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Abbreviations:   IBD (Inflammatory Bowel Disease), ROS (Reactive Oxygen Species), G 

(Guluronic acid), M (Mannuronic acid), TfR1 (Transferrin Receptor 1), AUC (analytical 

ultracentrifugation), ADPs (Alginate Degrade Products), AlgE1 (Alginate Epimerase 1) and 

EpLD (Epimerised Manucol LD). 
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ABSTRACT 

 

Scope:  Iron is an essential nutrient.  However, in animal models, excess unabsorbed 

dietary iron residing within the colonic lumen has been shown to exacerbate inflammatory 

bowel disease and intestinal cancer.  Therefore the aims of this study were to screen a panel 

of alginates to identify a therapeutic that can chelate this pool of iron and thus be beneficial 

for intestinal health. 

 

Methods and results: Using several in vitro intestinal models it is evident that only one 

alginate (Manucol LD) of the panel tested was able to inhibit intracellular iron accumulation 

as assessed by iron mediated ferritin induction, transferrin receptor expression, intracellular 

59Fe concentrations and by measuring iron flux across a Caco-2 monolayer. Additionally, 

Manucol LD suppressed iron absorption in mice which was associated with increased faecal 

iron levels indicating iron chelation within the gastrointestinal tract. Furthermore, the 

bioactivity of Manucol LD was found to be highly dependent on both its molecular weight and 

its unique compositional sequence. 
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Conclusion: Manucol LD could be useful for the chelation of this detrimental pool of 

unabsorbed iron and it could be fortified in foods to enhance intestinal health. 

 

Luminal iron excess is associated with disease of the large bowel. The study aims were to identify an 

alginate which could be used to chelate this pool of unabsorbed iron. Results demonstrate that of a 

panel of alginates tested only a single alginate of unique molecular weight and GM sequence 

exhibited potent effects on in-vitro and in-vivo cellular iron metabolism. This highlights this alginate 

as a prime candidate for both enhancing colonic health and prevention of intestinal disease. 

 

INTRODUCTION 

Iron is an essential nutrient with many cellular functions reliant upon iron-catalysed 

processes such as DNA synthesis and ATP generation.[1, 2] Total body iron levels in adult 

males is between 3000 – 4000 mg, with a daily nutritional need for iron of 20 mg which is 

mostly required for erythropoiesis.[3]  This daily requirement of iron is ingested from the diet; 

however it is known that only 0.7 – 22.9 % of ingested non-heme iron is absorbed within the 

small bowel.[4]  As a consequence the remaining dietary iron resides within the large bowel 

for hours to days.  Recent reports have concluded that this ‘luminal iron’ (iron present within 

the lumen of the colon) has a detrimental effect on intestinal health.[5, 6]  Most notably two 

recent murine studies have shown that removal of dietary iron from models of inflammatory 

bowel disease (IBD) and intestinal cancer resulted in a suppression of disease phenotype, 

whilst consumption of excess dietary iron exacerbated the conditions.[5, 6]  How this excess 

iron is mediating these effects is unknown, however it could be via oncogenic signalling (the 

Wnt signalling pathway),[7] the generation of reactive oxygen species (ROS),[8-10] or 

through the modulation of the intestinal microbiome. [6, 11] 

 

Iron chelation represents a platform for therapeutic intervention, whereby ligated iron would 

be neutralised and unable to partake in any toxicity-related processes; this has indeed been 
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demonstrated in the context of chelation of excess systemic iron, where the use of iron 

chelators have been shown to have beneficial effects.[12]  However, with respect to luminal 

iron a therapeutic agent must not demonstrate systemic iron binding and iron chelation must 

solely take place within the gastrointestinal tract.  As such, a compound that demonstrates 

iron binding potential whilst having a limited bioavailability needs to be identified.   Sodium 

alginates are a fibre found throughout many foods which demonstrate these physico-

chemical properties.[13, 14]   

 

Alginates sourced from algae are formed of unbranched, 1-4 linked β-D-mannuronic acid (M) 

and α-L-guluronic acid (G).  The arrangement of G and M residues along the polymeric 

back-bone sequence is ordered being heteropolymeric (e.g. GMGMGM) or homopolymeric 

(e.g. MMMGGG).[15]  The physical properties of alginate can differ depending on their 

molecular weight and GM sequence; these structural differences give rise to a plethora of 

possible structural compositions.  How these compositional differences may alter the 

biochemical actions of alginates is unknown, and in particular how they influence iron 

binding in vitro and in vivo is not known.  As such, the impact of a range of alginates 

