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ABSTRACT 29 

 30 

The vacuolating autotransporter (AT) toxin (Vat) contributes to Uropathogenic Escherichia coli 31 

(UPEC) fitness during systemic infection. Here we characterised Vat and investigated its 32 

regulation in UPEC. We assessed the prevalence of vat in a collection of 45 UPEC urosepsis 33 

strains and showed that it was present in 31 (68%) of the isolates. The isolates containing the vat 34 

gene corresponded to three major E. coli sequence types (ST12, 73 and 95) and these strains 35 

secreted the Vat protein. Further analysis of the vat genomic locus identified a conserved gene 36 

located directly downstream of vat that encodes a putative MarR-like transcriptional regulator, 37 

which we termed vatX. The vat-vatX genes were present in the UPEC reference strain CFT073 38 

and RT-PCR revealed both genes are co-transcribed. Over-expression of vatX in CFT073 led to a 39 

3-fold increase in vat gene transcription. The vat promoter region contained three putative 40 

nucleation sites for the global transcriptional regulator H-NS; thus the hns gene was mutated in 41 

CFT073 (to generate CFT073hns). Western blot analysis using a Vat-specific antibody revealed 42 

a significant increase in Vat expression in CFT073hns compared to wild-type CFT073. Direct H-43 

NS binding to the vat promoter region was demonstrated using purified H-NS in combination 44 

with electrophoresis mobility shift assays. Finally, Vat-specific antibodies were detected in 45 

plasma samples from urosepsis patients infected by vat-containing UPEC strains, demonstrating 46 

Vat is expressed during infection. Overall, this study has demonstrated that Vat is a highly 47 

prevalent and tightly regulated immunogenic SPATE secreted by UPEC during infection.  48 

 49 

IMPORTANCE  50 

 51 

Uropathogenic Escherichia coli (UPEC) are the major cause of hospital and community acquired 52 

urinary tract infections. The Vacuolating autotransporter toxin (Vat) is a cytotoxin known to 53 

contribute to UPEC fitness during murine sepsis infection. In this study, Vat was found to be 54 

highly conserved and prevalent among a collection of urosepsis clinical isolates, and expressed at 55 

human core body temperature. Regulation of vat was demonstrated to be directly repressed by 56 

the global transcriptional regulator H-NS and upregulated by the downstream gene vatX (a new 57 

MarR-type transcriptional regulator). Additionally, increased Vat-specific IgG titres were 58 



detected in plasma from corresponding urosepsis patients infected with vat-positive isolates. 59 

Hence, Vat is a highly conserved and tightly regulated urosepsis-associated virulence factor.60 



INTRODUCTION 61 

 62 

Urinary tract infections (UTIs) are one of the most common human infections, and affect 40-63 

50% of women and approximately 12% of men globally (1). UTIs are ascending infections and 64 

can involve infection of the bladder (cystitis), kidneys (pyelonephritis) or dissemination into the 65 

bloodstream (urosepsis). Uropathogenic Escherichia coli (UPEC) are the primary etiological 66 

agent of UTI and cause 70-90 % of all such infections (2). UPEC can survive in the urinary tract 67 

and cause disease due to a diverse range of virulence factors including fimbriae (3-6), 68 

autotransporter (AT) proteins (7-10), surface polysaccharides such as the O-antigen and capsule 69 

(11-13), iron acquisition systems (14-16) and toxins (17-21). 70 

 71 

AT proteins constitute a large family of proteins from Gram-negative bacteria that are 72 

translocated by a dedicated type V secretion system (reviewed in 22, 23-26). AT translocation 73 

also requires accessory proteins including the β-barrel assembly module (BAM) and the 74 

translocation and assembly module (TAM) (27-30). AT proteins consist of three major domains: 75 

(i) a signal peptide that targets the protein to the secretory apparatus for inner membrane 76 

translocation; (ii) a passenger domain that comprises the functional domain of the protein; and 77 

(iii) a translocator domain that inserts into the outer membrane (reviewed in 22, 23, 25, 31-33) . 78 

One major subgroup of AT proteins is the serine protease AT proteins of Enterobacteriaceae 79 

(SPATEs). SPATEs are characterised by the presence of an immunoglobulin A1-like protease 80 

domain (PF02395) within the passenger domain that contains the conserved serine protease motif 81 

GDSGS (34, 35). The first serine within this motif comprises the catalytic triad in conjunction 82 

with upstream conserved histidine and aspartate residues. SPATEs can be phylogenetically 83 

grouped into two classes (reviewed in 34, 36, 37). Class I SPATEs represent the major group of 84 

these proteins and exhibit cytotoxic activity (37-43). Class II SPATEs recognise a more diverse 85 

range of substrates including mucins (reviewed in 34, 36, 37) and immunomodulatory host 86 

proteins (44).  87 

 88 

The vacuolating AT toxin (Vat) of E. coli is a class II SPATE (34, 36, 45) that exhibits 89 

cytotoxicity to chicken embryonic fibroblast cells and contributes to avian cellulitis infection 90 

(46). The vat gene was originally identified within a pathogenicity island (Vat-PAI) from the 91 



avian pathogenic E. coli (APEC) strain Ec222 (46). The Vat-PAI is integrated into the Ec222 92 

chromosome at the thrW-tRNA site between the proA and yagU genes (45, 46). The Vat-PAI 93 

from Ec222 consists of 33 open reading frames (ORFs), with the vat gene residing at ORF#27. 94 

Only five additional ORFs in this PAI were reported to share homology with other previously 95 

known protein sequences. This includes the ORF located downstream of vat (ORF#26), which 96 

shares 44% amino acid identity to the P pilus associated transcriptional regulatory protein PapX 97 

from UPEC strain CFT073 (46). PapX belongs to the family of multiple antibiotic resistance 98 

(MarR) regulators of Enterobacteriaceae and contributes to flagella regulation by binding to the 99 

promoter region of the flhDC master regulator genes (47-49). In UPEC, the vat gene is 100 

associated with virulence and contributes to survival during murine systemic infection (50). 101 

 102 

The full-length Vat protein is ~140 kDa and is processed during translocation to release a 111.8 103 

kDa passenger domain into the extracellular milieu. Vat shares 78% identity to the APEC 104 

associated Temperature-sensitive hemagglutinin (Tsh), which is almost identical (99% amino 105 

acid identity) to the SPATE Haemoglobin binding protein (Hbp) (51, 52). Hbp has been analysed 106 

extensively in the E. coli intra-abdominal clinical strain EB1, and its crystal structure has been 107 

solved (53, 54). Tsh/Hbp possess dual proteolytic and adhesive properties (55-57). Unlike 108 

