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Abstract: This paper is concerned with the three dimensional interaction and coalescence of two 

bubbles subject to buoyancy and the dynamics of the subsequent joined bubble using the 

boundary integral method (BIM). An improved density potential method is implemented to 

control the mesh quality. It helps to avoid the numerical instabilities which occur after 

coalescence. Numerical convergence tests are conducted in terms of mesh sizes and time steps. 

The 3D numerical model agrees well with an axisymmetric BIM model for axisymmetric cases as 

well as experimental results captured by high-speed camera. The bubble jetting, interaction and 

coalescence of the two bubbles depend on the maximum bubble radii, the centre distance between 

two bubbles at inception and the angle β between the centre line and the direction of buoyancy. 

We investigate coalescence of two bubbles for β = 0, π/4, and π/2, respectively, and at various 

centre distances at inception. Numerical results presented include the bubble and jet shapes, the 

velocity and pressure fields surrounding the bubbles, as well as the time histories of bubble 

volumes, jet velocities and positions of centroid of the bubble system. 

Key words: Bubble dynamics; Three dimensional coalescence; Boundary integral method; 

Improved density potential control 

 

1. Introduction 

Studies on bubble dynamics are associated with many problems, such as underwater 

explosion bubbles (Cole, 1948; Klaseboer et al., 2005), cavitation bubbles (Brennen, 1995), and 

airgun bubbles for seabed exploration (Cox et al., 2004). The above mentioned fields involve 

multiple-bubble interactions which has aroused many researchers’ interest. 

The basic case is the interaction between two equally sized bubbles without gravity. Two 

bubbles are incepted simultaneously and repel each other in the expansion phase. During the 

collapse phase, the bubbles tend to form jets towards each other (Mitchell and Hammitt, 1973; 

Blake et al., 1993). The dynamics of each bubble is the same as that of the one near a plane rigid 

wall placed midway between the two bubbles (Tomita et al., 1990; Cui et al., 2016). In fact, 

dynamics in the bubble-bubble interaction relates to the relative size of bubbles, the distance 

between two bubbles and the difference in the bubble inception time (Fong et al., 2009; Han et al., 
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2015a). Many researchers have investigated the interaction between two bubbles and the results 

obtained have illustrated the complex nature of the interaction. The key experimental studies on 

two-bubble interaction are those of Lauterborn (1982), Tomita et al. (1990), Bremond et al. 

(2006), Fong et al. (2009), Chew et al. (2011), Hsiao et al. (2013) and Han et al. (2015a). In the 

work by Fong et al. (2009), the interaction between two similarly sized bubbles was investigated 

and different bubble behaviors were classified in a graph. Jet towards, jet away, coalescence and a 

behavior termed the ‘catapult effect’ were observed. There are also some numerical studies on 

two-bubble interaction (Blake et al., 1993; Bremond et al., 2006; Fong et al., 2009; Hsiao et al., 

2013; Han et al., 2015a; Han et al., 2015b). In the previous works, the high-speed jet for bubbles 

with phase difference or size difference has attracted much attention. There are few studies 

focused on the coalescence of two bubbles, especially in a gravity field. 

Two-bubble coalescence occurs if two bubbles are quite close to each other (Lal and Menon, 

1996, Fong et al., 2009; Chew et al. 2011; Cui et al., 2016). Earlier examination on coalescence 

of two bubbles was found in Lal and Menon (1996). They carried out small scale experiments 

with two underwater explosion bubbles in a water tank. They conducted experiments for both 

in-phase and out-of-phase explosions. The jets formed inside the coalesced bubble are not visible 

in the experiment. Fong et al. (2009) observed the ‘swelling’ of the middle section of the resulting 

coalesced bubble (spark-generated bubble), followed by two jets formed along the centre line and 

contact at the mid-point. Similar phenomena are observed by Cui et al. (2016). They also stated 

that the coalesced bubble sides are associated with smaller curvature radii and should collapse 

faster according to a proportional relationship between radius and Rayleigh collapse time. 

However, buoyancy is not significant in the above experimental studies, which plays an important 

role in underwater explosion/airgun bubble dynamics. 

Rungsiyaphornrat et al. (2003) simulated the coalescence of two explosion bubbles using the 

axisymmetric boundary integral method. They put forward the coalescence criterion, and bubble 

shapes and periods of oscillation were predicted well, compared to the experimental work of Lal 

and Menon (1996). Obviously, there are situations when the axisymmetric BIM have limitations. 

If the effect of buoyancy is not negligible, only the coalescence of two bubbles when the angle 

between the centre line and the direction of buoyancy is β = 0 can be simulated using the 

axisymmetric BIM. However, the bubble dynamics are related to the type of two-bubble 

configuration (various β), the strength of buoyancy and the distance between two inception 

centres. As far as we are concerned, there’s no such research on the effects of the above 

parameters on the dynamics of coalescence. A three dimensional model is believed to be essential 

to study the effects of the above factors on the coalescence of two bubbles. 
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In the present study, a three dimensional model is established to simulate the coalescence of 

two bubbles by using the boundary integral method. The topology treatment involved in the three 

dimensional coalescence is quite complex, which causes problems for the investigation on the 

coalescence phenomenon. An improved density potential method is implemented to avoid the 

numerical instabilities after coalescence. The validation of the numerical model is confirmed by 

comparison with axisymmetric BIM model and experiment captured by high-speed camera. The 

convergence tests are also conducted. At last, we investigate the dynamics of the coalescence of 

two bubbles in three types of configurations: the angle between the centre line and the direction 

of gravity is β = 0, π/4, and π/2, respectively. We examine the bubble shape, jet velocity and 

Kelvin impulse etc., in terms of the buoyancy parameter and the inter-bubble distance. Some new 

features of two-bubble coalesecence are observed and discussed in detail. 

 

2. Physical and mathematical model 

It is assumed that the fluid surrounding the bubbles is inviscid and incompressible, and the 

flow irrotational. Thus, the velocity potential ϕ  satisfies the Laplace’s equation: 

2 0ϕ∇ = .                                    (2.1) 

The boundary integral method is used to investigate bubble dynamics. Application of 

Green’s theorem yields the solution of Laplace’s equation in integral form as: 

( ) 1 1
( ) ( ) ( ) ( )

s

c dS
n n

ϕ
ϕ ϕ

  ∂ ∂
= −    ∂ ∂   
∫∫ - -

q
r r q q

r q r q
,               (2.2) 

where r and q are the field point and the source point, respectively, c  is the solid angle at the 

field point r, n is the outward normal of the bubble surfaces, and S is the boundary of the fluid 

domain. 

Consider the interaction and coalescence of two bubbles, which are assumed adiabatic. The 

surface tension is ignored because the Weber number associated with the cases in this paper can 

be estimated as O(10
4
). The internal pressure of the two bubbles, P1 and P2, thus satisfy  

0
0

i
i i

i

V
P P

V

λ
 

=  
 

,   i = 1, 2,                         (2.3) 

where Vi and Vi0 are the transient and initial volumes of the two bubble, respectively, and λ  is 

the ratio of the specific heats of the gas, which equal 1.25 for underwater explosions with TNT 

(Cole, 1948). A Cartesian coordinate system O-xyz is adopted with its origin at the centre of the 

centre line, the z-axis parallel to the direction of buoyancy. The bubble centres at inception are on 

the plane y = 0. The dimensional distance between two inception centres is 
bb

d . 
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The kinematic boundary condition and dynamic boundary conditions on the bubble surface 

are as follows:  

d

d t
ϕ= ∇

r
,                               (2.4a) 

2

d

d 2

i
PP

gz
t

ϕϕ

ρ ρ
∞

∇
= + − − ,                       (2.4b) 

where P∞  is the ambient pressure on the plane of the bubble center at inception, ρ is the fluid 

density, and g is the acceleration of gravity. 

Following the work by Rungsiyaphornrat et al. (2003), the internal gases reach rapidly 

equilibrium after coalescence as compared to the external liquid flow responding to changes in 

the bubble pressure, which is assumed to happen instantly. The heat transfer from the internal 

gases to the external liquid is ignored within this short time, and thus the internal energy of the 

system remains unchanged, 

( )1 2 1 1 2 2v c v vn n c T n c T n c T+ = + ,                       (2.5) 

where 1n  and 2n  are the amount of moles of gases in bubbles 1 and 2 respectively, 
v

c  the 

heat capacity at constant volume of the gas, 1T  and 2T  the temperatures of the bubbles before 

coalescence, and 
c

T  the temperature of the joined bubble. The gas inside the bubble behaves 

according to the ideal gas law, i.e. 