(representing different chemical compositions) on in vitro and in vivo cellular iron metabolism 

was assessed.  Further to this, the physico-chemical properties of alginate which are crucial 

for its effects on cellular iron metabolism were examined to reveal the alginate chemical 

composition required for luminal iron chelation.  Results from these experiments identify an 

alginate which is nutritionally beneficial and likely to be useful in enhancing intestinal health. 
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MATERIALS AND METHODS 

Cell culture 

RKO cells were grown in growth medium which consisted of Dulbecco’s Modified Eagles 

Medium (DMEM) supplemented with foetal calf serum (FCS) (10 % v/v), penicillin (100 U ml -

1) and streptomycin (0.1 mg mL-1).  Caco-2 cells were grown using a similar growth medium 

which was supplemented with non-essential amino acids (1 % v/v).  Both cell lines were 

purchased from the American Type Culture Collection (ATCC). 

 

In experiments with iron co-incubation, a standard protocol was employed as previously 

described.[13]  Throughout all experiments the form of iron used was FeSO4.  To create 

alginate stimulation media, alginate (2 % w/v in DI H2O) was mixed with growth medium with 

or without iron (FeSO4∙7H2O, 100 μM) to create a resultant 0.3 % alginate medium, with or 

without iron supplementation.  These stimulation media were cultured with cells for 24 hours.  

After this time period, media was removed, cells washed with PBS and lysed in RIPA lysis 

buffer (1% 4-Nonylphenyl poly(ethylene glycol), 0.5% sodium deoxycholate, 0.1% sodium 

dodecyl sulphate (w/v) in DI H2O).  

 

Caco-2 monolayer  
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Caco-2 cells were seeded into pre-treated collagen-coated 6-well transwell inserts at a 

concentration of 4 x 105 cells mL-1.  Cells were grown for 20 days post confluency.  Prior to 

culture with iron and/or alginate, cell medium was changed to FCS-free Minimum Essential 

Medium (MEM) as previously reported.[16]  Subsequently, cells were co-cultured with iron 

(FeSO4∙7H2O, 100 μM) and/ or alginate (0.3 %) as described above.  To create 59Fe iron 

media, a stock solution of iron (FeSO4∙7H2O (108.9 mg, 10 mM) and sodium ascorbate (396 

mg, 500 mM)) into DI H2O (40 mL) was spiked with 59FeCl3 to reach a radiation 

concentration of 10,000 counts per minute (CPM) per well.  This stock was diluted into the 

media to create the 100 μM FeSO4∙7H2O as detailed above.  To the apical chamber, FCS-

free MEM with 59Fe spiked iron with or without alginate (2 mL) was added.  At 0.5, 4 and 24 

hour time points, samples were removed from the apical chamber.  After 24 hours, media 

was removed, the cells washed with Versene (0.2 g L-1 EDTA in PBS) and lysed in RIPA 

buffer. Samples collected were assessed for iron concentration using scintillation counting. 

 

Western blotting 

Cells were incubated in iron (FeSO4∙7H2O, 100 μM) and or alginate (0.3 % w/v in DI H2O) or 

D-glucuronic acid (0.3 % w/v in DI H2O) supplemented growth media for 24 hours prior to 

lysis in RIPA buffer.  Western blotting was performed as previously described, with 

monoclonal antibodies to ferritin (1:5000, Abcam, Rabbit AB69090), β-actin (1:5000, Abcam, 

Mouse AB8226) and TfR1 (1:1000, Invitrogen, H68.4).[13] All blots were subject to 

densitometry analysis using ImageJ analysing software. 

 

In vivo 59Fe experiments 

All in vivo experiments were carried out under Home Office approved conditions and Animal 

care and the regulation of scientific procedures met the criteria laid down by the United 

Kingdom Animals (Scientific Procedures) Act 1986.  Male, 6 week year old, CD1 mice 



www.mnf-journal.com Page 7 Molecular Nutrition & Food Research 

 

 
This article is protected by copyright. All rights reserved. 

7 

 

(Charles Rivers, UK) in groups of 4-8 were used in 59Fe absorption experiments.  All mice 

were starved 12 hours prior to gavage and post administration mice were given access to 

water and food ad libitum.  

 

A 59Fe spiked iron gavage solution was prepared by dilution of a Fe(II) stock solution 

(FeSO4∙7H2O, 20 mM in 0.1 M HCl) into HEPES, a physiological buffer devoid of divalent 

metal cations (HEPES, 16 mM pH = 7.4, NaCl 125 mM) to a concentration of 250 μM Fe(II).  