Tsh/Hbp, Vat is unable to digest casein at 37°C (45, 46).   109 

 110 

Despite these functional differences, the high protein sequence identity shared between Tsh/Hbp 111 

and Vat has led to confusion in the annotation of vat genes within E. coli genomes available on 112 

the NCBI database. For example, the CFT073 vat gene (c0393) has been annotated as hbp (58), 113 

and even referred to as tsh due to its temperature-dependent regulation (59). In addition, the vat 114 

gene from UPEC strain 536 is annotated as sepA, which encodes the Shigella extracellular 115 

protein A (45).  116 

 117 

In this study, we have examined the sequence conservation of vat genes from available E. coli 118 

genomes and compared its genomic location, with the aim to correct existing annotation errors 119 

and vat nomenclature. We also examined the role of the putative MarR regulator identified 120 

downstream of the vat gene as well as the histone-like nucleoid protein H-NS in regulation of the 121 

vat gene. Finally, we examined the prevalence, expression and secretion of Vat in a collection of 122 



UPEC urosepsis isolates, and investigated its immunogenicity by examining plasma from 123 

urosepsis patients.  124 

 125 

MATERIALS AND METHODS 126 

 127 

Ethics statement. This study was performed in accordance with the ethical standards of The 128 

University of Queensland, Princess Alexandra Hospital, Gold Coast Hospital, Queensland 129 

Health, Griffith University and the Helsinki Declaration. The study was approved, and the need 130 

for informed consent was waived by the institutional review boards of the Princess Alexandra 131 

Hospital (2008/264), Queensland Health and Griffith University (MSC/18/10/HREC). 132 

 133 

Bacterial strains and growth conditions. E. coli strains CFT073 (60), IHE3034 (61), 536 (62), 134 

MG1655 (63) and BL21 (64), as well as the E. coli reference (ECOR) collection (65), have been 135 

described previously. The 45 urosepsis UPEC strains were isolated from the blood of patients 136 

presenting with urosepsis at the Princess Alexandra Hospital (Brisbane, Australia). A matching 137 

urine sample was also cultured from each patient; in all cases the blood and urine isolates were 138 

identical as determined by virulence gene profiling. Unless otherwise stated, strains used in this 139 

study were routinely grown at 37°C on solid or in liquid Lysogeny broth (LB) supplemented 140 

with antibiotics: kanamycin (kan [100μg/mL]), ampicillin (amp [100μg/mL]) or chloramphenicol 141 

(cam [30μg/mL]). Supplementation of growth media with L-arabinose (0.2% [w/v]) or isopropyl 142 

β-D-1-thiogalactopyranoside (IPTG [1mM]) was used to induce plasmid-mediated gene 143 

expression. 144 

 145 

Bioinformatic analysis. The presence of the vat gene was determined in 77 complete E. coli 146 

genomes (listed in Table S1) available from the National Centre for Biotechnology Information 147 

(NCBI) database by BLAST analysis using the vat gene (c0393) from the CFT073 genome 148 

(Genbank accession no.: AE014075.1 (58)) as a search tool. The cut-off was set at >85% amino 149 

acid identity of the encoded protein sequence. The genomic location surrounding the vat gene in 150 

each of the vat-positive strains was investigated in Artemis (66). All vat genes identified were 151 

located on a PAI defined by the proA and yagU genes. The nucleotide sequence of each vat-152 

associated PAI was compared in EasyFig (67).  153 



A comparative protein analysis of the MarR family of transcriptional regulators (Table S2) was 154 

performed to analyse their relative phylogenetic relationship to VatX. The MarR dataset was 155 

compiled using an iterative approach that involved BLAST analysis against the 77 complete 156 

NCBI E. coli genomes listed in Table S1. Representative protein sequences, underlined in Table 157 

S2, were chosen for each MarR type regulator based on previous characterisation in the 158 

literature. These sequences included MarR from MG1655 (b1530), MprA(EmrR) from MG1655 159 

(b2684), HosA from E2348/69 (E2348C_3010), HpcR/ HpaR from strain W (WFL_22965), 160 

SlyA from MG1655 (b1642) and PapX from CFT073 (c3582). Each of the representative 161 

sequences were used to BLAST against the 77 complete E. coli genomes and 330 homologous 162 

protein sequences were identified (E<0.001). The evolutionary relationship between VatX and 163 

other representative MarR regulators, as well as the protein sequences listed in Table S2,  was 164 

inferred using ClustalΩ (68, 69) and visualised through FigTree (70).  165 

 166 

DNA manipulation and genetic techniques. DNA techniques were performed as previously 167 

described (71). Isolation of plasmid DNA was performed using the QIAprep spin column 168 

miniprep kit (QIAGEN). Polymerase chain reactions (PCR) were performed using the specified 169 

primers which were sourced from Integrated DNA Technologies (Singapore). PCR products 170 

were amplified using Taq DNA polymerase according to the manufacturer’s instructions (New 171 

England Biolabs). Sequencing reactions were performed using the BigDye Terminator v3.1 cycle 172 

DNA sequencing kit as per the manufacturer's specifications (Applied Biosystems) and analysed 173 

by the Australian Equine Genome Research Centre. Cloning reactions involving restriction 174 

endonucleases were performed as per the manufacturer’s instructions (New England Biolabs).  175 

 176 

Multi locus sequence typing (MLST) and PCR screening. Prevalence of the vat gene was 177 

assessed by PCR using primers 2020 (5’-GTATATGGGGGGCAACATAC-3’) and 2021 (5’-178 

GTGTCAGAACGGAATTGTCG-3’), which were designed based on the sequence of the vat 179 

gene from CFT073 (c0393). The vat gene sequence from ten of the 31 vat-positive UPEC 180 

urosepsis strains was determined and deposited on the NCBI database (accession numbers: 181 

PA11B vat, KR094926; PA15B vat, KR094927; PA32B vat, KR094928; PA38B vat, 182 

KR094929; PA42B vat, KR094930; PA48B vat, KR094931; PA56B vat, KR094932; PA57B 183 

vat, KR094933; PA60B vat, KR094934; PA66B vat, KR094935). The sequence type of the 184 



UPEC urosepsis strains was determined using the seven-gene MLST scheme 185 

(http://mlst.ucc.ie/mlst/dbs/Ecoli) (72). PCR was performed as follows: initial denaturation at 186 

