue line (right axis) and molecular mass derived from light scattering 
data as shown as red points (left axis).  The expected masses of AtSAL1 monomer (37.5 kDa) and dimer (75 kDa) are indicated 
by dashed lines. 



Fig. S2: Prediction of coupled motions in AtSAL1.
Covariance maps of C motions (74) calculated for the reduced AtSAL1 monomer and oxidized AtSAL1 dimer. Residues with 
coupled motions are shown in red, residues with anti-correlated motions are shown in blue. The positions of the mobile loops 
described in Fig. 3C  (loops 1,3,8) are indicated. 

Fig. S2



Fig. S3

First thiol-disulfide exchange (intermolecular): 
S-glutathionylation of cysteine 

Second thiol-disulfide exchange (intramolecular): 
disulfide formation

Formation of intramolecular disulfide via glutathionylation and thiol-disulfide exchange

Fig. S3: Formation of an intramolecular disulfide via a thiol-disulfide exchange initiated by glutathionylation of a 
cysteine residue. See ref 34 for review of this mechanism.



Fig. S4

Fig. S4: Cys-Ala mutations negatively affect AtSAL1 protein stability and abundance.  The yield of soluble 
AtSAL1 protein is drastically decreased when the redox-sensitive Cys residues were mutagenized to Ala. The SDS-
PAGE gel shows semi-purified recombinant WT or mutated AtSAL1 proteins after a soluble protein fraction from 7 
mL of induced E. coli cells was incubated with Ni-NTA beads in a 1.5mL Eppendorf tube, washed with 20mM 
imidazole, and the bound AtSAL1 + 6X His-Ub fusion proteins (black triangles) eluted with 250mM imidazole. The 
abundance of soluble AtSAL1 protein decreased with increasing number of Cys-Ala substitutions. The negative 
effect of the Cys-Ala mutations was reproducible in 2 independent transformed bacterial colonies.

Effect of substituting redox-sensitive cysteines in AtSAL1 on protein stability and abundance 
in the soluble fraction when heterologously expressed in E. coli
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Fig. S5

Fig. S5: Conservation of redox-sensitive cysteines in SAL1 orthologs in plants. The Cys119 involved in
dimerization of AtSAL1 is moderately conserved in eudicots and non-Poaceae monocot plants, but is absent in
other lineages. The intramolecular disulfide pair Cys167-Cys190 is invariant across bryophytes, lycophytes,
primitive angiosperm, eudicots and non-Poaceae monocots. Cys190 is C-terminally shifted by seven amino acids in
Poaceae monocot plants. Additionally, another cysteine is strongly conserved in the Poaceae family of monocots
(Cys221 in OsSAL1; see Fig. 7). In contrast to plant SAL1 orthologs (green), the fungal SAL1 ortholog in
Saccharomyces cerevisiae HAL2 (blue) lacks Cys119 and Cys190.



Fig. S6
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Fig. S6: WT and engineered ScHAL2. (A) Presence of a surface-exposed Cys349 in the ScHAL2 crystal structure 
(1KA1), which may explain the redox sensitive activity observed in Fig. 8B. (B) The WT ScHAL2 and ScHAL2+3C 
proteins are equally active in vivo when expressed in yeast cells deficient in ScHAL2 ( hal2), as both proteins 
complement PAP levels in hal2 to similar levels, albeit still about 10-fold higher than WT. Similar results were 
obtained in two independent experiments.



Name Gene 
Identifier

Type of 
mutation

Biological pathway affected Ref.

tAPX
(thylakoidal Ascorbate Peroxidase)

AT1G77490 amiRNA-
knockdown

Detoxification of H2O2 in the 
chloroplast thylakoid, 
detoxification of superoxide by 
superoxide dismutase in water-
water cycle at Photosystem I 
(PSI).