Administration of alginate solutions (8 % w/v in DI H2O, 100 μL) to half of the mice was 

performed immediately after gavage of the prepared radio-labelled iron (100 μL), whereas 

the other half received an iron only gavage and no alginate.  All mice were housed in 

metabolic chambers for 48 hours prior to culling to allow the collection of faecal samples.  

After 48 hours, mice were culled and dissected.  Intestinal sections (duodenum, jejunum, 

ileum and colon) were flushed once with a sodium chloride solution (ca. 15 mL, 0.15 M) and 

detection of iron concentrations was performed within these intestinal sections as previously 

reported.[17]  Carcass CPM measurements were performed on a whole body animal counter 

(LIVE-1, Technical Associates, Canoga Park, CA). 

 

Heat degradation and viscosity measurements 

Aqueous Manucol DH aliquots (10 mL) were heated at 100 °C for set time points.  All 

viscosity measurements were performed at 25 °C and alginate concentrations that were 

used were within the kinematic range of the viscometer (usually from 0.1 – 1 mg mL-1).  

Viscosities were measured on a Cannon-Ubbelohde glass viscometer (Cannon instruments), 

size 50, with a kinematic viscosity range of 0.8 – 4 mm2 s-1.  

 

Analytical ultracentrifugation 
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Sedimentation velocity and sedimentation equilibrium experiments were performed on a 

Beckman Optima XL-I analytical ultracentrifuge (AUC) equipped with Rayleigh Interference 

Optics and a 30 mW laser wavelength λ = 675 nm as previously reported.[18]  

 

AlgE1 Plasmid extraction and enzyme production 

Agar blocks inoculated with JM 109 containing plasmid pHH1 encoding alginate epimerase 

enzyme 1 (AlgE1) was kindly donated from Helga Ertesvåg (Norwegian University of 

Sciences and Technology).  AlgE1 production was performed according to the previously 

published protocol.[19]   

 

Assessing for activity of AlgE1 and preparation of Epimerised LD 

To screen the purified enzyme fractions for epimerisation activity, aqueous Manucol LD 

(0.1%, (w/v)) in DI H2O was prepared.  Manucol LD solution (2 mL) was mixed with the 

enzyme fractions (1 mL) and MOPS buffer (80 mM, 1 mL) supplemented with CaCl2∙2H2O (4 

mM).  The resultant mixture was incubated at 37 °C for 2 hours.  To quench the 

epimerisation, EDTA (50 mM) was added and the subsequent mixtures were extensively 

dialysed against DI H2O at 4 °C.  The resultant solutions were used directly in the circular 

dichroism (CD) spectrometer.  CD measurements were recorded on a Jasco J-810 CD 

spectropolarimeter using a 1 cm path length, blackened, quartz cell.  The selected active 

fraction was used to prepare Epimerised Manucol LD (EpLD) for cell culture experiments.  

Aqueous Manucol LD (0.2 %, w/v) was mixed with MOPS buffer (180 mM) supplemented 

with CaCl2∙2H2O (40 mM) and the active enzyme (20 mL).  The resultant solution was 

agitated at 37 °C for 24 hours, before enzyme deactivation was initiated with the addition of 

EDTA (0.5 M).  The mixture was then extensively dialysed at 4 °C.  The subsequent alginate 

product was pH adjusted (pH = 7.4) and concentrated in vacuo. 

 

High resolution NMR 
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1H NMR spectra were acquired on a Bruker Avance III 600 MHz instrument equipped with a 

5 mm TCI Cryoprobe. The residual solvent resonance was further suppressed using a 

NOESY presto pulse sequence. A total of 32 transients and 16 steady state scans were 

acquired with 16384 complex data points. The spectral width was set to 7184 Hz and the 

sample temperature to 340 K.  The free induction decays were multiplied with a 0.3 Hz 

broadening exponential window function and zero filled to 32768 real data points prior to 

Fourier transformation. The spectra were then manually phase and baseline corrected, using 

a spline baseline correction. Signals for the anomeric protons of the different alginate 

constituents were fitted to lorentzian lines. All data processing and analysis was performed 

using the matlab based MetaboLab software package.[20]   

 

Statistical analysis 

All experiments were performed at least in triplicate unless otherwise stated.  Data was 

processed using Microsoft excel and results are presented as means with standard errors of 

the mean (+/- SEM).  The single-factor analysis of variance (ANOVA, Analysis ToolPak, 

Microsoft Corporation) was used to determine significant differences between the means of 

three or more independent (unrelated) groups.  The unpaired t-test was used to statistically 

compare mean values between two unrelated data sets within a group.  A level of 

significance was set to p < 0.05 for both tests of significance. 