( )0 0 1 2c c cP V n n T= + ℜ ,                          (2.6a) 

1 1 1 1PV n T= ℜ ,    2 2 2 2PV n T= ℜ ,                    (2.6b, c) 

where 0c
P  is the stating pressure of the joined bubble, and ℜ  is the universal gas constant. The 

initial internal pressure of the joined bubble is obtained from (2.5) and (2.6)  

0 0 1 1 2 2c c
P V PV PV= + ,                            (2.7) 

We neglect the small difference in the total bubble volume just prior to and after 

coalescence, 

0 1 2c
V V V= + .                              (2.8) 

With the initial internal pressure 0c
P  and volume 0c

V  for the joined bubble, its pressure can be 

calculated in the subsequent computation through (2.3).  

We choose the maximum equivalent bubble radius that a single bubble would attain in an 

infinite field, Rm, as the reference length, liquid density ρ as the reference density, and the 

ambient pressure P∞ as the reference pressure. The following dimensionless variables are 

introduced 
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bb

bb

m

d

R
γ = ,  0P

P
ε

∞

= ,  m
gR

P

ρ
δ

∞

= ,   
*

m

Pt
t

R ρ
∞= .               (2.9) 

All the variables are nondimensionalized with the reference scales and expressed using the 

same variables subsequently, unless otherwise stated explicitly. With the strength parameter ε  

known, the dimensionless initial radius of bubble 
0

R  can be obtained through the solution of the 

following equation (Klaseboer et al., 2005) 

( ) ( )( )3 3 3

0 0 01 1R R R
λε λ− = − − .                        (2.10) 

 

3. Modelling for 3D bubble coalescence 

When the surfaces of two bubbles approach and flat each other, the liquid film between them 

becomes thinner and thinner and finally may rupture, leading to coalescence. It is difficult to 

simulate the whole process of coalescence, since the mesh size has to be small compared to the 

thickness of the thin film. We assume that the coalescence of two bubbles occurs, when the 

minimum distance between their surfaces satisfies the following condition  

( )( )min 1 2 1mind s∆= − ⋅ ≤r r n ,                         (3.1) 

where r1 and r2 are on the surfaces of bubbles 1 and 2 respectively, n1 is the normal vector at the 

surface of bubble 1. In the calculations performed in this paper, we choose 0.02s∆ = . We denote 

the minimum distance occurs at the two nodes rO1 and rO2, respectively. We then perform the 

numerical coalescence, using two approaches for axisymmetric cases and 3D cases respectively.  

3.1. Axisymmetric coalescence 

For axisymmetric cases, the mesh around the joining point rO1 appears approximately 

axisymmetric, as shown in Fig. 1. We group the neighbouring nodes to the joining point in 

various rings, with the first two rings shown in Fig. 1(a). 

 Then check the distances of the nodes of each ring to the opposite bubble surface. If every 

node r1K on ring K satisfies the following inequality but the nodes on ring K+1 do not   

 ( )min 1 2 1K Kd s= − ⋅ ≤ ∆r r n ,                          (3.2) 

ring K is chosen as the coalescence line and the surface enclosed by the line is the coalescence 

surface.  

Fig. 2(a) shows bubble shapes and two coalescence lines just prior to the coalescence and Fig. 

2(b) shows coalesced bubble shape and the ‘stitch’ line after coalescence. The coordinates of the 

nodes on the two coalescence lines are symmetric with respect to the plane x = 0, thus a smooth 

‘stitch’ line can be obtained. Fig. 2(b) also shows the amplified local view for the elements 

around the ‘stitch’ line, and a large size difference between the elements can be found. However, 
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it has little effect on the subsequent motion of the coalesced bubble.  

 

  

Fig. 1. Finding coalescence line and coalescence surface using the 1
st
 approach. (a) Sketch of the 

surrounding elements and nodes to the centre O. (b) Sketch of the coalescence surface and 

coalescence line at the coalescence time. In the computation, the angle between the centre line 

and the direction of buoyancy is β = 0 and the inter-bubble distance is γbb = 0.9. The simulation 

parameters are ε = 100, R0 = 0.1485, δ = 0. There are 642 nodes and 1280 elements on each 

bubble surface. 

  

Fig. 2. Topology treatment for the coalescence of two bubbles using the 1
st
 approach. (a) Bubble 

shapes and two coalescence lines just prior to coalescence. (b) Coalesced bubble shape and the 

‘stitch’ line after coalescence. The angle between the centre line and the direction of buoyancy is 

β = π/2 and the inter-bubble distance is γbb = 1.0. The simulation parameters are ε = 50, R0 = 

0.1911, δ = 0. There are 2562 nodes and 5210 elements on each bubble surface. 

 

3.2. 3D coalescence 

Consider strong buoyancy effect or there are boundaries near two bubbles, the shape of the 

(a) (b) 

(a) (b) 
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coalescence surface may significantly deviate from a circle or the coordinates of the nodes on the 

two coalescence lines are not symmetric with respect to the plane of symmetry. The 1
st
 approach 

cannot apply to the above cases, thus the 2
nd

 approach is given as follows. There are N1 and N2 

nodes on the surfaces of bubble 1 and bubble 2, respectively. The distance between the nodes of 

bubble 1 and those of bubble 2 is written as |rij| = |r1i-r2j| (i = 1, 2,…, N1; j = 1, 2,…, N2). When 

the coalescence criterion (3.1) is satisfied, we consider that the nodes satisfying the conditions 

1ij c s≤ ⋅ ∆r  and 2 2ij ij j
d c s= ⋅ ≤ ⋅ ∆r n  (c1 and c2 are constants, c1 = 2.0 ~ 3.0 and c2 = 2.0 ~ 3.0 

are selected to avoid numerical instabilities after coalescence) are in the coalescence surface and 

should be deleted. The triangular elements where the nodes belong are found automatically, and 

make up the coalescence surfaces S1 and S2. The lines surrounding the surfaces S1 and S2 are the 

coalescence lines l1 and l2, respectively. Then, the validity of the coalescence lines should be 

tested. For example, we sort the nodes on l1 in a certain direction and it can be judged whether S1 

is surrounded by one curve or not. If more than one curve is found to surround S1, c1 and c2 are 

increased until there’s only one curve surrounding S1. In fact, the validity of the coalescence lines 

can be assured in most cases by using the two above conditions. Fig. 3 shows the coalescence line 

and the coalescence surface obtained using the 2
nd

 approach. It’s the same case as shown in Fig. 1, 

thus the difference between these two approaches can be easily seen. The blue dots in Fig. 3(a) 

are the nodes satisfying the above conditions. All the elements where the nodes belong are found 

and make up the coalescence surface coloured blue. The line surrounding the blue surface is the 

coalescence line. Topology treatment for the coalescence of two bubbles in a horizontal 

configuration with 0.5δ =  using this approach is illustrated in Fig. 4. Fig. 4(a) shows bubble 

shapes and two coalescence lines just prior to the coalescence and Fig. 4(b) shows coalesced 

bubble shape and the ‘stitch’ line after coalescence. The amplified local view for the elements 

around the ‘stitch’ line is also given in Fig. 4(b). There’s only a small size difference between the 

elements, which benefits the accuracy of the 3D model. The topology treatment procedure can be 

summarized as follows. 
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Fig. 3. Finding coalescence line and coalescence surface using the 2
nd

 approach. (a) Sketch of the 

nodes satisfying , 1i j c s≤ ⋅ ∆r  and , 2i j
d c s≤ ⋅ ∆  (b) Sketch of the coalescence surface and 

coalescence line at the coalescence time. The same case as shown in Fig. 1.  

  

Fig. 4. Topology treatment for the coalescence of two bubbles using the 2
nd

 approach. (a) Bubble 

shapes and two coalescence lines just prior to coalescence. (b) Coalesced bubble shape and the 

‘stitch’ line after coalescence. The angle between the centre line and the direction of buoyancy is 

β = π/2 and the inter-bubble distance is γbb = 1.0. The simulation parameters are ε = 50, R0 = 

0.1911, δ = 0.5. There are 2562 nodes and 5210 elements on each bubble surface. 

