

University of Birmingham

A competitive divide-and-conquer algorithm for
unconstrained large-scale black-box optimization
Mei, Yi; Omidvar, Mohammad Nabi; Li, Xiaodong; Yao, Xin

DOI:
10.1145/2791291

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Mei, Y, Omidvar, MN, Li, X & Yao, X 2016, 'A competitive divide-and-conquer algorithm for unconstrained large-
scale black-box optimization', ACM Transactions on Mathematical Software, vol. 42, no. 2, 13.
https://doi.org/10.1145/2791291

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
© ACM, 2016. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in ACM Transactions on Mathematical Software, Vol 42, Issue 2 http://doi.acm.org/10.1145/2791291

Checked 23/2/2017

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 19. Apr. 2024

https://doi.org/10.1145/2791291
https://doi.org/10.1145/2791291
https://birmingham.elsevierpure.com/en/publications/c999ab47-fa03-4842-915b-3068ce02fec4

A

A Competitive Divide-and-Conquer Algorithm for Unconstrained
Large-Scale Black-Box Optimization

YI MEI, Victoria University of Wellington and RMIT University
MOHAMMAD NABI OMIDVAR, RMIT University
XIAODONG LI, RMIT University
XIN YAO, University of Birmingham

This paper proposes a competitive divide-and-conquer algorithm for solving large-scale black-box optimiza-
tion problems, where there are thousands of decision variables, and the algebraic models of the problems
are unavailable. We focus on problems that are partially additively separable, since this type of problem
can be further decomposed into a number of smaller independent sub-problems. The proposed algorithm
addresses two important issues in solving large-scale black-box optimization: (1) the identification of the
independent sub-problems without explicitly knowing the formula of the objective function and (2) the op-
timization of the identified black-box sub-problems. First, a Global Differential Grouping (GDG) method is
proposed to identify the independent sub-problems. Then, a variant of the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) is adopted to solve the sub-problems resulting from its rotation invariance
property. GDG and CMA-ES work together under the cooperative co-evolution framework. The resultant al-
gorithm named CC-GDG-CMAES is then evaluated on the CEC’2010 large-scale global optimization (LSGO)
benchmark functions, which have a thousand decision variables and black-box objective functions. The ex-
perimental results show that on most test functions evaluated in this study, GDG manages to obtain an ideal
partition of the index set of the decision variables, and CC-GDG-CMAES outperforms the state-of-the-art re-
sults. Moreover, the competitive performance of the well-known CMA-ES is extended from low-dimensional
to high-dimensional black-box problems.

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Large-scale black-box optimization, decomposition, cooperative co-
evolution, differential grouping, covariance matrix adaptation evolutionary strategy (CMA-ES)

ACM Reference Format:
Yi Mei, Xiaodong Li, Mohammad Nabi Omidvar and Xin Yao, 2014. A Competitive Divide-and-Conquer
Algorithm for Unconstrained Large-Scale Black-Box Optimization ACM Trans. Math. Softw. V, N, Article A
(January YYYY), 25 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
In science and engineering, a black box is a function or a system that transfers its input
to its output with an unknown or imprecise internal transferring mechanism. Black
boxes are often encountered in research and industrial fields. For example, in cogni-

This work was supported by an ARC Discovery grant (No. DP120102205), an NSFC grant (No. 61329302),
and an EPSRC grant (No. EP/K001523/1). Xin Yao was supported by a Royal Society Wolfson Research Merit
Award.
Author’s addresses: Y. Mei, School of Engineering and Computer Science, Victoria University of Wellington,
Kelburn 6012, New Zealand; M.N. Omidvar and X. Li, School of Computer Science and Information Tech-
nology, RMIT University, Melbourne, VIC 3000, Australia; X. Yao, CERCIA, School of Computer Science,
University of Birmingham, B15 2TT Birmingham, UK.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
© YYYY ACM 0098-3500/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 Mei et al.

tive science, the human mind can be seen as a black box ([Friedenberg and Silverman
2006]). In physics, a physical system whose internal structure is unknown or too com-
plicated to be fully understood may be referred to as a black box. In the computing
area, a program may be considered to be a black box if it is a closed source program
and the users have no access to its inner workings.

Black-box optimization aims to do optimization based on black-box systems. To be
specific, a black-box optimization problem consists of a set of objective and constraint
functions, at least one of which is a black box. Due to the wide distribution of black-box
scenarios in practice, it is important to investigate how to effectively solve black-box
optimization problems.

When dealing with black-box optimization problems, traditional mathematical pro-
gramming methods such as the simplex algorithm [Dantzig and Thapa 1997] [Weglarz
et al. 1977] [Azulay and Pique 2001], and gradient-based methods such as the Quasi-
Newton method [Zhu et al. 1997] and the conjugate gradient method [Hager and Zhang
2006] are no longer applicable, since the internal information about the problem, such
as the coefficients and derivative, is unavailable, or only partially available. In such
a case, derivative-free algorithms are promising methods for solving black-box opti-
mization problems as they take only the input and output of a function into account.
There have been plenty of derivative-free algorithms developed in the literature, in-
cluding various local search algorithms [Hooke and Jeeves 1961] [Nelder and Mead
1965] [Custódio and Vicente 2007] and global search algorithms [Holland 1975] [Eber-
hart and Kennedy 1995] [Yao et al. 1999]. A comprehensive survey of derivative-free
algorithms can be found in [Rios and Sahinidis 2012].