 

 

RESULTS 

 Manucol LD demonstrates iron chelation in vitro 

To screen the iron binding potential of the range of alginates used in this study, RKO cells 

were challenged with iron (100 μM) in the presence or absence of sodium alginates 

(Manucol LD (LD), Manucol DH (DH), Manugel GHB (GHB), LFR5/60 (LFR), KELTONE 

(KEL), PROTANAL RF6650 (RF) and PROTSEA AFH (AFH), 0.3 % w/v) for 24 hours and 
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cells were then subsequently assayed for ferritin expression; a surrogate marker for cellular 

iron levels (Figure 1A).  As expected treating cells with iron supplemented media alone 

induced ferritin expression (p < 0.05).   Only one alginate (Manucol LD) was able to 

significantly decrease the iron induced ferritin response by 60 % (p < 0.05).  Similarly, 

culture of RKO cells at lower concentrations of iron (1 and 10 μM) in the presence or 

absence of alginates (LD, DH, GHB, LFR, KEL, RF and AFH, 0.3 % w/v) demonstrated that 

Manucol LD was the only alginate to significantly reduce ferritin expression by 70, 88 and 68 

% at 1, 10 and 100 μM concentrations of iron respectively compared to the iron only control 

(p < 0.05) (Figure 1B).  DH, GHB and LFR only inhibited ferritin expression at 10 μM iron by 

54, 47 and 92 % respectively (p < 0.05) (Supporting Information Figure S1).  Manucol LD 

was the only alginate to demonstrate bioactivity at all concentrations of iron.   

 

In order to fully verify the iron chelation ability of Manucol LD in vitro, RKO cells were 

challenged with iron (100 μM) with or without Manucol LD (0.3 % w/v) for 24 hours before 

being assessed for direct intracellular iron concentrations (Figure 1C) and Transferrin 

Receptor 1 (TfR1) expression (Figure 1D).  RKO cells treated with iron resulted in cellular 

iron loading (ca. 50 nM total cellular iron); the basal levels of iron within the control group 

were not measureable by this assay.  It was found that Manucol LD significantly decreased 

cellular iron loading by 62 % (p < 0.05) (Figure 1C).  This was associated with a statistical 

increase in TfR1 expression by ca. 50 % (p < 0.05) compared to iron alone, indicating that 

Manucol LD is binding the supplemented iron present in the media hindering its intracellular 

uptake (Figure 1D). 

 

Manucol LD demonstrates iron chelation in an in vitro model of the intestinal 

lumen 

Using radiolabelled iron-spiked cell culture media, Manucol LD significantly decreased 

intracellular iron concentrations by 70 % (p < 0.05) within the Caco-2 monolayer compared 
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to the iron only control (Figure 2A).  By assessing the levels of iron within the apical chamber 

during the experiment it could be determined that iron was retained within this compartment 

(Figure 2B).  Co-incubation with Manucol LD at both 4 and 24 hours inhibited cellular iron 

uptake by the Caco-2 cells by 60 % (p < 0.05) compared to the iron only control from the 

apical compartment.  These results validate the observation that Manucol LD is binding iron 

in the media thus preventing its cellular internalisation.   

 

Manucol LD demonstrates iron chelation within the gastrointestinal tract in 

vivo 

Administration of Manucol LD resulted in significantly decreased carcass iron concentrations 

by 71 % (p < 0.005) compared to an iron only cohort (Figure 3A).  This equates to only 13 % 

of the total iron administered being absorbed when Manucol LD was present compared to 46 

% when it was absent (Supporting Information Figure S2).  In addition, there was a 

concomitant increase in faecal iron concentrations of 45 % (p < 0.05) in mice administered 

Manucol LD compared to mice administered iron alone (Figure 3B).    To fully verify the iron 

chelation potential of Manucol LD throughout the gastrointestinal tract,  the stomach, 

duodenum and colon were assayed for iron concentration and it was found that in all 

gastrointestinal tissues there were statistically decreased iron concentrations when mice 

were administered Manucol LD compared to iron alone (Figure 3C).  Specifically, a 

significant decrease of 53, 60 and 52 % (p < 0.05) in the stomach, duodenum and colon was 

found respectively.  Moreover, the iron concentrations significantly increases from the 

stomach to the duodenum to the colon (stomach → duodenum 73% increase, stomach → 

colon 83 % increase (p < 0.05)).  All mice received the same concentration of 59Fe 

radioactive gavage (Figure 3D).   