 

Pre-coalescence disposal  

The nodes 
1 1 1

1 2, , , mM M M⋯  belong to l1, and 
2 2 2

1 2, , , nM M M⋯  belong to l2. The numbers 

of the nodes on l1 and l2 are m and n, respectively. At first, the nodes on each line must be sorted 

in the same direction (clockwise or anticlockwise). Then compare the numbers of the nodes on l1 

and l2. If m = n, turn to the next step. If the numbers of nodes on the two lines do not match, e.g. 

m < n, additional nodes are inserted along the appropriate line segments on l1 to bring the 

(a) (b) 

(a) (b) 
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numbers to par. After inserting nodes on l1, nodes are unevenly distributed. Cubic spline 

interpolation is used to redistribute the nodes. 

Coalescence disposal  

Now the numbers of the nodes on the two coalescence lines are the same and nodes are 

evenly distributed. A new set of nodes is then created at the midpoints between the corresponding 

1

iM  and 2

iM  nodes. A ‘stitch’ line is thus obtained. To avoid mesh distortion after the 

coalescence, the ‘stitch’ line is smoothed based on the moving least square method. 

Mesh and nodes renumbering 

The nodes on the coalescence surface and on the coalescence line are all deleted. The 

elements on the coalescence surface are also deleted. The remaining nodes and the nodes on the 

‘stitch’ line are distributed over the coalesced bubble surface. Then we renumber all the nodes 

and update the numbers of the nodes belonging to the remaining elements according to the new 

set of node numbers. At last, the element numbers are updated. Thus the information of the 

coalesced bubble is obtained. 

 

4. Mesh quality control after coalescence 

In the simulation for the coalescence of two bubbles, a smoother should be applied to avoid 

numerical instabilities like mesh distortion. After jet forms inside the coalesced bubble, the 

overcrowding of the nodes at the jet tip may occur which leads to a poor quality mesh. A few 

numerical techniques are thus implemented to solve the above problems. Details are given as 

below.  

4.1. Bubble surface interpolation 

 The bubble surface is interpolated using a moving least square method following Zhang et 

al. (2001) and Wang (2005). The coordinate of node A is 
0

r  and its surrounding elements need 

smoothing. A local Cartesian coordinate system, O-XYZ, is introduced, with its origin O at the 

point A, and its Z-axis along the normal direction 
0

n . A second order polynomial is implemented 

for the bubble surface as follows, 

2 2

1 2 3 4 5 6( , )Z f X Y X XY Y X Yα α α α α α= = + + + + + .            (4.1) 

The coefficients 
1 2 6
,α α α⋯  are related to the neighboring nodes within 

max
s  from node A 

and 
max

s  is twice of the average distance from the surrounding nodes to node A. X, Y and Z are 

the coordinates in a local coordinate system. There are 
a

N  nodes near node A, and the error 

function associated with the moving least-square method is thus defined as  
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2

1 2 3 4 5 6

1

( , , , , , ) [ ( , ) ]
aN

k k k k

k

W f X Y Zα α α α α α
=

Ε = −∑ .               (4.2) 

k
W  is the weighted function of node 

k
r . A spline function is chosen as the weighted 

function as follows 

2 3

2 3

2 1
4 4 ( )

3 2

4 4 1
4 4 ( 1)

3 3 2

( 1)0

k

s s s

W s s s s

s


− + ≤




= − + − < ≤


>



,                   (4.3) 

where 
max

s
s

s
= ， 0 ks = −r r

。 

The coefficients 
1 2 6
,α α α⋯  are determined by setting 0

j
α

∂Ε
=

∂
, yielding 

6

1

, ( 1,2, ,6)
ij j i

j

A B iα
=

= =∑ … ,                        (4.4) 

where 
ijA  are 

i
B  given as below 

1 1

1 2 3

2 2

4 5 6

,

1, ,
( 1, 2, )

, ,

a aN N

ij k kj ki i k k ki

k k

k k k k k

a

k k k k k k k

A W B W Z

X Y
k N

X X Y Y

ζ ζ ζ

ζ ζ ζ

ζ ζ ζ

= =

= =

= = = 
=

= = = 

∑ ∑

…

.            (4.5) 

The corresponding velocity potential distributed over the bubble surface can be obtained in 

the same manner.  

4.2. Mesh density control 

If the true velocity is used to update the bubble surface in the BIM computation, nodes 

would move from the positions with low velocity potentials to those with high velocity potentials. 

With such poor quality mesh, obviously, both computational efficiency and accuracy decrease. 

For axisymmetric BIM model, nodes are evenly distributed by applying cubic spline interpolation, 

but it’s hard to maintain a uniform mesh on the surface of a three dimensional model. To solve the 

problem, Wang et al. (2003) proposed an elastic mesh technique (EMT) for improving the mesh 

quality. Based on the idea of the EMT, Zhang et al. (2015) put forward a density potential method 

(DPM). In the previous works, the bubble surface was advanced with the normal velocity plus an 

artificial tangential velocity. The tangential velocity in the EMT is obtained by minimizing the 

total elastic energy stored in each segment of the mesh. While in the work by Zhang et al. (2015), 

the tangential velocity is constructed by introducing a density potential and the quality of the 
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mesh is evaluated by the density potential. The mesh nodes can move in tangential directions to 

any target locations by using DPM, because the selected density potential can be related to not 

only the mesh size but other factors like the curvature.  

For the coalescence problem, a high quality mesh of the bubble surface is maintained by 

implementing an improved DPM. The theory of the DPM is described as follows. A density 

potential ψ  is introduced and a uniform density field represents a uniform mesh. If the density 

field is non-uniform, there will be a gathering of nodes around the zone with high density 

potential. Therefore, the DPM velocity comprising the normal velocity and the calculated 

tangential velocity is used to update the bubble surface with an ‘optimum’ mesh in the new time 

step. An ‘optimum’ mesh can be obtained by minimizing the variance of ψ . The variance is 

expressed as ( ) ( )( )
2

d
S

D E sψ ψ ψ= −∫ , where ( )E ψ  is the mean value of ψ , defined as 

( ) = d /
S

E s Sψ ψ∫ . The optimum mesh (a uniform mesh) can be obtained by minimizing the 

variance ( )D ψ , therefore the derivative of ( )D ψ  with respect to ( , , )
i i i i

u v w=u  equals 0, 

yielding 

( ) ( ) ( )
0, 0, 0

i i i

D D D

u v w

ψ ψ ψ∂ ∂ ∂
= = =

∂ ∂ ∂
.                       (4.6) 

In the calculation, the normal component of the imaginary DPM velocity must be identical to 

the true normal velocity (
DPM

ϕ⋅ ∇ ⋅u n = n ), which is based on the level set technique (Sussman 

et al., 1994; Sussman et al., 1999). Then both the evolution of bubble surface and a uniform mesh 

are maintained. Overall, the DPM velocity 
DPM

u  is composed of the imaginary tangential 

velocity τu  and the true normal velocity 
n

u , and can be expressed as  

DPM nτ τ

ϕ∂
= + = +

∂
u u u u

n
.                              (4.7) 

To calculate tangential velocity τu  of each node on bubble surface, an iterative method is 

adopted and the iteration procedure is given as below (Zhang et al., 2015) 

( )1i i i

DPM

k
t

t
τ τ ψ+   = ℑ + ∇ + ∆  ∆ 

u u r u ,                      (4.8) 

where the superscript represents the number of iteration, 30 is chosen in the present paper; r is the 

position vector of node on bubble surface at the moment; the function ( )( )=ℑ − ⋅x x x n n  

projects the vector x onto the tangential plane of the surface; k is the iteration step length factor 

and k = 0.2. Obviously, nodes will gather around the zone with higher ψ  if they are updated 
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using the tangential velocity obtained by the 2
nd

 term on the right hand. If the density field is 

uniform, the tangential velocity obtained equals zero. 