1

sAPX
(stromal Ascorbate Peroxidase) AT4G08390 T-DNA 

insertion, 
homozygous

Detoxification of H2O2 in the 
chloroplast stroma, where 
AtSAL1 is also located

1

phs1              
(photosensitive 1) AT3G47390 T-DNA 

insertion, 
homozygous

Involved in riboflavin and FAD 
synthesis. Mutant allele has 
increased oxidative stress due 
to reduced NADPH/NADP+ 
ratios and overproduction of 
ROS at PSI under high light. 

53

cos1 
(coronatine insensitive1 suppresor)

AT2G44050 T-DNA 
insertion, 

heterozygous

Involved in the same metabolic 
pathway as phs1 (riboflavin 
and FAD synthesis). 

59

rax1-1                      
(regulator of Ascorbate Peroxidase 2 1-1)

AT4G23100 Point 
mutation, 

homozygous

Rate-limiting step of 
glutathione synthesis. 
GSH:GSSG redox ratio may 
be altered under oxidative 
stress.

54

ntrc
(NAPDH-dependent Thioredoxin
Reductase C)

AT2G41680 T-DNA 
insertion, 

homozygous

Reduction of 2-Cys 
peroxiredoxins and redox 
control within the chloroplast. 
Deficiency causes 
hypersensitivity to abiotic 
stress

52

Table S1: Summary of redox homeostasis-deficient mutants used in Fig. 1.
Loss-of-function mutants deficient in various aspects of redox homeostasis in the chloroplast were chosen for analysis of 
AtSAL1 activity under abiotic stress. The mutants are deficient in ROS detoxification, redox control at PSI, or chloroplast redox 
buffer pathways.

Table S1



Table S2: Data collection and refinement statistics for crystal structure of AtSAL1

1 Values in parenthesis are for the highest resolution shell.
2 Pearson’s correlation coefficient calculated from two half-sets of the data (63, 64). 

Table S2

AtSAL1 (PDB 5ESY) 

Data Processing 

Space group P61 

Cell dimensions (Å) a,b,c 137.14 137.14 74.64 

 ,   ( ) 90, 90, 120 

Resolution range (Å) 38.247  - 3.05 (3.24 -3.05)1  

Total number of reflections 125243 (20978)  

Number of unique reflections  15341 (2522) 

Multiplicity 8.2 (8.3) 

Completeness (%) 99.63 (92.8) 

Mean I/ (I) 15.23 (2.2) 

Wilson B factor (Å2) 83.6 
2 CC1/2  0.999 (0.620) 

Rmerge 0.1042 (1.110) 

Refinement 

Rwork/Rfree  0.220/ 0.264 (0.324/0.409) 

Total number of atoms 5095 

    Protein 5095 

    Ligand/ion 0 

    Water 0 

RMSD for bonds (Å) 0.011 

RMSD for angles (deg) 1.47 

Ramachandran favored (%) 87 

Ramachandran outliers (%) 3 

Clashscore 13 

Average B factor (Å2) 106.0 

 



Table S3

Protein [PAP] (μM) 
Specific Activity 

(pmol μg prot-1 min-1)
Decrease in Activity (%)

Reduced Oxidized Average

ScHAL2 3.35 124 ± 0.9 77 ± 16 38

46 ± 4.8a13.4 414 ± 66 220 ± 31 46

26.8 597 ± 150 270 ± 35 54

ScHAL2+3C 3.35 53 ± 10 17 ± 2 67 67 ± 1.4b

(p<0.005 
relative to 
ScHAL2)

13.4 72 ± 24 25 ± 5 65

26.8 81 ± 29 24 ± 0.8 70

Table S3: Effect of introducing AtSAL1 Cys167-Cys190 disulfide pair on redox sensitivity of ScHAL2. 
Enzymatic assays were performed with 0.2 μg recombinant protein in the presence of 20mM GSH (reduced) or GSSG 
(oxidized) at 30°C. Means and standard error from two independent experiments are shown. The decrease in activity for 
ScHAL2+3C by oxidation is significantly greater (a,b; p<0.005) than that in WT ScHAL2.