 

 Chemical characterisation of alginates 



www.mnf-journal.com Page 12 Molecular Nutrition & Food Research 

 

 
This article is protected by copyright. All rights reserved. 

12 

 

To establish why Manucol LD demonstrated bioactivity and the other alginates did not, 

chemical characterisation of the alginate series was performed.  Both assessment of 

molecular weight by analytical ultracentrifugation (AUC) (Supporting Information Figure S3) 

and G:M composition by nuclear magnetic resonance (NMR) (data not shown) was 

performed.[21, 22]  A summary of these results are described in Table 1.  Manucol LD was 

found to have a molecular weight distribution of 145 kDa.  Manucol LD was also found to 

have a G:M ratio of 38:62, however, this composition was not unique to Manucol LD as 

Manucol DH had a similar G:M ratio of 40:60.   

 

Alginate iron chelation is molecular weight dependent 

Since Manucol DH and Manucol LD shared similar G:M composition homology, yet Manucol 

DH was found to have a higher molecular weight than Manucol LD (cf. 170 vs 145 kDa), to 

determine if the difference in bioactivity was due to the molecular weight of Manucol DH, 

Manucol DH was subject to heat degradation to produce smaller molecular weight average 

alginate degrade products (ADPs) as previously described.[23]  The relative viscosity 

decreases as expected with longer heating times, and the mean values for intrinsic viscosity 

obtained can be calibrated against heating time (Figure 4A).  The resultant ADPs (0.3 % w/v) 

were subsequently co-cultured in the presence or absence of iron (100 μM) in vitro for 24 

hours to examine their effects on iron induced ferritin expression (Figure 4B).  Co-culturing 

RKO cells with native Manucol DH does not demonstrate any iron chelation effects as 

described previously (Figure 1A).  Heat degradation of Manucol DH for 20 and 40 mins and 

subsequent co-culture of these ADPs on RKO cells also reveals no iron binding ability.  

However, heat degradation for 80 and 160 min statistically reduced iron-mediated ferritin 

expression by ca. 50 % (p < 0.05), but not to the extent of Manucol LD (Figure 4B).  Further 

degradation (250 min) resulted in a loss of this bioactivity.  As a further control, the effect of 

the monomeric-acid unit on cellular iron metabolism was assessed.  D-glucuronic acid 

(DGA) (0.3 % w/v) was co-cultured alongside RKO cells in the presence or absence of iron 
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(100 μM).  There was no statistical reduction in iron induced ferritin expression or 59Fe levels 

when cells were cultured alongside DGA compared to iron only (Figure 4C & D).  

 

Alginate iron chelation is composition dependent 

Manucol LD and Manucol DH have similar G:M chemical compositions but this does not 

preclude differences in GM sequence structure.  To examine this they were both subject to 

high resolution NMR to allow calculation of their respective monad (G/M), diad (GM/GG/MM) 

or triad (GMG/GGM/MGM/MMG) concentrations.[24]  NMR spectra for Manucol LD and 

Manucol DH were acquired and analysed using the correlations described and transformed 

free-induction decays were fitted to lorentzian curves to allow calculation of the specific 

monads, diads and triads (Figures 5A and 5B) according to a standard protocol.[24]  

Calculation of the major differences between Manucol LD and Manucol DH revealed that 

Manucol LD contained 12 % more MM diads than Manucol DH.  Similarly, Manucol DH 

contained 8 % more GM diads than Manucol LD.    

 

To interrogate the dependence on G:M composition and sequence structure, an alginate 

epimerase enzyme (AlgE1) was produced and utilised for the M→G conversion of Manucol 

LD.  Epimerisation of native Manucol LD by AlgE1 resulted in an approximate two-fold 

increase in guluronate residues on epimerised Manucol LD (EpLD) resulting in a new G:M 

ratio of 77:23; the highest G-unit concentration alginate out of the series as assessed by 

circular dichroism spectroscopy (Figure 5C).  There was also very little absorption present at 

λ = 280 nm on the UV-Vis indicating negligible AlgE1 protein contaminant.  To examine the 

effects of epimerisation of Manucol LD on iron induced ferritin expression, RKO cells were 

co-cultured in the presence or absence of Manucol LD or EpLD with or without iron for 24 

hours before ferritin expression was examined (Figure 5D).  Ferritin expression in RKO cells 

treated with iron was significantly higher than that of control media only, as expected.  