In this study, the density potential of each node ψ  is calculated through the following 

equation 

ele

,

1

ele

N

i i j

j

i

A

N
ψ

=

Θ ⋅

=

∑
,                           (4.9) 

where Nele is the number of the elements connected with node i, Ai,j is the area of the j
th

 element, 

and 
i

Θ  is a weight function of node i. The selection of Θ  is related to the research object. For 

the problem in this paper, different weight functions are selected before and after the coalescence 

to control the mesh quality. Before coalescence occurs, the distance between two bubbles 

decreases in the expansion phase until the coalescence criterion is satisfied. In order to decrease 

numerical errors, nodes are expected to gather to the coalescence zone, and the element size is 

thus smaller than the minimum distance between the two bubbles. Besides, we also consider the 

curvature κ . Therefore, 
i

Θ  before the coalescence is selected as 

,

1 1 1
N( ) N( )

2 min( ) 2
i i

i jd
κΘ = + ,                     (4.10) 

where N represents the normalization operator. 

Jet forms in the collapse phase of the coalesced bubble. A non-uniform mesh is more 

suitable for a bubble surface with a varying curvature and a finer mesh should be used for the part 

of the bubble surface where the curvature is large, such as around the jet surface. Therefore, 
i

Θ  

after the coalescence is selected as 

1 1
N( ) N( )

2 2
i i iϕ κΘ = + .                       (4.11) 

The DPM velocity 
DPM

u  comprising the tangential velocity obtained τu  and the true 

normal velocity 
n

u  is adopted to update the bubble surface, and dynamic boundary condition on 

the bubble surface (2.4b) is thus rewritten as 

2

d

d 2

l

DPM

PP
gz

t

ϕϕ
ϕ

ρ ρ
∞

∇
= ∇ ⋅ − + − −u .                 (4.12) 

The comparison of the mesh on the bubble surface just before coalescence is given in Fig. 5. 

The bubble surface is updated using the real velocity, the hybrid approach velocity (Wang and 

Manmi, 2014) and the improved DPM velocity, respectively. Before coalescence, there’s little 

difference between Fig. 5(a) and Fig. 5(b), and a uniform mesh is observed. Compared with the 
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first two frames, there’re more nodes gathering on the coalescence surfaces by using an improved 

DPM, as shown in Fig. 5(c). The non-uniform mesh at the coalescence point is good for the 

subsequent computation. Obviously, the movement of the nodes on bubble surface can be 

controlled by using an improved DPM.  

 

   

Fig. 5. The comparison of the mesh on the bubble surface at t* = 1.08 (just before coalescence) 

using (a) the real velocity, (b) the hybrid approach velocity and (c) the improved DPM velocity. 

In the computation, the angle between the centre line and the direction of buoyancy is β = π/4, 

and the parameters are ε = 50, R0 = 0.1911, γbb = 1.0 and δ = 0.5. 

 

The comparison of the mesh on the bubble surface in the collapse phase is given in Fig. 6. A 

jet forms at the bubble bottom at this moment. After coalescence, the elements near the ‘stitch’ 

line are relatively larger. If the bubble surface is updated using the real velocity, too many nodes 

are gathering rapidly at the jet tip vicinity and mesh distortion occurs around the ‘stitch’ line, as 

shown in Fig. 6(a). This problem can be solved using the hybrid EMT approach. The hybrid EMT 

approach were applied every 4 time steps. As shown in Fig. 6(b), the mesh quality around the 

‘stitch’ line is well controlled; however, fewer nodes at the tip vicinity may lead to accuracy 

decrease. Fig. 6(c) shows the mesh on the bubble surface using the improved DPM velocity. A 

non-uniform mesh is obtained, which is suitable for capturing the jet evolution. Obviously, the jet 

surface is smoother and with finer mesh than the first two methods.  

 

   

Fig. 6. The comparison of the meshes of the bubble surface at t* = 2.15 using (a) the real velocity, 

(a) (b) (c) 

(a) (b) (c) 
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(b) the hybrid EMT approach velocity and (c) the improved DPM velocity. The same case as 

shown in Fig. 5. 

 

5. Validation of the numerical model 

5.1. Comparison to axisymmetric BIM model and convergence tests 

The convergence test of the numerical model has been performed for the case shown in Fig. 

1 at various numbers of surface nodes, N = 1002, 1442 and 2562, respectively. The axis 

connecting initial bubble centres is parallel to the direction of buoyancy (β = 0), and two jets 

shooting towards are observed in the collapse phase, contacting in the middle without the effect 

of buoyancy. The bubble shapes at the end of the collapse phase at t* = 2.30 are illustrated in Fig. 

7, compared with the corresponding axisymmetric result (red dashed line). The 3D results are 

convergent to the mesh size and approach to the axisymmetric result. The presence of more nodes 

makes better regulation of the jet. N=2562 is selected in the following simulation for accuracy. 

 

   

Fig. 7. The bubble shapes at the end of the collapse phase at t* = 2.30 with various numbers of 

nodes for the case shown in Fig. 1: (a) N = 1002, (b) N = 1442 and (c) N = 2562, compared with 

the axisymmetric model (red dashed line). 

 

5.2. Comparison with experiments 

The 3D results are compared with the experiment captured by high-speed camera to validate 

the numerical model. Bubbles are generated via spark discharge in a transparent water tank 

(500×500×500 mm
3
) and the discharge voltage is 300V. Series connection is used to generate 

in-phase bubble pairs and the angle between the centre line and the direction of buoyancy is β = 

π/2. In the experiment, the maximum radius of two bubbles is about 10.50mm, and their initiation 

distance is 5.80mm. In the computation, the dimensionless inter-bubble distance is 0.55
bb

γ =  

and the parameters used are
0

100, 0.1485Rε = = . The buoyancy parameter is δ = 0.0319. 

 

(a) (b) (c) 
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(a) 

   

   

(b) 

Fig. 8. Comparison of (a) the experiment with (b) the BIM computation for bubble shapes at 

various times for the coalescence of two bubbles in a free field. In the computation, the 

parameters used are
0

100, 0.1485, 0.0319Rε δ= = =  and the dimensionless inter-bubble 

distance measured in the experiment is 0.55
bb

γ = . The frame number is placed at the corner of 

each frame, and its corresponding time is marked in italic font. 

  

Fig. 8 shows the comparison of the experimental and the numerical results for two in-phase 

equally sized bubbles with weak buoyancy. The bubble shapes are compared at representative 

(a-1) (a-2) (a-3) 

(a-4) (a-5) (a-6) 

0.29ms 0.80ms 1.31ms 

2.24ms 2.43ms 2.51ms 

(b-1) (b-2) (b-3) 0.28ms 1.30ms 0.80ms 

(b-4) 2.22ms (b-5) 2.43ms (b-6) 2.49ms 
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times with slight differences between the experiment and computation. In the experiment, the 

coalescence doesn’t occur instantaneously. The bubble surfaces flatten and form a liquid film 

between them and the rupture of the liquid film leads to coalescence (see Fig. 8(a-1) - Fig. 8(a-2)). 

After coalescence, subsequent evolution of the coalesced bubble leads to the swelling of the 

bubble surface near the coalescence position due to inertia (see Fig. 8(a-3)). Coalescence makes 

the coalesced bubble elongated along the axis of symmetry, and the elongated ends collapse faster 

(see Fig. 8(a-4)). In the collapse phase of the coalesced bubble, two jets in contrary direction are 

formed (see Fig. 8(a-5)). As shown in Fig. 8(a-6), the jets are about to contact in the middle of the 

coalesced bubble at 2.51ms. In Fig. 8(a-4) - Fig. 8(a-6), a ring surrounding the bubble is observed, 

because the radial flow outwards from the axis results in the separation of a portion of the 

coalescence position. The BIM computation is illustrated in Fig. 8(b), and the results show 

favourable agreement with the experiment. At the first time sequence, the coalescence criterion is 

satisfied in the numerical simulation and the interfaces between two bubbles become flattened. 

Similar to Fig. 8(a-3), a swelling of the bubble surface near the coalescence position is 

reproduced in Fig. 8(b-3). Then bubble comes into the collapse phase. The left and right sides of 

the coalesced bubble with higher curvature collapse faster (Vogel et al., 1989), thus two jets 

directed horizontally are produced. Two jets are about to contact at 2.49ms (as shown in Fig. 

8(b-6)). In the numerical simulation, coalescence occurs instantaneously and the ring observed in 

the experiment cannot be obtained.  

The energy of the bubble system and the total bubble volume versus time are illustrated in 

Fig. 9, and coalescence point is marked with a red dashed line. At the coalescence point, we 

notice a very small 0.03% drop of the total energy and a small 3% difference in the total bubble 

volume. Fig. 9 also shows that the total energy is always conserved throughout the simulation, 

and fluctuations of the total energy are within 1%, showing the high accuracy of the present 

model. 
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Fig. 9. Time histories of total energy, potential energy, kinetic energy and total bubble volume. 