94°C for 5 m; 25 cycles of denaturation at 94°C for 30 s, annealing at 50°C for 30 s, extension at 187 

72°C for 30 s followed by a final extension at 72°C for 7 m.  188 

 189 

Construction of deletion mutants. The vat (c0393), vatX (c0392) and hns (c1701) genes were 190 

mutated in CFT073 using λ-Red mediated homologous recombination (73). Briefly, the 191 

kanamycin gene from pKD4 or the chloramphenicol gene from pKD3 were amplified using PCR 192 

primers containing 50-bp flanking regions homologous to the target genes vat (3353: 5’-193 

TCGTAATGAACACAGTTCATCTGATCTCCACACACCAAGACTTGATAAGCTcacgtcttga194 

gcgattgtgtagg-3’ and 3354:  5’-195 

GAAACCACCACCCCATGATTTTGTTTTACCGCTGTACAGGCCTGCTGACGCgacatgggaa196 

ttagccatggtcc-3’), vatX (5232: 5’-197 

TTCACGATACTTCATGTAACACTCAGGTTGAGTAATCTTCgtgtaggctggagctgcttc-3’ and 198 

5233:  5’-199 

AGAATACATTGTAAGAAGATGACTGTTAGTATGTTTTAACAcatatgaatatcctcctta-3’) or 200 

hns (1583: 5’-201 

TCGTGCGCAGGCAAGAGAATGTACACTTGAAACGCTGGAAGAAATGCTGGgtgtaggctg202 

gagctgcttc-3’ and 1584: 5’-203 

TTGATTACAGCTGGAGTACGGCCCTGGCCAGTCCAGGTTTTAGTTTCGCCcatatgaatatcc204 

tccttag-3’). Amplified fragments were transformed into CFT073(pKD56) expressing of the λ-205 

Red recombinase in order to facilitate homologous recombination for inactivation deletion of the 206 

target gene. Removal of the antibiotic resistance gene cassette was performed using plasmid 207 

pCP20 as previously described, and enabled the construction of the CFT073vatX hns double 208 

mutant. 209 

 210 

Construction of plasmids. A segment of the vat gene corresponding to amino acid residues 63-211 

465 of the passenger domain was amplified from CFT073 using primers 1491 (5’-212 

tacttccaatccaatgcTCCTTACCAGACATACCGCG-3’) and 1494 (5’-213 

ttatccacttccaatgTTACCCCGCATATTGATCATTGCC-3’) and cloned as a 6 x histidine N-214 

terminal fusion into the pLicA vector using ligation independent cloning (designated pVat403). 215 



The full-length vat gene (c0393) and the downstream gene vatX gene (c0392) were PCR 216 

amplified from CFT073 using the following primer pairs; vat: 1524 (5’-217 

cgcgCTCGAGataataaggaattactATGAATAAAATATACGCTC-3’) and 1525 (5’-218 

cgcgcaagcttCAAAGCAATAGTCCCTTTGC-3’); and vatX: 5244 (5’-219 

cgcgctcgagataataaggaaTCTTCATGAGTTTTCTTTTGCCGTGTGG-3’) and 5245 (5’-220 

cccggaagcttTCAATTAACATTAAGGTTTGATA-3’). The PCR products were purified and 221 

cloned into XhoI-HindIII digested pSU2718 to generate the plasmids pVat and pVatX. 222 

Transcription of the vat and vatX genes in these plasmids was regulated by the lac promoter (74).  223 

 224 

Comparative quantitative reverse transcriptase PCR (qRT-PCR). Comparative qRT-PCR 225 

was performed essentially as previously described (47). Briefly, strains CFT073, CFT073vatX 226 

and CFT073vatX (pVatX) were grown in LB broth (supplemented with IPTG) until exponential 227 

growth phase. The total RNA from each strain was extracted using the RNeasy mini kit as per 228 

manufacturer’s instructions (QIAGEN). Samples were subjected to RNase free DNA digestion 229 

and first strand cDNA synthesis was performed using SuperscriptIII (Invitrogen Life 230 

Technologies) with random hexamer (50ng/μL) primers (Invitrogen Life Technologies). 231 

Residual RNA was digested by RNaseH and samples were re-purified as recommended by the 232 

manufacturer (QIAGEN). The ViiA 7 instrument and software (v 1.2.1) was used to carry out RT 233 

PCR reactions (95°C 10 s; 95°C 15 s, 60°C 15 s and 72°C 30 s for 40 cycles). Primers specific to 234 

the vat gene (5470: 5’-TACCGTAACCAGCTCATCAACAG-3’ and 5471: 5’- 235 

CATACCCACCTGTTACCCAATGT-3’) and gapA (control; 820: 5’-236 

GGTGCGAAGAAAGTGGTTATGAC-3’ and 821: 5’-GGCCAGCATATTTGTCGAAGTTAG-237 

3’) were used to amplify transcripts with SybrGreenI (5 μL) master mix (Applied Biosystems). 238 

Each reaction was performed in triplicate and a subsequent melt curve was generated for 239 

validation of the results (95°C 15 s, 60°C 1 m and 95°C for 10 s). Cycle threshold values 240 

obtained were normalised to the endogenous control and the 2-∆∆Ct method (75) was applied for 241 

the comparative analysis. The resulting ratios were statistically analysed using a one-way 242 

ANOVA. All experiments were performed in triplicate. 243 

 244 

5' RACE and Virtual Footprint analysis. The transcriptional start site for vat was determined 245 

using the 5' RACE system for rapid amplification of cDNA ends (version 2.0, Invitrogen Life 246 



Technologies) following the manufacture’s specifications. Two gene specific primers (5863: 5’-247 

ATGCAGATAGTGCCAGAG-3’ and 5864: 5’-CTCTGCGGGTACTCCCTTTAC-3’) were 248 

used. Putative DNA binding motifs in the vat promoter region were identified using Virtual 249 

Footprint software (76). 250 

 251 

Electrophoretic mobility shift assay (EMSA). EMSA was performed essentially as described 252 

previously (77) but with minor adaptations. Briefly, four individual fragments (152 bp, 218 bp, 253 