Manucol LD statistically diminished ferritin expression by 57 % compared to iron only control 
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(cf. 60 % in previous studies) (p < 0.005).  EpLD did not reduce ferritin expression compared 

to the iron only control, and expression was statistically increased by 63 % compared to 

Manucol LD treatment (p < 0.005) (Figure 5D). 

 

 

DISCUSSION 

The detrimental effect of excess iron within the colon has previously been reported.[5, 6, 25, 

26]  The ingestion of high amounts of red and processed meats, foods that contain high 

levels of iron, have also been implicated in gastrointestinal disease.[27, 28]  Exactly how iron 

is mediating disease progression within the large bowel is currently unknown.  Despite this, 

in a range of conditions associated with iron excess, there is evidence that iron chelation is 

therapeutically beneficial.[29]  However, in the context of gastrointestinal disease it is 

specifically an excess of luminal iron within the large bowel that is detrimental and the 

chelation of this pool of iron presents itself as a potential therapeutic platform to improve 

intestinal health.   

 

In order to selectively chelate iron within the lumen of the colon the therapeutic compound 

must not be absorbable such that it reaches the large bowel and binds excess iron.    Non-

digestible fibres have been demonstrated to improve gastrointestinal health,[30] yet whether 

these effects are attributed to their iron binding properties is unknown. Sodium alginates 

which are fibres found within the human diet have previously been demonstrated to be both 

non-absorbable and bind iron.[13, 14] The possible range of alginate compositions is huge 

due to the diversity in polymer length and G:M chemical composition.[31, 32]  How these 

compositional differences affect iron binding potential and subsequent in vitro and in vivo 

cellular iron modulation is unknown, with previously published reports being inconsistent in 

their findings.[14, 33-35] This inconsistency is likely due to the fact that chemically different 
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alginates were used throughout these studies, and data presented in this study 

demonstrates the dependence of iron chelation bioactivity on alginate chemical composition. 

 

A range of alginates with different molecular weights and G:M compositions were primarily 

screened to assess their in vitro iron chelation potential.  This initial assessment identified 

only one alginate that was able to modulate iron metabolism in vitro.   Manucol LD 

decreased ferritin expression by 60 % (Figure 1A and B), decreased total cellular iron by 62 

% (Figure 1C), restored TfR1 expression to control levels (Figure 1D) and decreased 

absorption of iron in Caco-2 cells by 70 % (Figure 2 A and B); this was the only alginate to 

have consistent iron chelation properties (all statistically significant to p < 0.05).  In vivo, 

Manucol LD was able to supress iron absorption by 71 % and increased the iron content 

found in faecal samples by 45 % (p < 0.05) (Figure 3).  These two results are pivotal in 

demonstrating the mechanism of iron binding by Manucol LD within the gastrointestinal tract, 

where it can be inferred that Manucol LD is binding iron and keeping it chelated until 

defecation.  Where the iron is interacting with Manucol LD within the gastrointestinal tract 

remains unclear, however, as alginates are insoluble in low pH environments and form 

insoluble capsules, it is likely that iron chelation would not take place until Manucol LD 

reached more basic, distal regions of the gut.[36]  Interestingly, the concentrations of iron 

within the mucosa of gastrointestinal tissues increases from the small to the large bowel 

(stomach<duodenum<colon).  This is likely to be a consequence of either i) more effective 

iron transport across the brush border in the duodenum than within the colon, ii) the 

increased length of exposure to iron in the digesta within the colon, or iii) a combination of 

both.  This finding is supported by studies which have demonstrated that the colon is able to 

import iron but there is a lack of regulated iron efflux.[37]  Thus unsurprisingly, Manucol LD 

had its greatest iron chelation effects within the colon decreasing iron absorption by 56 % (p 

< 0.05).  
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Manucol LD has iron chelation effects both in vivo and in vitro however, what remains 

unclear is what the redox state and likely species of iron that alginate is chelating to within 

these experimental conditions. Since sodium ascorbate was included within the growth 

media in cell culture experiments it is likely that the supplemented ferrous iron will remain in 

the ‘free’ ferrous form (‘free’ referring to its availability to chelation by competing ligands) 

which would suggest that Manucol LD is certainly binding to free ferrous iron.  In addition 

previous reports have indicated that alginate will also bind ferric iron.[13]  It can be inferred 

that Manucol LD is likely to have iron chelation ability towards ferrous and ferric ions, yet this 

does not rule out the possibility that iron could be forming nanoparticulate species within the 

gastro-intestinal tract,[38] which alginates have also been documented to stabilise.[39]  If 

indeed iron in its ‘free’ form is present within the colon then these data suggest that Manucol 