Coalescence point is marked.  

     

As initial and boundary conditions are not precisely known for the experiment, the 

agreement between experimental and numerical results seems reasonable. Moreover, the 

coalescence of two bubbles is equivalent to instantaneous film rupture in the BIM computation, 

while the liquid between the interfaces of two bubbles is gradually squeezed out in the 

experiment, so a slight difference is found in the expansion phase after the coalescence. Generally, 

the numerical results match the experimental observations well and the main features are well 

modelled in the BIM computation. Validity of the present model is thus proved. 

Obviously, the moment when coalescence occurs is sensitive to the value of s∆ . However, 

it remains unknown whether the value of s∆  affects the main features of the coalesced bubble. 

The dependency of the numerical results on coalescence criterion s∆  has also been investigated. 

s∆  is selected as 0.02, 0.01 and 0.008 and bubble shapes at t = 2.22ms and t = 2.49ms are 

compared in Fig. 10. It can be seen that bubble shapes tend to coincide with the decrease of s∆ . 

Considering the mesh size and the accuracy of the 3D numerical model, 0.02s∆ =  is selected as 

the coalescence criterion in this paper.  

 

  

(a) 
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(b) 

Fig. 10. Comparison of bubble shapes with different coalescence criterions (a) =0.01s∆  (b) 

=0.008s∆  at 2.22ms and 2.49ms, respectively.  

 

6. Axisymmetric coalescence of two bubbles  

Axisymmetric coalescence of two bubbles are considered, for which the centre line of two 

bubbles at inception is parallel to buoyancy (β = 0). Analyses are carried out in terms of the 

buoyancy parameter δ and the inter-bubble distance γbb. 

6.1. Effects of buoyancy 

Case 1: 
0

50, 0.1911, 0.1, 0.6
bb

Rε δ γ= = = =
 

In this case, the inter-bubble distance is 0.6
bb

γ = , the buoyancy parameter is 0.1δ =  and 

axisymmetric coalescence of two bubbles is illustrated in Fig. 11. Two bubbles are incepted 

simultaneously and expand rapidly. The liquid between two bubbles is gradually squeezed out 

and the film thinning is observed. As shown in Fig. 11(a), the coalescence criterion is satisfied 

while they are in the expansion phase, and the interfaces become flattened. Afterwards, the 

coalesced bubble continues to expand and the maximum volume is attained at t* = 1.25. The 

expansion of the bottom is restrained by the weak buoyancy and the upward jet of the bubble 

bottom thus forms earlier than the downward jet of the top surface in the collapse phase. At t* = 

2.42, the two jets are about to collide with one another.  

 

  

(a) (b) 
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Fig. 11. Axisymmetric coalescence of two bubbles for 050, 0.1911Rε = = , 0.1δ =  and 

0.6
bb

γ = , during the dimensionless times t*: (a) 0.42 (just before coalescence), (b) 1.25, (c) 2.35, 

and (d) 2.42, respectively. 

     

After topology treatment for coalescence, there exists an annular indentation at the 

coalescence position. However, the subsequent evolution of the coalesced bubble results in a 

swelling of the bubble surface (see Fig. 11(b)). The velocity direction and magnitude and the 

amplified local view for the flow in the thin gap between the two bubbles are given in Fig. 12 to 

explain the phenomenon. In the expansion phase, the bubbles flatten and form a thin liquid film. 

The film thinning is driven by inertia of the liquid (Bremond et al., 2006). At the coalescence 

point, the flow in the thin gap between two bubbles moves radially outwards from the axis (see 

Fig. 12(b)), and the velocity magnitude of the flow around the ‘stitch’ line is the largest (see Fig. 

12(a)). Therefore, the bubble surface at coalescence position gains a larger radial velocity, leading 

to the swelling in Fig. 11(b). Fig. 12 also suggests the fact that the ring in the experiment is 

caused by the radial flow. 

 

(c) (d) 
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Fig. 12. (a) The velocity direction and magnitude for the case in Fig. 11, at the dimensionless 

time t* = 0.42 (just before coalescence), and (b) the amplified local view for the flow in the thin 

gap between the two bubbles.  

 

Case 2: 
0

50, 0.1911, 0.5, 0.6
bb

Rε δ γ= = = =  

  

  

(a) (b) 

(c) (d) 

(a) (b) 
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Fig. 13. Axisymmetric coalescence of two bubbles for 050, 0.1911Rε = = , 0.5δ =  and 

0.6
bb

γ = , during the dimensionless times t*: (a) 0.45 (just before coalescence), (b) 1.32, (c,d) 

2.00, (e,f) 2.25 and (g,h) 2.44, respectively, compared with the axisymmetric model (red dashed 

line). 

 

In this case, the inter-bubble distance keeps 0.6
bb

γ = , while the buoyancy parameter 

increases to 0.5δ = . The buoyancy effect on the bubble is quite strong compared with case 1. 

Coalescence of two bubbles is illustrated in Fig. 13, compared with the axisymmetric model (red 

dashed line). Favourable comparison of bubble shape is observed. The small discrepancy between 

the two models is attributed to the difference in the mesh size. In the 3D simulation, a finer mesh 

is used for the jet surface to capture the jet evolution accurately, which leads to thinning out the 

element distribution in other regions. While in the axisymmetric simulation, nodes are evenly 

distributed over the bubble surface. The simulations also supply the evolution of the pressure and 

velocity in the liquid in the collapse phase of the coalesced bubble. See more details about the 

(e) 

(g) 

(f) 

(h) 
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calculations of the velocity and pressure fields in our previous paper (Li et al., 2016). At t* = 0.45, 

the coalescence criterion is met and they are still expanding. The two coalescence surfaces arch 

up slightly. Afterwards, the coalesced bubble continues to expand. When the bubble attains the 

maximum volume at t* = 1.32, the expansion of the bottom is restrained by the strong buoyancy. 

In the collapse phase, only an upward jet is observed. Fig. 13(d, f, h) shows the pressure and 

velocity fields after the upward jet formation. The velocity field is shown in the left half, and the 

pressure field is shown in the right half. From the velocity and pressure fields at t* = 2.00, it can 

be seen that the jet formation is induced by the pressure gradient in the flow field. As the jet 

evolves, the fluid is drawn rapidly into the jet zone and a high-pressure region is gradually 

formed below the coalesced bubble. Jet formation is now sustained by the high pressure building 

up below the coalesced bubble (see Fig. 13(e)). Just prior to the jet impact at t* = 2.44, the 

computation is stopped. An upward migration of the high-pressure region is observed and a 

crown-like skirt surrounding the liquid jet is formed. 

What calls for special attention is the crown-like skirt at the base of the jet observed in Fig. 

13(e). It’s reckoned that this phenomenon is similar to the re-entrant jet in the work by Zhang et 

al. (2013). The crown-like skirt is actually the secondary jet of the coalesced bubble, which is 

related to the high-pressure region below the bubble (see Fig. 13(f)). The high-pressure region 

drives the advancing of the upward jet and also induces a wider secondary jet at the base of the 

upward jet.  

 

  

Fig. 14. Effects of buoyancy parameter on velocity of the upward jet with (a) γbb = 0.6 and (b) γbb 

= 1.0. The parameters used are 050, 0.1911Rε = = .  

 

Without considering the buoyancy effect, two jets shooting towards each other are formed 

(a) γbb = 0.6 (b) γbb = 1.0 
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and contact in the middle of the coalesced bubble (see Fig. 7 and Fig. 8). If the effect of the 

buoyancy is considered, as the two cases given above, the bottom surface forms jet earlier while 

the top surface forms jet later. Therefore, the contact point of the two jets migrates upward with 

increasing buoyancy parameter δ . If the buoyancy parameter increases to a certain value, only 

an upward jet is observed. Effects of buoyancy parameter δ  on velocity history of the upward 

jet are investigated. With γbb = 0.6 and γbb = 1.0, the histories of the upward jet velocity for 

various buoyancy parameters δ  are illustrated in Fig. 14. The varying pattern of the jet velocity 

history with γbb = 0.6 is the same as that with γbb = 1.0. The increase of the buoyancy parameter 

δ  makes the jet velocity at the impact decrease, but has little effect on the jet impact moment.  