312 bp and 479 bp) were PCR amplified from the plasmid pBR322 (152 bp: 5’-254 

CATTGGACCGCTGATCGT-3’ and 5’-CTTCCATTCAGGTCGAGGT-3’; 218 bp: 5’-255 

AATATTATTGAAGCATTTATCAGGGTTA-3’ and 5’-256 

ATGATAAGCTGTCAAACATGAGA-3’; 312 bp: 5’-TATCGACTACGCGATCATGG-3’ and 257 

5’-TCTCCCTTATGCGACTCCTG-3’; and 479 bp: 5’-GACCGATGCCCTTGAGAG-3’ and 5’-258 

GATCGAAGTTAGGCTGGTAAGA-3’). The 218-bp fragment containing the H-NS repressed 259 

bla gene promoter was included in the assay as a positive control, while the remaining three 260 

fragments do not bind H-NS. The vat gene promoter region (252 bp) encompassing all three of 261 

the putative H-NS binding sites identified, was also PCR amplified (6103: 5’-262 

CCTGAGAAAAAGCAAACAACA-3’ and 6104: 5’-TTTTAGAGCGTATATTTTATTCAT-3’) 263 

from the genomic DNA of CFT073. This 252-bp fragment was added in an equimolar ratio with 264 

the control fragments (7.5 nM per fragment [~100 ng]). Purified native H-NS protein was added 265 

to each reaction in increasing concentrations (0 μM, 0.1 μM, 0.5 μM and 1.0 μM). Reactions 266 

were incubated at room temperature (15 m in H-NS binding buffer to allow for protein-DNA 267 

complex formation. Samples were examined by high-resolution agarose gel electrophoresis (3% 268 

Lonza Metaphor [50 V at 4°C]), and viewed under ultraviolet light after staining with ethidium 269 

bromide (0.5μg/ mL). Invitrogen’s 1 kbp+ ladder was used as a molecular marker. 270 

 271 

Preparation of supernatant proteins. Bacterial cultures (10 mL) were standardised to an 272 

optical density at 600nm equal to 1.0 (OD600 = 1.0), centrifuged (2057 x g), and the supernatant 273 

was collected and filtered (0.22 µm). Proteins were precipitated by the addition of 10% 274 

trichloroacetic acid (TCA) overnight at 4°C. Following precipitation, supernatant fractions were 275 

concentrated by centrifugation (12,100 x g) and washed twice with 80% acetone to remove 276 

residual TCA. Proteins were resuspended in a final volume of 0.1 mL (100-fold concentration). 277 



 278 

Purification of denatured His-tagged Vat protein. A bacterial culture (200mL) of E. coli 279 

BL21 λDE3 expressing the truncated Vat403 protein encoded on plasmid pVat403 was grown in 280 

LB. Bacterial cells were pelleted by centrifugation (2057 x g) and lysed (7M urea, 0.1 M 281 

NaH2PO4, 0.01 M Tris·Cl [pH 8.0]). The recombinant Vat403 protein was purified under 282 

denaturing conditions using QIAGEN’s Ni-NTA spin column kit. The cleared lysate was passed 283 

through a pre-equilibrated column via centrifugation (270 x g) to allow for the 6xHis tagged-Vat 284 

protein to bind. The column was washed (0.1 M NaH2PO4, 0.01 M Tris·Cl ([pH 6.3]) and the 285 

bound Vat protein was eluted (0.1 M NaH2PO4, 0.01 M Tris·Cl [pH 4.5]) by centrifugation (890 286 

x g). Protein concentrations were determined using the bicinchoninic acid protein assay kit as per 287 

the manufacturer’s instructions (Thermo Scientific Pierce Biotechnology). Purity of the eluted 288 

protein was validated by sodium-dodecyl-disulfide polyacrylamide gel electrophoresis (SDS-289 

PAGE) analysis (12% polyacrylamide gel) and Coomassie staining. 290 

 291 

Immunoblotting. The purified His-tagged recombinant Vat protein was used to generate a Vat-292 

specific polyclonal antibody following a standard protocol (Institute of Medical and Veterinary 293 

Science, South Australia). Concentrated supernatant proteins were re-suspended in 50 µL of SDS 294 

loading buffer (100 mM Tris-HCl, 4% w/v SDS, 20% w/v glycerol, 0.2% w/v bromophenol blue, 295 

pH 6.8) and a 10 µL sample was boiled for 10 min prior to SDS-PAGE. SDS-PAGE and transfer 296 

of proteins to a PVDF membrane for western blot analysis was performed as previously 297 

described (78). Anti-Vat polyclonal antibodies were used as the primary antibody, and alkaline 298 

phosphatase conjugated anti-rabbit antibodies (Sigma Aldrich) were used as the secondary 299 

antibody. SIGMAFASTTM BCIP®/NBT (Sigma-Aldrich) was used as the substrate for detection. 300 

 301 

Human plasma samples and measurement of Vat immunogenicity. Blood plasma (collected 302 

within 4 days post-admission) and matching clinical isolates were obtained from 45 urosepsis 303 

patients admitted to the Princess Alexandra Hospital (Brisbane, Australia).  The clinical strains 304 

isolated from each urosepsis patient were grouped as Vat positive (Vat+) and Vat-negative (Vat-) 305 

according to the prevalence of the vat gene, as determined by PCR screening using vat specific 306 

primers. A negative control group of plasma samples was independently obtained from 42 307 

healthy volunteers with no recent history of UTI. The ELISA assay was performed using Nunc 308 



MaxiSorp flat-bottom 96 well microtiter plates (Thermo Scientific). Each well was coated with 309 

recombinant Vat protein (10 µg/ml) using carbonate coating buffer (18 mM Na2CO3, 450 mM 310 

NaHCO3, pH 9.3 [4°C, overnight]). Plates were washed twice with 0.05% v/v Tween20 PBS 311 

(PBST) and blocked with 5% w/v skim milk in PBST (150 µl) for 90 min at 37°C. Each well 312 

was then washed four times with PBST prior to incubation (90 min at 37°C) with individual 313 

plasma samples (1:10 dilution). Unbound antibodies were removed by washing with PBST. 314 

Peroxidase-conjugated anti-human IgG (1:30,000 dilution in 5% skim milk) was applied as a 315 

secondary antibody for detection (incubated at 37°C for 90 min). Plates were washed four times 316 

with PBST and bound anti-human IgG was detected using 3,3',5,5'-tetramethylbenzidine as a 317 

substrate. Reactions were stopped with 1 M HCl. The absorbance of each well was measured at 318 

450 nm using the Spectramax plus384 plate reader via the SoftMax Pro®v5 program. Data 319 

obtained was analysed using GraphPrism5 software and a one-way ANOVA statistical analysis 320 

was performed. 321 

 322 

RESULTS 323 

 324 

The vat gene is located on a pathogenicity island at a conserved genomic location. The 325 

prevalence of vat was assessed in 77 complete E. coli genomes available on the NCBI database 326 