LD is able to bind such a form of iron and possibly nanoparticulate forms based on 

previously published reports.[13]  However, the species of iron present within the colon is 

currently unknown and could be in its ‘free’ state, bound to other dietary or endogenous 

intestinal compounds or even as particulate mineralised species.[38, 40, 41] 

 

To interrogate the chemical characteristics of alginate required for iron chelation and 

subsequent modulation of cellular iron metabolism, Manucol LD and Manucol DH (the latter 

an alginate with similar G:M composition but different polymer length) were subject to 

structural modification by alginate degradation (through heating) and M→G unit conversion 

(by exposure to alginate epimerase AlgE1).  Determination of the heating time required to 

reduce molecular weight by specific amount allowed the calibration of intrinsic viscosity 

change against heating time (Figure 4A).  Heat degradation of Manucol DH at 100 °C 

decreased with heating time as previously reported.[42]  It was estimated that heating 

Manucol DH for ca. 3 hours would provide an intrinsic viscosity value of 1200 mL g-1, which 

would give a molecular weight similar to that of Manucol LD (145 kDa).  As such, heating 

Manucol DH for 180 min produced a shorter chain alginate (analogous to Manucol LD) that, 



www.mnf-journal.com Page 17 Molecular Nutrition & Food Research 

 

 
This article is protected by copyright. All rights reserved. 

17 

 

when co-cultured in vitro with iron decreased iron induced ferritin expression by 50 % (p < 

0.05) (Figure 4B).  As a control, Manucol DH was heated for longer periods of time (250 min) 

to produce shorter molecular weight products.  Subsequent co-culture of these ADPs 

resulted in diminished iron chelation ability to that observed with the 180 min ADPs as ferritin 

levels were not significantly different to the iron only control. As a further control, RKO cells 

were co-cultured with iron in the presence of D-glucuronic acid (DGA) to examine if the 

individual monomeric acid-unit was able to modulate cellular iron metabolism; DGA also had 

no significant effects on ferritin expression or intracellular 59Fe concentration.  These results 

demonstrate the importance of polymer length on iron binding ability, and it has recently 

been reported how the polymeric nature of alginate orchestrates iron chelation.[13]  Thus in 

summary an alginate molecular weight of approximately 145 kDa is required for maximal iron 

chelation bioactivity.   

   

It is plausible that Manucol LD has a tertiary and secondary structure that forms an iron 

binding pocket or cavity; this structure is formed by the specific MG sequence of the 

alginate.  The iron binding site acts as a nucleation site for iron deposition and such 

mechanisms have been previously reported for other biopolymers.[39]  If this were the case, 

then alteration of the G:M ratio and thus GM sequence on Manucol LD would disrupt the 

formation of this binding site.  Indeed, data presented in this study has demonstrated this.  

Alginate Epimerase 1 was utilised to convert Manucol LD (G:M 38:62) to EpLD (G:M 77:23).  

Subsequent co-culture of EpLD in the presence of iron did not reduce ferritin expression as 

demonstrated for native Manucol LD.  Such results demonstrate the importance of a specific 

alginate G:M ratio and GM sequence in iron chelation bioactivity.  To fully confirm the 

uniqueness of Manucol LD, high resolution NMR spectroscopy showed that Manucol DH and 

Manucol LD (two alginates with similar G:M ratio) do indeed have different GM sequence 

homologies, where differences in MM and GM (or MG) diad frequencies are most apparent.  
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In summary, data presented here identifies a unique alginate, with a specific chemical 

composition and polymeric length that demonstrates optimal iron chelation properties both in 

vitro and in vivo.  This data not only explains why inconsistencies have previously been 

reported on alginate modulation of cellular iron metabolism but also detail the required 

chemical characteristics of an alginate for iron chelation bioactivity.  Importantly, if Manucol 

LD is to be used to chelate excess colonic luminal iron, it will require formulating so as to 

ensure colonic delivery. Without employment of a colonic delivery platform our data might 

predict that chronic consumption of Manucol LD could lead to iron deficiency, due to iron 

chelation within the small bowel.     In the context of modulating the intestinal microbiome, it 

is known that iron is able to alter microbial colonisation to a more pro-inflammatory 

enterotype and it could be envisaged that Manucol LD could supress the colonisation of 

these ‘non-beneficial’ bacteria (such as Bacteroides) through the chelation of luminal 

iron.[11, 43, 44]  Further to this, alginates may have pre-biotic effects acting as a support 

scaffold for the colonisation of beneficial bacteria and as such further testing of these pro- 

and pre-biotic effects in man is required.  
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TABLES  

TABLE 1 Summary of analytical ultracentrifugation data to determine alginate 

molecular weight (kDa) and nuclear magnetic resonance spectroscopy to 

determine alginate G:M composition. 