6.2. Effects of inter-bubble distance 

Case 3: 
0

50, 0.1911, 0.5, 1.0
bb

Rε δ γ= = = =  

 

  

  

(a) (b) 

(c) (d) 
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Fig. 15. Axisymmetric coalescence of two bubbles for 050, 0.1911Rε = = , 0.5δ =  and 

1.0
bb

γ = , during the dimensionless times t*: (a) 1.10 (just before coalescence), (b) 1.30, (c,d) 

2.00 and (e,f) 2.38, respectively, compared with the axisymmetric model (red dashed line).  

 

In this case, the inter-bubble distance is 1.0
bb

γ =  and the buoyancy parameter is 0.5δ = . 

Coalescence of two bubbles is illustrated in Fig. 15, compared with the axisymmetric model (red 

dashed line). Favourable comparison of bubble shape is observed. Compared with case 2, the 

increase of the inter-bubble distance delays the coalescence of two bubbles. The bubble shapes 

just before coalescence at t* = 1.10 are shown in Fig. 15(a) and an obvious upward migration of 

the two bubbles is observed due to the strong buoyancy. The maximum volume of the coalesced 

bubble is attained at t* = 1.30 and an annular indentation at the coalescence point still exists at the 

moment. In the collapse phase, an upward jet is formed due to the effect of the buoyancy (see Fig. 

15(c)). At the jet impact, a high-pressure region is formed below the coalesced bubble (similar to 

that in case 2). However, the early occurrence of the jet impact in this case makes it impossible to 

observe the crown-like skirt in case 2. 

 

(e) (f) 
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Fig. 16. Effects of inter-bubble distance on jet velocity with (a) 0δ = , (b) 0.1δ =  and (c) 

0.5δ = . The parameters used are 050, 0.1911Rε = = . 

 

Effects of inter-bubble distance γbb on velocity variation of the upward jet are investigated. 

With δ = 0, δ = 0.1 and δ = 0.5, the time histories of the upward jet velocity for various 

inter-bubble distances γbb are illustrated in Fig. 16. The same varying pattern of the jet velocity is 

obtained. In fact, the increase of γbb represents weak mutual interactions. If the buoyancy 

parameter δ is fixed, the increase of γbb leads to earlier contraction of the coalesced bubble and 

earlier occurrence of jet impact. It’s found that the jet velocity at the impact increases with γbb.  

 

7. 3D coalescence of two bubbles in a horizontal configuration 

In this section, we perform the numerical studies of the coalescence of two bubbles in a 

horizontal configuration, where the angle between the centre line and the direction of buoyancy is 

β = π/2. The effects of the buoyancy parameter δ and the inter-bubble distance γbb are investigated. 

Calculations also provide information on the velocity and pressure fields surrounding the bubbles. 

(c) δ = 0.5 

(a) δ = 0 (b) δ = 0.1 
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Meanwhile, time histories of the total bubble volume, centroid motion and Kelvin impulse are 

also illustrated. 

 

  

  

  

Fig. 17. 3D coalescence of two bubbles in a horizontal configuration for γbb = 0.6, δ = 0.2. The 

corresponding time is (a) t* = 0.44 (just before coalescence), (b) t* = 1.26, (c,d) t* = 2.36 and (e,f) 

t* = 2.44. In the computation, the parameters used are 050, 0.1911Rε = = . 

     

    In the first case, the inter-bubble distance is γbb = 0.6 and the buoyancy parameter is δ = 0.2. 

(a) (b) 

(c) (d) 

(e) (f) 
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The bubble shapes at typical times are shown in Fig. 17. At t* = 0.44 just before coalescence, the 

buoyancy has little effect on the bubble shapes. After coalescence, a swelling near the 

coalescence position is observed at t* = 1.26 when the maximum volume is attained. As 

mentioned above, the elongated ends along the center line should collapse faster and form 

horizontally directed jet. In the presence of the buoyancy, however, the parts that collapse faster 

move downward along the coalesced bubble surface. In Fig. 17 (c), two jets are formed and 

directed towards each other with a small vertical deviation. The collapse draws the fluid into the 

jet zone rapidly, and the increased fluid mobility near the jet leads to the formation of 

high-pressure region. In Fig. 17 (d), there exist three high-pressure regions at t* = 2.36, two near 

the two jet zones and one below the coalesced bubble. The high-pressure regions near jet zones 

drive the two jets and the pressure peaks are the highest in the flow field. At t* = 2.44 just before 

the collision of the two jets, an indentation on the bottom surface is observed (see Fig. 17 (e)). 

The pressure around the jet zones and below the bottom increases. At this moment, the pressure 

peak of the high-pressure region below the bubble is the highest in the flow field. It can be 

predicted that the upward jet will be sustained by the high pressure building up below the bubble. 

 

  

  

(a) (b) 

(c) (d) 
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Fig. 18. 3D coalescence of two bubbles in a horizontal configuration for γbb = 0.6, δ = 0.5. The 

corresponding time is (a) t* = 0.44 (just before coalescence), (b) t* = 1.29, (c,d) t* = 1.97 (e,f) t* = 

2.04 and (g,h) t* = 2.36. In the computation, the parameters used are 050, 0.1911Rε = = . 

     

If γbb = 0.6 and δ = 0.5, the features of the coalescence change a lot. The bubble shapes at 

typical times are illustrated in Fig. 18, and the velocity and pressure fields are also given. The 

computation is stopped at t* = 2.36. Bubble shapes just before coalescence are similar to those in 

Fig. 17(a). After coalescence, the joined bubble attains the maximum volume at t* = 1.29. From 

the above discussions, it’s noted that the presence of buoyancy affects the locations where jets 

originate. Affected by the strong buoyancy in this case, the locations where two jets originate 

approach to the bubble bottom. In the collapse phase, two jets are formed and the bubble bottom 

contracts rapidly due to the pressure gradient. At t* = 1.97, two jets are directed towards each 

other with large vertical deviation, and an upward jet with a flattened tip originates on the bubble 

bottom. As shown in Fig. 18(d), the pressure gradient below the coalesced bubble is obvious, 

leading to the upward jet formation. As the upward jet evolves, a high-pressure region is thus 

gradually formed below the coalesced bubble (see Fig. 18(f)). Meanwhile, the directions of 

another two jets are affected by the buoyancy. Afterwards, the high-pressure region drives the 

(e) 

(g) 

(f) 

(h) 
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advancing of the upward jet. At t* = 2.36, a larger high-pressure region is observed and the 

pressure peak increases. In this case, there is no high-pressure region formed near the oblique jet 

zone in the whole process. 

 

  

  

Fig. 19. Front view of the jet formation in the coalescence of two bubbles in a horizontal 

configuration with different buoyancy parameters (a) δ = 0.1 (b) δ = 0.2 and (c) δ = 0.5 when γbb 

= 0.6. Side view of the jet formation with δ = 0.5 is shown in (d). In the computation, the 

parameters used are ε = 50, R0 = 0.1911. The corresponding time is (a) t* = 2.42 (b) t* = 2.44 and 

(c,d) t* = 2.36. 

 

When γbb = 0.6, the bubble shapes at the jet impact for various buoyancy parameters δ are 

illustrated in Fig. 19. It’s known that two jets along the centre line are formed after coalescence in 

zero-buoyancy cases (see Fig. 7 and Fig. 8). When δ = 0.1, the locations where the two jets 

originate move a little downward and the two jets are directed horizontally with a small vertical 

deviation due to the weak buoyancy. If the buoyancy parameter δ increases, the locations where 

the two jets originate move downward and approach to the bottom surface. With increasing δ, the 

larger vertical deviation of the two jets and later occurrence of jet impact are noted. If the 

(a) (b) 

(c) (d) 
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buoyancy parameter increases to δ = 0.5, the two oblique jets and an upward jet are observed. 

Front view and side view of the jet formation at t* = 2.36 are shown in Fig. 19(c) and Fig. 19(d). 

We note the flattened tip of the upward jet. The middle of the upward jet is crushed by another 

two jets and an arc bulge is thus observed in Fig. 19(d). It’s reckoned that the three jets are 

merged into one upward jet and that it will finally penetrate the coalesced bubble. 