(Table S1). The vat gene was identified in 14 of these strains; these included the previously 327 

characterised vat-positive UPEC strains CFT073 and 536, as well as twelve additional strains 328 

from which vat has not previously been characterised (APEC O1, NRG 857C, LF82, IHE3034, 329 

S88, 83972, PMV-1, clone D i2, clone D i14, ATCC 25922, Nissle 1917 and UM146). In all 12 330 

strains, the vat gene was part of a pathogenicity island (PAI) flanked by the proA and yagU 331 

genes relative to the E. coli K12 MG1655 chromosome. This genomic location is consistent with 332 

the original identification of vat in APEC strain Ec222 (46). Closer examination of the genomic 333 

context of vat revealed that the upstream region (i.e. the yagU end) is highly conserved. In 334 

contrast, the region downstream of vat (i.e. the proA end) exhibits extensive variation, with a 335 

range of different DNA segments inserted at various positions of the PAI in strains APEC 01, 336 

83972, UM146, 536 and Ec222 (Fig. 1A).  337 

 338 



Vat is secreted by several genome sequenced UPEC strains. The secretion of Vat following 339 

growth in LB broth at 37°C was assessed from a selection of the vat-positive UPEC strains 340 

described above (i.e. CFT073, IHE3034 and 536). As a positive control, the vat gene from 341 

CFT073 was amplified by PCR, cloned into the low copy number expression vector pSU2718 to 342 

generate the plasmid pVat, and transformed into E. coli MG1655 to generate the recombinant 343 

strain MG1655(pVat). Western blot analysis using a Vat-specific antibody detected a single band 344 

of ~110 kDa that corresponded to the predicted size of the secreted passenger domain of Vat in 345 

the supernatant of MG1655(pVat), but not the vector control strain MG1655(pSU2718) (Fig. 346 

1B). The vat gene was also mutated in CFT073 to generate null mutant strain CFT073vat. SDS-347 

PAGE and western blot analysis of the supernatant fraction obtained from CFT073 and 348 

CFT073vat using our Vat-specific antibody identified the secreted Vat passenger domain from 349 

CFT073 but not CFT073vat (Fig. 1B). Finally, we also detected bands corresponding to the Vat 350 

passenger domain in the supernatant fraction prepared from strains IHE3034 and 536. Taken 351 

together, our data demonstrate that Vat is expressed and secreted by the genome-sequenced 352 

strains CFT073, IHE3034 and 536.  353 

 354 

A marR-like gene is located immediately downstream of the vat gene. We were interested to 355 

study the regulation of Vat, and noted a small open reading frame located directly downstream of 356 

the vat gene in all vat-positive strains (Fig. 1A). This gene, which we have termed vatX, 357 

corresponds to c0392 in CFT073 (58) and ORF#26 in the Vat PAI from Ec222 (46). The VatX 358 

protein sequence is highly conserved (99% amino acid identity in the 14 vat-positive completely 359 

sequenced strains described above) and shares 44% amino acid identity with the CFT073 P pilus-360 

associated transcriptional regulator PapX. Further analysis of VatX revealed it contains a MarR 361 

PFAM domain (PF01047) and a helix-turn-helix motif characteristic of DNA binding proteins. 362 

To examine the relationship between VatX and other regulator proteins, we generated a dataset 363 

comprising previously characterised E. coli MarR type regulators (Table S2) (47, 79-82). A 364 

multiple sequence alignment using representative regulator protein sequences (Fig. 2) as well as 365 

a more detailed phylogenetic analysis of all MarR-like sequences identified in the 77 complete E. 366 

coli genomes described above (Fig S1) revealed that VatX forms a distinct clade within the 367 

MarR regulator family, and is most closely related to the PapX, SfaX and FocX fimbriae-368 

associated regulators (47, 80, 83, 84). 369 



 370 

Expression of the vat gene is upregulated by VatX. The proximity, orientation and conserved 371 

genetic organization of the vat and vatX genes led us to examine if VatX contributes to the 372 

regulation of the vat gene. In order to study this, we generated a CFT073 vatX mutant 373 

(CFT073vatX) and examined the transcription of vat in CFT073 and CFT073vatX using 374 

comparative qRT-PCR. In addition, the vatX gene from CFT073 was PCR amplified and cloned 375 

into the pSU2718 expression vector (to generate the plasmid pVatX) and used to complement the 376 

CFT073vatX mutant. No significant difference was observed in the level of vat mRNA 377 

transcribed in CFT073 and CFT073vatX following growth in LB broth at 37°C (Fig. 3A). 378 

However, the over-expression of VatX in CFT073vatX (pVatX) resulted in an approximately 3-379 

fold higher level of vat mRNA transcript compared to WT CFT073 (Fig. 3A). To explore the 380 

effect of VatX on Vat expression further, we compared the level of Vat secreted into the 381 

supernatant fraction by CFT073, CFT073vatX and CFT073vatX(pVatX) by western blot analysis 382 

(Fig 3B). Consistent with our transcriptional data, the over-expression of VatX in 383 

CFT073vatX(pVatX) resulted in a significantly increased level of Vat in the culture supernatant, 384 

while no difference in the level of secreted Vat was observed in CFT073 and CFT073vatX. A 385 

similar increase in secreted Vat was also observed when WT CFT073 was transformed with 386 

plasmid pVatX (i.e. strain CFT073[pVatX]) (Fig. 3B). Taken together, our results demonstrate 387 

that while deletion of vatX does not alter the level of Vat secretion, its over-expression 388 

significantly enhances Vat expression. 389 

 390 

Transcription of the vat gene is directly repressed by H-NS. Given the regulatory effect 391 

exhibited by VatX on vat transcription, we investigated the promoter region of the vat gene to 392 

identify putative binding sites for other transcription factors. The transcriptional start site for vat 393 

was determined using 5' RACE and was mapped to a position 80-bp upstream of the Vat ATG 394 

start codon. Consensus -35 (5’-ATCACA-3’) and -10 (5’-ATTAAT-3’) promoter sequence 395 

elements, separated by an 18-bp spacer region, were identified upstream of this site (Fig. 4A). 396 