Alginate MW (kDa) G:M 

RF 230 ± 10 60:40 

KEL 220 ± 15 46:54 

GHB 180 ± 18 53:47 

DH 170 ± 6 40:60 

AFH 155 ± 5 29:71 

LD 145 ± 5 38:62 
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LFR 74 ± 3 62:38 

 

  

 

FIGURE LEGENDS 

FIGURE 1 (A) Ferritin protein expression in RKO cells co-cultured with iron (Fe) +/- 

sodium alginates (LD, DH, GHB, LFR, KEL, RF and AFH) for 24 hours.  Data 

points represent mean fold change in protein expression normalised to β-

actin, relative to control.  (B)  Ferritin protein expression in RKO cells co-

cultured with different iron concentrations (Fe) +/- LD, DH, GHB, LFR, KEL, 

RF and AFH for 24 hours.  Data points represent mean fold change in protein 

expression normalised to β-actin, relative to control.   (C)  Total iron 

concentrations in RKO cells cultured +/- Manucol LD for 24 hours.  (D)  

Transferrin receptor expression in RKO cells incubated with iron +/- Manucol 

LD.  Data points represent mean fold change in protein expression, 

normalised to β-actin, relative to control.  Error bars denote ± SEM, * 

represents statistical significance p < 0.05 vs iron only control and n = 3. 

 

FIGURE 2 (A) Iron concentration in Caco-2 cells incubated with iron +/- Manucol LD.  (B)  

59Fe concentrations at 0.5, 4 hours and 24 hours in the apical chamber 
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following culture with iron +/- Manucol LD.  Error bars denote ± SEM, * 

represents statistical significance, p < 0.05 vs iron only control. 

 

FIGURE 3 (A) Whole carcass (total absorbed iron across the gut) 59Fe CPM 

concentrations 48 hours post administration with iron +/- Manucol LD.  (B)  

Faecal 59Fe CPM 48 hours post administration with iron +/- Manucol LD.  (C)  

Stomach, duodenum and colon 59Fe CPM concentrations 48 hours post 

administration of iron +/- Manucol LD.  (D) Total accountable 59Fe CPM 

concentrations for each experimental group compared to the dose 

concentration of 59Fe administered.  Error bars denote ± SEM, * and ** 

represents statistical significance p < 0.05 and 0.005 vs iron only control. 
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FIGURE 4 (A) Manucol DH relative viscosity (𝜂rel) decreases by heating at 100 °C with a 

plot of intrinsic viscosity against heating time.  Error bars denote ± SEM.  (B) 

Ferritin protein expression in RKO cells incubated with iron +/- Manucol DH 

heat degradation products for 24 hours.  Data points represent mean fold 

change in protein expression, normalised to β-actin, relative to control.  Error 

bars denote ± SEM, * represents statistical significance p < 0.05 vs iron only 

control and n = 3.  (C) 59Fe concentrations in RKO cells incubated with iron 

challenged +/- DGA .  Data points represent mean fold change in protein 

expression, normalised to β-actin, relative to control.  Error bars denote ± 

SEM.  NS indicates no statistical significance. (D) Ferritin protein expression 

in RKO cells incubated with iron +/- DGA.  Data points represent mean fold 

change in protein expression, normalised to β-actin, relative to control.  Error 

bars denote ± SEM.  NS indicates no statistical significance. 

 

FIGURE 5 Experimental (red) and simulated (blue) NMR spectra of alginate (A) Manucol 

DH and (B) Manucol LD for the region of protons 1 and 5 of mannuronic acid 

and glucuronic acid.  (C)  CD spectra and representative UV-Visible spectra 

of Manucol LD and Epimerised Manucol LD.  (D) Ferritin expression in RKO 

cells incubated with iron +/- Manucol LD and EpLD.  Data points represent 

mean fold change in protein expression, normalised to β-actin, relative to 
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control.  Error bars denote ± SEM, * represents statistical significance p < 

0.005 vs iron only control and n = 3. 

 