 

  

  

Fig. 20. Front view of the jet formation in the coalescence of two bubbles in a horizontal 

configuration with different buoyancy parameters (a) δ = 0.1 (b) δ = 0.2 and (c) δ = 0.5 when γbb 

= 1.0. Side view of the jet formation with δ = 0.5 is shown in (d). In the computation, the 

parameters used are ε = 50, R0 = 0.1911. The corresponding time is (a) t* = 2.33 (b) t* = 2.37 and 

(c) t* = 2.24. 

 

When γbb = 1.0, the bubble shapes at the jet impact for various buoyancy parameters δ are 

illustrated in Fig. 20. Comparing the bubble shapes to those in Fig. 19, it’s found that the vertical 

deviation of the two jets becomes larger with increasing γbb. For δ = 0.1 and δ = 0.2, the jet 

impact occurs earlier when γbb = 1.0. For δ = 0.5, as shown in Fig. 20(c) and Fig. 20(d), two jets 

are almost vertically directed. Besides, a thin upward jet originates on the bubble bottom.  

 

(c) (d) 

(a) (b) 
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(a) 

   

(b) 

   

(c)  

Fig. 21. Effects of buoyancy parameter δ on time histories of (a) the total bubble volume, (b) 

centroid motion of the bubble system along the z-axis and (c) z-component of Kelvin impulse for 
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the bubble system. 

 

For the two-bubble system in this section, the effects of δ on the total bubble volume, 

centroid motion of the bubble system along the z-axis and z-component of Kelvin impulse for 

the system are given in Fig. 21. From Fig. 21(a), it’s found that the buoyancy parameter δ has 

little effect on the coalescence point; the key factor is the inter-bubble distance γbb. Histories of 

the total volume in the expansion phase for different δ nearly coincide. With increasing δ, 

however, the maximum volume attained in the coalescence becomes larger, and a slower 

contraction is also noted. Similar results are also obtained in the axisymmetric configuration 

(not shown in this paper). Centroid motion of the two bubbles along the z-axis is shown in Fig. 

21(b). The centroid of the bubble system keeps migrating upward due to buoyancy. The upward 

velocity of the centroid increases in the whole process and a rapid rise in the upward velocity is 

observed towards the end of the collapse phase. It’s clear that the increase of δ leads to a faster 

and larger upward migration of the bubble system. Time histories of the z-component of Kelvin 

impulse for different buoyancy parameters are compared in Fig. 21(c). The whole system 

achieves a Kelvin impulse due to the buoyancy force which is related to the buoyancy parameter 

and bubble volume. The Kelvin impulse can be regarded as linear momentum of ‘the bubble’ if 

a virtual mass induced by the fluid motion is attributed to the cavity (Vogel et al., 1989). 

Therefore, the z-component of the Kelvin impulse rises rapidly in the expansion phase. However, 

the buoyancy force reduces in the collapse phase, leading to the slow increase of the Kelvin 

impulse. Since the induced virtual mass reduces during the bubble collapse and the Kelvin 

impulse increases slowly, the translational velocity of the bubble centre has to increase rapidly 

(see Fig. 21(b)). From the above discussions, it’s clear that the z-component of the Kelvin 

impulse increases faster with the increase of the buoyancy parameter δ. 
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Fig. 22. Effects of inter-bubble distance γbb on time histories of (a) the total bubble volume, (b) 

centroid motion of the bubble system along the z-axis and (c) z-component of Kelvin impulse for 

the bubble system. The buoyancy parameter is δ = 0.5. 

 

When δ = 0.5, time histories of some quantities for different inter-bubble distances are 

compared in Fig. 22. As shown in Fig. 22(a), the inter-bubble distance γbb has little effect on the 

bubble volume in the expansion phase. If γbb increases, the bubble volume decreases faster in the 

collapse phase, that is to say the increasing γbb leads to an earlier jet impact of the coalesced 

bubble. As shown in Fig. 22(b), the upward velocity of the centroid decreases with γbb. Fig. 22(c) 

suggests that the effect of the inter-bubble distance γbb on the Kelvin impulse can be neglected. In 

conclusion, the buoyancy parameter δ plays an important role in dynamic behaviours in the 

coalescence of two bubbles while the inter-bubble distance γbb affects the jet impact moment. 

 

8. 3D coalescence of two bubbles in an oblique configuration 

In this section, we perform the numerical studies of the coalescence of two bubbles in an 

oblique configuration. The angle between the centre line and the direction of buoyancy is β = π/4, 

which means two bubbles are symmetric with respect to the plane z = -x. We explore the effects 

of the buoyancy parameter δ on dynamic behaviours in this part. The inter-bubble distance is γbb 

= 0.6, bubble shapes in the 3D coalescence for δ = 0.1, 0.2 and 0.5 are given. Calculations also 

provide information on the pressure field surrounding the bubbles. Meanwhile, time histories of 

the total bubble volume, centroid motion and Kelvin impulse are compared. 

3D coalescence of two bubbles in an oblique configuration for γbb = 0.6 and δ = 0.1 is shown 

in Fig. 23. Bubble shapes at five typical times are illustrated in Fig. 23(a). In the first and second 

frames, the weak buoyancy has little effect on the bubble shapes in the expansion phase. The 
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coalescence criterion is met at t* = 0.44 and the maximum volume of the coalesced bubble is 

attained at t* = 1.26. The elongated ends of the bubble with higher curvature are marked with A 

and B (second frame) and collapse first (Vogel et al., 1989). The surrounding fluid is thus drawn 

rapidly (see the third frame). The lower part marked with B collapse faster than the upper part 

due to the buoyancy. At t* = 2.33, a jet directed diagonally towards the upper bubble is observed. 

Then a jet directed diagonally towards the lower bubble is formed. At t* = 2.42, the two jets are 

about to contact. In this process, a slight upward migration is observed due to the weak buoyancy. 

Pressure fields at the last two moments are also given in Fig. 23(b). As the collapse proceeds, two 

high-pressure regions are produced around the parts that collapse faster. In the first frame, the 

pressure peak of the lower high-pressure region is the highest in the flow field. The two 

high-pressure regions drive the advancing of the two jets. At the jet impact, there still exist two 

high-pressure regions with higher pressure peaks. Now the pressure peak of the upper 

high-pressure region is the highest in the flow field. The axis connecting initial bubble centres is 

also plotted in the second frame. The jet directed diagonally towards the upper bubble has a slight 

vertical deviation due to the weak buoyancy.  
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(b) 

Fig. 23. 3D coalescence of two bubbles in an oblique configuration for γbb = 0.6 and δ = 0.1. (a) 

Evolution of bubble shapes at t* = 0.44, 1.26, 2.00, 2.33 and 2.42. (b) Pressure fields at t* = 2.33 

and 2.42, with the axis connecting initial bubble centres plotted. In the computation, the 

parameters used are 050, 0.1911Rε = = . 

 

3D coalescence of two bubbles in an oblique configuration for γbb = 0.6 and δ = 0.2 is shown 

in Fig. 24. Bubble shapes at five typical times are illustrated in Fig. 24(a). Coalescence of two 

bubble occurs at t* = 0.45, and the maximum volume of the coalesced bubble is attained at t* = 

1.25. In the second frame, the parts marked with A and B should have collapsed first in the 

collapse phase, however, the presence of buoyancy makes the positions where jets originate move 

downward along the bubble surface (marked with A′ and B′ in the third and fourth frames, 

respectively). In the third frame, the lower part B′ contracts faster due to the buoyancy. A jet 

directed diagonally towards the upper bubble forms earlier, but with a vertical deviation. At t* = 

2.46, another jet that originates on the bubble surface A′ is observed and the two jets are about to 

collide. In this process, the upward migration of the coalesced bubble is larger than that in the last 

case. The main interest in this case is a third jet forming at the bubble bottom (shown in the last 

frame). Evolution of pressure field after jet formation is given in Fig. 24(b). In the first frame, the 

increased fluid mobility near B′ produces a high-pressure region that induces jet formation and 

sustains the advancing of the 1
st
 jet. At this moment, there also exists a high-pressure region near 

the right side of the coalesced bubble, and the pressure peak is about 1.35. The high-pressure 

region induces the formation of the 2
nd

 jet. Afterwards, the pressure peaks of the two 

high-pressure regions keep increasing, as shown in the second and third frames. Meanwhile the 

lower high-pressure region moves gradually towards the bubble bottom. At t* = 2.46, two 

high-pressure regions with higher pressure peaks are observed. Now the lower high-pressure 

region is below the bubble bottom, which leads to the formation of the 3
rd

 jet. The axis 
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connecting initial bubble centres is also plotted in the last frame. Obviously, a large upward 

migration of the coalesced bubble is observed. Besides, the 1
st
 jet directed diagonally towards the 

upper bubble has an obvious vertical deviation due to the buoyancy. 
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(b) 

Fig. 24. 3D coalescence of two bubbles in an oblique configuration for γbb = 0.6 and δ = 0.2. (a) 

Evolution of bubble shapes at t* = 0.45, 1.25, 2.00, 2.30 and 2.46. (b) Pressure fields at t* = 2.30, 

2.35, 2.40 and 2.46, with the axis connecting initial bubble centres plotted. In the computation, 

the parameters used are 050, 0.1911Rε = = . 