Virtual footprint software was used to analyse the vat promoter region for putative regulatory 397 

binding sites. From this in silico analysis, two putative H-NS nucleation sites were identified on 398 

the anti-sense strand overlapping the 18-bp spacer region and the 5’ end of the -35 element. A 399 



third H-NS nucleation site was determined on the direct strand 10-bp downstream of the 400 

transcriptional start site. 401 

 402 

The global transcriptional regulator H-NS is known to bind to curved and A-T rich DNA 403 

sequences upstream of several defined UPEC virulence genes (85), including genes encoding for 404 

toxins (86-89) and autotransporter proteins (8, 10, 90). To investigate the effect of H-NS on vat 405 

transcription, the level of Vat expression was compared by western blot analysis of supernatant 406 

fractions prepared from WT CFT073, CFT073vat, CFT073vatX, CFT073hns and a CFT073vatX 407 

hns double mutant (Fig. 4B). The amount of Vat secreted by CFT073hns and CFT073vatX hns 408 

was markedly increased compared to WT CFT073. Consistent with previous results, the level of 409 

Vat detected in supernatant fraction of CFT073vatX was similar to that detected from WT 410 

CFT073.  411 

 412 

H-NS binds to the vat promoter region. To further investigate the role of H-NS in repression of 413 

vat transcription, an EMSA was performed using increasing concentrations of native H-NS 414 

protein and the 252bp PCR amplified region of the vat gene promoter possessing the three 415 

potential H-NS binding sites (Fig 4C). As a positive control, the bla gene promoter from the 416 

cloning vector pBR322 was also PCR amplified and included in the assay; H-NS is known to 417 

bind to this DNA fragment (91). Three additional fragments amplified from regions of pBR322 418 

known not to bind H-NS were included in the assay as negative controls. In our experiment, H-419 

NS bound with strong affinity to the DNA fragment corresponding to the vat gene promoter. 420 

Indeed, this binding affinity was stronger than that observed for the DNA fragment containing 421 

the control bla gene promoter. No binding of H-NS was observed to the negative control DNA 422 

fragments, demonstrating the specificity of H-NS binding in this assay.  423 

 424 

The vatX gene is co-transcribed with vat. H-NS regulates the transcription of several UPEC 425 

genes by competing for binding to their promoter element with a MarR-type regulatory protein; 426 

this includes SfaX binding to the sfaII fimbrial promoter (80), PapX binding to the flhDC flagella 427 

master regulator promoter (92), and SlyA binding to the type 1 fimbriae fimB recombinase 428 

promoter (93). The SfaX and PapX regulators are co-transcribed as part of their respective 429 

upstream fimbrial operon (encoding S and P type fimbriae, respectively (47, 80)). Taking this 430 



into consideration, we employed RT-PCR analysis to test for transcription of the vat and vatX 431 

genes as a single mRNA in CFT073. Due to the increased amount of Vat protein secreted by the 432 

CFT073hns mutant strain (as shown by Western blot analysis), total RNA was extracted from 433 

this strain, converted to cDNA and screened for a vat-vatX nucleic acid fragment using internal 434 

primers specific for both genes by RT-PCR (Fig. 4D). For comparison, an additional set of 435 

primers were used to amplify the vatX gene alone. Bands corresponding to the predicted sizes 436 

determined for the vatX and the vat-vatX transcripts were amplified from CFT073hns cDNA. 437 

Thus, while we cannot rule out the presence of an independent promoter upstream of vatX, our 438 

results demonstrate that the vat-vatX genes are co-transcribed in the absence of H-NS.  439 

 440 

Vat is prevalent, highly conserved and is secreted by UPEC urosepsis isolates. The vat gene 441 

has previously been shown to be most prevalent in E. coli strains from the B2 phylogenetic 442 

group, with a similar distribution observed among cystitis, pyelonephritis, prostatitis and 443 

bloodstream isolates (45). Based on the observation that vat is required for UPEC fitness in a 444 

mouse model of systemic infection (50), we screened a collection of urosepsis strains for the vat 445 

gene by PCR. The vat gene was identified in 68% (31/45) of the urosepsis strains. MLST 446 

analysis revealed strains from ST73, ST12 and ST95 were most predominant in this collection 447 

(Fig. 5). Furthermore, supernatant fractions produced by these strains were examined by Western 448 

blotting to analyse the expression and secretion of Vat following growth in LB at 37°C. For all 449 

strains, a band corresponding to the Vat passenger domain hybridised with the Vat-specific 450 

polyclonal antibody. The sequence of the vat gene was determined from vat-positive strains 451 

representing each ST and found to be highly conserved (≥97% amino acid identity [Fig. 5]). 452 

Minor sequence variations occurred at six locations within the passenger domain of the protein. 453 

These residues were located within two regions in the Vat passenger domain (Fig. 5), both of 454 

which are distal to the serine protease catalytic motif based on a structural model built using the 455 

Hbp passenger domain (Fig. S2).  456 

 457 

The presence of vat is associated with increased anti-Vat IgG produced during infection. 458 

The high prevalence of vat in the UPEC urosepsis strains examined in this study, in combination 459 

with its secretion during in vitro growth, prompted us to examine if an immunological response 460 

against Vat was elicited during infection. To test this, an ELISA assay was performed using 461 



blood plasma samples collected from the same urosepsis patients from which the urosepsis 462 

strains were collected (Fig. 6). The blood plasma samples were examined for the presence of 463 

Vat-specific IgG antibodies using purified recombinant Vat protein. The urosepsis patients were 464 

divided into two groups; those infected with a vat-positive UPEC strain (n=31) and those 465 

infected with a vat-negative UPEC strain (n=14). As an additional control, 42 plasma samples 466 

collected from age and sex matched healthy individuals were also examined for an 467 

immunological response against the Vat protein. In this assay, we observed a significant 468 

difference (P < 0.05) in the anti-Vat IgG plasma titre in patients infected with a vat-positive 469 

strain compared to a vat-negative strain or healthy individuals. Taken together, these data 470 

suggest that Vat is a highly conserved immunogenic protein that is expressed by many UPEC 471 

isolates during infection.   472 

 473 

DISCUSSION  474 

 475 

UPEC strains possess an array of virulence factors that are critical for their ability to cause 476 

disease in extra-intestinal niches such as the urinary tract and the bloodstream (94, 95). Vat is a 477 

member of the SPATEs that contributes to fitness of E. coli during systemic infection (46, 50). In 478 

this study, we performed a comprehensive bioinformatic and molecular analysis of the vat gene. 479 

We defined the transcriptional regulation of vat and demonstrated its immunogenicity using 480 

plasma samples from urosepsis patients. 481 

 482 

The genomic location of the vat gene was examined in all vat-positive completely sequenced E. 483 

coli strains available on the NCBI database. The vat gene was shown to reside within the thrW-484 