 

3D coalescence of two bubbles in an oblique configuration for γbb = 0.6 and δ = 0.5 is shown 

in Fig. 25. The coalescence occurs at t* = 0.45 and two slightly curved coalescence surfaces are 

observed due to the strong buoyancy. At t* = 1.30 when the maximum volume is reached, the 

bubble bottom is contracting. As shown in Fig. 25(c) - (f), two jets are formed in the collapse 

phase. The 1
st
 jet is directed diagonally towards the upper bubble. As the jet evolves, a large 

vertical deviation occurs. Afterwards, the 2
nd

 jet originates on the bottom surface. At t* = 2.47, the 

1
st
 jet is about to impact the top surface. Compared with the above cases, the upward migration of 

the coalesced bubble becomes larger with the increase of δ. Fig. 26 shows evolution of the 

pressure field surrounding the coalesced bubble. As shown in Fig. 26(a), the formation of the 1
st
 

jet is due to the high curvature of the bubble surface. Then the strong buoyancy (the pressure 

gradient) induces the 2
nd

 jet originating on the bottom surface (see Fig. 26(b)). Afterwards, a 

high-pressure region is produced below the coalesced bubble, which further drives the advancing 

of the two jets (see Fig. 26(c)). At t* = 2.47, the pressure peak in the liquid increases and the 

high-pressure region migrates upward with the bubble. The axis connecting initial bubble centres 

is also plotted in Fig. 26(d). The 1
st
 jet has a large vertical deviation due to the buoyancy.  
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Fig. 25. 3D coalescence of two bubbles in an oblique configuration γbb = 0.6 and δ = 0.5. The 

corresponding time is (a) t* = 0.45, (b) t* = 1.30, (c) t* = 1.85 (d) t* = 2.14, (e) t* = 2.30 and (f) t* 

= 2.47. In the computation, the parameters used are 050, 0.1911Rε = = . 
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Fig. 26. Pressure field surrounding the coalesced bubble after jet formation, with the parameters 

the same as in Fig. 25. The corresponding time is (a) t* = 1.85 (b) t* = 2.00 (c) t* = 2.14 and (d) t* 

= 2.47. 

 

In the coalescence of two bubbles in an oblique configuration, the positions where jets 

originate move downward along the bubble surface with increasing δ, i.e. they approach to the 

bubble bottom. The increase of δ greatly affects the upper part where jet originates and delays the 

occurrence of the jet formation; however, it promotes the jet formation on the lower part. If the 

buoyancy parameter increases to a certain value (like δ = 0.5), the positions where jets originate 

may coincide or be too close, so there will be only one jet (as shown in Fig. 25).  

The effects of δ on time histories of the total bubble volume and z-component of Kelvin 

impulse for the bubble system are similar to the above cases (not shown here). Fig. 27(a) shows 

the centroid trajectories for various δ in the xz-plane. Obviously, the centroid of the bubble 

system keeps rising due to the buoyancy, and it also moves along the x-axis. In the cases with δ = 

0.1 and δ = 0.2, the x-coordinate of the centroid is negative at the jet impact, which means that the 

centroid migrates towards the lower bubble. While in the case with δ = 0.5, it’s the other way 

around. Time histories of centroid motion of the two bubbles along the x- and z-axis are 

illustrated in Fig. 27(b) – (c), respectively. In Fig. 27(b), the centroid migrates horizontally 

(a) (b) 

(c) (d) 
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towards the upper bubble during the majority of its lifetime. After t* = 2.00, the centroid moves 

rapidly in the opposite direction, i.e. a fast horizontal migration of the centroid occurs towards the 

end of the collapse phase. The reasons are given as follows. In the expansions phase, the presence 

of buoyancy restrains the motion of the lower parts of the bubble, and the upper parts have higher 

expanding velocity. Therefore, the centroid motion migrates horizontally towards the upper 

bubble. In the collapse phase, the lower parts of the bubble collapse faster. The centroid thus 

continues to move horizontally towards the upper bubble. Towards the end of the collapse phase, 

the migration of the centroid in the opposite direction is observed. In the cases with δ = 0.1 and δ 

= 0.2, it’s related to the fast contraction of the upper parts and the formation of the 1
st
 jet (see Fig. 

23 and Fig. 24). Besides, the formation of the 2
nd

 jet promotes the centroid migration towards the 

lower bubble. In the case with δ = 0.5, the 2
nd

 jet is formed towards the end of the collapse phase 

(see Fig. 26(b)), leading to the horizontal migration of the centroid towards the lower bubble. 

However, the advancing of the 1
st
 jet has a large vertical deviation due to the strong buoyancy, 

which may retard the horizontal migration towards the lower bubble. In a word, the increasing δ 

makes the centroid migrate horizontally faster and farther towards the upper bubble during the 

majority of the bubble lifetime. In Fig. 27(c), the centroid migrates upward faster and farther with 

increasing δ.  

 

     

Fig. 27. Effects of buoyancy parameter δ  on (a) centroid trajectory in the xz-plane, (b) time 

history of centroid motion of the two bubbles along the x-axis and (c) time history of centroid 

motion of the two bubbles along the z-axis. The inter-bubble distance is 0.6
bb

γ = . 

 

9. Summary and conclusions 

A three dimensional (3D) model has been developed to simulate the coalescence of two 

bubbles, using the boundary integral method. A high quality surface mesh was maintained, using 
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a mesh control technique. Our 3D model agrees well with an axisymmetric model for 

axisymmetric cases and experiments. We analyzed the coalescence of two bubbles of the same 

size and initiated at the same time in three types of configurations. The interaction and 

coalescence of two bubbles depend on the dimensionless centre distance γbb between two bubbles 

at inception in terms of the maximum bubble radii Rm, the buoyancy parameter δ, and the angle β 

between the centre line and the direction of buoyancy. Some features of coalesecence are 

observed and the principle conclusions are summarized as follows. 

In weak buoyancy cases (δ < 0.1), if two bubbles coalesce during expansion, an elongated 

bubble is thus formed. Then two jets form on the elongated parts of the coalesced bubble surface 

during the collapse of the joined bubble.  

As the centre line of the two initial bubbles is parallel to buoyancy (β = 0), the two jets are 

in contrary direction and their velocities increase with γbb. The increase of δ promotes the upward 

jet formation, but delays the downward jet formation. If δ increases to a certain value, only an 

upward jet is formed. In some cases, the secondary upward jet of the coalesced bubble is 

observed, leading to a “crown-like” skirt at the base of the jet. 

As the centre line of the two initial bubbles is perpendular to bouyancy (β = π/2), the 

locations where jets originate move downwards and the two jets are inclined to the direction of 

buoyancy as δ increases. If γbb increases, the vertical deviation of the two jets becomes larger and 

the jet impact occurs earlier. Subject to strong buoyancy, a third jet forms directed upwards.  

In an oblique configuration (β = π/4), the centroid of the system migrates both upwards and 

horizontally. It first migrates horizontally towards the upper bubble during the majority of the 

bubble lifetime but migrates back towards the end of the collapse phase.  

In terms of the total bubble volume, δ and γbb have little effect on the bubble expansion. The 

increase of δ causes a slower bubble contraction, while the increase of γbb leads to a faster bubble 

contraction and an earlier jet impact. 

The numerical results in this paper for two-bubble coalescence subjected to strong buoyancy 

reveal some new phenomena that need to be investigated experimentally in the future. 
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