PAI, downstream of proA and upstream of yagU relative to the E. coli MG1655 chromosome. 485 

This is consistent with a previous report that examined the presence of vat in UPEC strains 486 

CFT073 and 536, as well as the neonatal meningitis strain RS218 (45). The gene content of the 487 

vat-containing thrW-PAI was conserved in the majority of strains examined, although some 488 

differences were noted in strains Ec222, APEC-O1, 83972, UM146 and 536. Overall, our 489 

bioinformatic analysis revealed that the vat gene (and the co-located vatX regulator gene) is 490 

present in a range of different E. coli pathoypes.  491 

 492 



Several studies have previously assessed the prevalence of the vat gene in E. coli. A study 493 

conducted by Parham et al (45) reported a high prevalence of vat in group B2 phylogenetic 494 

strains of the ECOR collection. A high frequency of the vat gene has also been observed in B2 495 

strains associated with cystitis, pyelonephritis and prostatitis (45, 59), and vat has been strongly 496 

associated with avian pathogenic E. coli (APEC) (96). Our analysis identified the vat gene in 497 

68% of urosepsis isolates (n = 45). We also demonstrated that the sequence of vat is highly 498 

conserved within a selection of strains representative of each of the ten different sequence types 499 

identified in our collection. At the amino acid level, minor sequence variations were located 500 

within two regions (VR1: S520-K529 and VR2: E783-V823) of the Vat passenger domain. However, 501 

the canonical serine protease domain that is important for the catalytic function of SPATEs was 502 

conserved in all ten of the Vat sequences analysed. Western blotting was also performed to 503 

examine Vat expression, and revealed that Vat is expressed and secreted by all of the urosepsis 504 

strains examined when grown at human core body temperature. Further investigation is required 505 

to determine whether the minor sequence changes observed in Vat are associated with 506 

corresponding differences in its cytotoxic properties. 507 

 508 

Bioinformatic analysis identified a gene encoding a putative MarR-like transcriptional regulator 509 

immediately downstream of vat (i.e. vatX). Although mutation of vatX did not result in a 510 

detectable change in vat transcription or translation, overexpression of VatX via the introduction 511 

of a plasmid containing the vatX gene (pVatX) was shown to positively regulate vat, resulting in 512 

a 3-fold increase in vat transcription and a significant increase in the level of secreted Vat 513 

protein. This data was suggestive of a more complex regulatory control of the vat gene. We 514 

therefore mapped the promoter of vat, and identified several putative H-NS binding sites 515 

proximal to this region. H-NS is a histone-like DNA-binding protein that shows affinity for A-T 516 

rich and bent nucleation sites on DNA (97). In E. coli, H-NS has been shown to regulate multiple 517 

genes, including genes associated with virulence, pH, osmoregulation and temperature sensing 518 

(98-101). Our EMSA data revealed a strong interaction between H-NS and a 252-bp region of 519 

the vat promoter that contains three putative H-NS binding sites. A role for H-NS in vat 520 

regulation was subsequently demonstrated through the examination of a CFT073hns mutant, 521 

which secreted a significantly higher level of Vat compared to the parent CFT073 strain. Taken 522 



together, these results demonstrate that the regulation of vat is coordinated by both VatX and H-523 

NS, and further highlights the role of H-NS in the regulation of UPEC virulence factors (8, 9). 524 

 525 

The MarR family of transcriptional regulators control the expression of multiple different genes, 526 

including virulence factors, often in response to environmental stress (reviewed in 102, 103). 527 

Bioinformatic analysis of MarR-type regulators from 77 completely sequenced E. coli genomes 528 

revealed a high level of amino acid sequence conservation for proteins in each clade, but 529 

significant variation between MarR regulators from different clades. VatX clustered as a separate 530 

clade and is most closely related to PapX. Interestingly, the proteins encoding for other fimbrial 531 

associated MarR-type regulators were also found within the PapX clade (Fig S1). Despite their 532 

association with different fimbriae, these regulatory proteins are highly conserved (≥97% amino 533 

acid identity). Some strains such as E. coli 536, 83972 and Nissle 1917 possess three or more 534 

chromosomal copies of papX (Table S2). PapX regulates UPEC motility by repressing 535 

transcription of the flhDC master regulator genes (47). We investigated the potential for VatX to 536 

repress flagella-mediated motility of CFT073. However, no significant difference in motility was 537 

observed between WT CFT073, CFT073vatX and the complemented CFT073vatX (pVatX) 538 

mutant strains after growth at 28°C and 37°C (data not shown). The FliC major flagellin subunit 539 

was also produced at a similar level in all three strains as determined by immunoblotting (data 540 

not shown). Taken together, our data has identified VatX as a new member of the MarR type 541 

family that appears to regulate vat in concert with H-NS. Further work is now required to map 542 

the direct binding of VatX to the vat gene promoter, and to examine the competitive interplay 543 

between VatX and H-NS in the regulation of vat transcription.   544 

 545 

In a recent study using high-throughput transposon mutagenesis screening (50), the vat gene was 546 

shown to contribute to survival of the UPEC strain CFT073 in the bloodstream of mice. This, 547 

together with the observation that many urosepsis strains secrete Vat, prompted us to examine 548 

the immunoreactivity of Vat in urosepsis patients. We detected a significant increase in Vat-549 

specific IgG titre in the plasma of urosepsis patients infected with vat-positive UPEC strains 550 

compared to plasma from patients infected with vat-negative strains and healthy controls. 551 

Although we cannot rule out that the responses we detected may in part be due to previous or 552 

ongoing infection that culminated in sepsis, overall the data is consistent with the notion that Vat 553 



is expressed during infection and elicits a strong immune response in some patients. Further 554 

work is now required to understand the role of Vat during human infection and its cytotoxicity 555 

profile.  556 

 557 
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 868 

FIGURE LEGENDS 869 

 870 

FIG. 1. (A) BLAST alignment demonstrating the level of nucleotide sequence conservation 871 

(grey shading) for vat and vatX (labelled red), as well as the other surrounding genes (labelled 872 

blue). The Vat-PAI (defined by the proA and yagU genes [labelled yellow]) was identified in 14 873 

of 77 complete E. coli genomes examined. These sequences were compared to the Vat-PAI 874 

originally identified in the avian pathogenic E. coli strain Ec222 (top). (B) Immunodetection of 875 

the Vat passenger domain (Vatα) from supernatant fractions prepared from overnight cultures of 876 

the well-characterised UPEC strains CFT073, IHE3034 and 536. Vat expression by MG1655 877 

(pVat) is shown as a positive control, while MG1655(pSU2718) and CFT073vat were included 878 

as a negative controls.  879 

 880 



FIG. 2. Phylogram demonstrating the relationship between representative E. coli MarR-type 881 

regulator proteins. The scale represents the number of amino acid substitutions per site over 194 882 

positions. 883 

 884 

FIG. 3. (A) qRT-PCR analysis of vat transcription in CFT073vatX and CFT073vatX(pVatX) 885 

compared to wild-type CFT073. The transcription of vat was significantly increased in 886 

CFT073vatX(pVatX) compared to CFT073 (**P<0.01). (B) Western blot analysing the effect of 887 

VatX on Vat expression. Supernatant fractions were prepared from overnight cultures of 888 

MG1655(pVat), MG1655(pSU2718), CFT073(pSU2718), CFT073(pVatX), 889 

CFT073vatX(pSU2718) and CFT073vatX(pVatX). Over-expression of VatX led to an increase in 890 

the amount Vat detected in the culture supernatant.  891 

 892 

FIG. 4. (A) Schematic of the vat-vatX gene operon in CFT073. The position of the promoter and 893 

primers used to identify vat-vatX and vatX transcripts is indicated. The inset shows the vat gene 894 

transcriptional start site (+1), which was mapped to 80bp upstream of the ATG start codon (grey 895 

arrow). Also indicated are the consensus -10 and -35 promoter elements and the three putative H-896 

NS nucleation sites (shown in bold). (B) Immunodetection of the Vat passenger domain from the 897 

supernatant fractions of CFT073 , CFT073vat, CFT073vatX, CFT073hns  and CFT073vatX hns. 898 

The level of Vat was increased in CFT073hns and CFT073vatX hns compared to CFT073. (C) 899 

EMSA demonstrating the direct interaction of H-NS with the vat promoter region. The assay was 900 

performed using a 252bp fragment encompassing the vat promoter region (indicated by an 901 

asterisk), a 218bp fragment containing the bla promoter region amplified from pBR322 (positive 902 

control: indicated by an arrow), and three additional DNA fragments amplified from pBR322 903 

(negative controls: 152bp, 312bp and 479bp). Native H-NS protein was incubated with the DNA 904 

in increasing concentrations (0μM H-NS, 0.1μM H-NS, 0.5μM H-NS and 1.0μM H-NS). (D) 905 

Transcriptional analysis of the vat and vatX genes. Total RNA was extracted during exponential 906 

growth of CFT073hns and converted to cDNA. Shown are the PCR products [vat-vatX (1112bp) 907 

or vatX (404bp)] amplified from CFT073hns gDNA (positive control), total RNA (negative 908 

control) and cDNA.  909 

 910 



FIG. 5. (A) Diagram depicting the full length Vat primary protein sequence, including three 911 

protein domains typical for SPATES: i) the extended signal peptide (SP); ii) the passenger 912 

domain comprising the Immunoglobulin A1 protease-like domain, which contains the serine 913 

protease motif, as well as the upstream aspartate (D158) and histidine (H130) residues of the 914 

catalytic triad; and iii) the translocation domain, which is cleaved at the alpha-helical linker 915 

region. Class II SPATEs are characterised by the presence of a small additional domain termed 916 

Domain 2 (striped). Two variable regions (VR1 and VR2) located within the passenger domain 917 

were identified (triangles). (B) Alignment of the Vat amino acid sequence in VR1 and VR2 from 918 

CFT073 and the ten strains representing the diverse STs examined. Residues identical to those in 919 

Vat from CFT073 are indicated by dots; residues that differed from the CFT073 sequence are 920 

indicated and highlighted in grey. Vat secretion was determined by Western blot analysis of the 921 

supernatant fractions from each strain following overnight growth in LB broth at 37°C. All 922 

strains secreted a ~110kDa protein that cross-reacted with the Vat-specific polyclonal antibody 923 

(indicated as +). 924 

 925 

FIG. 6. Immunoreactivity of Vat. Blood plasma was collected from 45 urosepsis patients at the 926 

time of admittance to hospital. Paired UPEC strains were also isolated from the blood of each 927 

patient, and the presence of the vat gene was determined by PCR. Plasma samples were 928 

subsequently grouped by their association with vat-positive (Vat+) or vat-negative (Vat-) strains. 929 

The presence of IgG-specific antibodies was determined by ELISA, and compared to results 930 

obtained from 42 healthy volunteers with no recent history of UTI (Healthy). A significantly 931 

higher IgG titre was observed in plasma of patients infected with Vat+ strains compared to 932 

patients infected with Vat- strains and healthy controls. 933 

 934 

  935 



Supplementary Information 936 

 937 

Figure S1. Cladogram demonstrating the relationship of the 330 MarR-type regulator protein 938 

sequences identified in the 77 complete E. coli genomes listed in Table S1. The scale represents 939 

the number of amino acid substitutions per site over 194 positions. 940 

 941 

Figure S2. Vat catalytic triad and VIR1/2 regions mapped using the crystal structure of 942 

hemoglobin protease (Hbp) passenger domain (3AK5). Hbp is the most related SPATE to Vat, 943 

sharing 79% amino acid identity. The structural protein mapping indicates that VIR1/2 are not 944 

directly associated with the globular catalytic triad. 945 

 946 

Table S1. List of the 77 sequenced E. coli genomes obtained from the NCBI website. The strains 947 

include a selection of environmental, non-pathogenic (NP) and pathogenic E. coli. The list 948 

includes the following E. coli pathotypes: enteropathogenic E. coli (EPEC), enterotoxigenic E. 949 

coli (ETEC), adherent-invasive E. coli (AIEC), enterohaemorrhagic E. coli (EHEC), 950 

enteroaggregative haemorrhagic E. coli (EAHEC), Shiga toxin-producing E. coli (STEC), 951 

neonatal meningitis E. coli (NMEC), uropathogenic E. coli (UPEC) and avian pathogenic E. coli 952 

(APEC). 953 

 954 

Table S2. MarR-type transcriptional regulator genes identified in the 77 complete E. coli 955 

genomes described in Table S1. The representative genes used as query sequences in the BLAST 956 

analysis are underlined. These sequences were used to generate the phylogram in Figure 2. Seven 957 

major clades were identified, MarR; MprA/EmrR; HosA; HpcR/HpaR; SlyA; SfaX/FocX/PapX 958 

and VatX. The level of amino acid sequence identity for proteins in each clade is indicated. 959 
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