Derivative-free algorithms are mainly based on sophisticated sampling mechanisms
to search effectively within the solution space. Hence, their performances largely de-
pend on the problem size, i.e., the number of decision variables of the problem. When
the problem size increases, the size of the solution space increases exponentially. For
example, in a binary optimization problem, when the problem dimension increases
from 10 to 20, the size of the solution space increases from 210 = 1024 to 220 = 1048576.
The rapid growth in the size of the search space makes it exceedingly difficult to find
the global optimum by sampling/searching the entire space. To address this scalability
issue, the divide-and-conquer strategy is a commonly-used approach for solving large-
scale black-box optimization problems. One direction is the additive model approx-
imation ([Andrews and Whang 1990] [Friedman and Silverman 1989] [Stone 1985]
[Li et al. 2001]), which approximates the black-box function to a mathematical model
that is represented as the sum of several component functions of the subsets of the
variables, and then solves the optimization problems of each component function sepa-
rately with mathematical programming methods. The other direction is to directly de-
compose the original large-scale problem into a number of smaller-sized sub-problems,
and solve them individually. The coordinate descent methods [Bezdek et al. 1987] and
block coordinate descent methods [Tseng 2001] [Richtárik and Takáč 2012] [Blondel
et al. 2013] are representative divide-and-conquer methods that search for the local op-
timum by doing line search along one coordinate direction or block search in the space
of a coordinate subset at the current point in each iteration. When optimizing the cur-
rent coordinate or block, all the other coordinates or blocks are fixed to the best-so-far
values (called the collaborative values). Cooperative co-evolution [Potter and De Jong
1994] [Liu et al. 2001] [Shi et al. 2005] [Van den Bergh and Engelbrecht 2004] [Li
and Yao 2012] [Yang et al. 2008] [Chen et al. 2010] [Omidvar et al. 2010] [Omidvar
et al. 2010] [Omidvar et al. 2014] is a generalized framework of the coordinate descent
and block coordinate descent methods. Instead of being fixed to the best-so-far value, a
set of candidate values is retained for each collaborating coordinate in cooperative co-
evolution to reduce the greediness of the search. With divide-and-conquer strategies,

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A Competitive Divide-and-Conquer Algorithm for Unconstrained Large-Scale Black-Box OptimizationA:3

the entire index set of the decision variables is divided into smaller subsets, and the
corresponding decision variables, called the subcomponents, are optimized separately.
This way, the solution space is much reduced and can be explored more effectively.

In order to ensure the efficacy of the divide-and-conquer strategies, we assume that
the problem is unconstrained and has a partially additively separable objective func-
tion, i.e., f(x) =

∑g
i=1 fi(xIi), where x = (x1, . . . , xn) is the decision vector, (I1, . . . , Ig)

is a partition of the index set {1, . . . , n} and xIi is the subcomponent corresponding to
the index subset Ii. For example, if Ii = {1, 3, 5}, then xIi = (x1, x3, x5). Obviously,
under such an assumption, the additive model approximation is the original problem,
and is equivalent to the direct decomposition.

Although the objective function is partially additively separable, the independent
sub-problems and the corresponding subcomponents are not straightforward for the
black-box optimization problems, where the formula of the objective function cannot
be known exactly. Therefore, when solving unconstrained large-scale black-box opti-
mization problems with partially additively separable objective functions, two major
issues should be addressed: (1) the identification of the independent sub-problems and
the corresponding subcomponents without knowing the exact formula of the objec-
tive function and (2) the selection of competent optimizers for the nonseparable sub-
problems. The former ensures that solving the sub-problems separately is equivalent
to solving the overall problem. The latter (selecting a competent optimizer) enhances
the capability of the algorithm to obtain optimal solution for each sub-problem.

In this paper, the above two issues are addressed by a Global Differential Grouping
(GDG) and a variant of CMA-ES [Hansen 2011], respectively. Differential grouping
[Omidvar et al. 2014] has been demonstrated to have a high accuracy of grouping inter-
acting decision variables together without knowing any information about the formula
of the objective function. GDG adopts the mechanism of differential grouping, and fur-
ther improves its accuracy by maintaining the global information (i.e., the interaction
matrix between variables) and taking the computational error into account. CMA-ES
is one of the state-of-the-art derivative-free algorithms for nonseparable black-box op-
timization problems [Rios and Sahinidis 2012]. It conducts a rotation-invariant search
which is independent of the coordinate system. Concretely, it estimates a covariance
matrix that indicates the relationship between variables for improving the objective
value. For quadratic objective functions, the covariance matrix gradually converges
to the inverse Hessian matrix [Loshchilov et al. 2011]. In this case, CMA-ES trans-
forms the coordinate system into the one defined by the inverse Hessian matrix, and
thus transforms the nonseparable problem into a separable one. The competitiveness
of CMA-ES has been verified on low-dimensional (e.g., no more than 40) GECCO’2009
black-box optimization benchmark functions [Hansen et al. 2010]. The subcomponents
are expected to have low dimensions after the decomposition. Thus, one can expect that
CMA-ES will perform well in optimizing the subcomponents. On the other hand, the
covariance matrix estimation stage becomes computationally expensive when deal-
ing with large-scale problems. From previous studies [Rios and Sahinidis 2012], the
complexity of CMA-ES is dominated by the covariance matrix estimation, which has a
complexity ofO(n3), where n is the problem size. When decomposing the n-dimensional
decision vector into n/s s-dimensional subcomponents, the complexity is reduced to
n/s · O(s3) = O(ns2), where s � n. For example, when n = 1000 and s = 20, the
complexity is reduced to 1000 · 202/10003 = 1/2500 of the original one.

The rest of the paper is organized as follows: The large-scale black-box optimization
with partially additively separable objective function and divide-and-conquer strate-
gies are introduced in Section 2. Then, the proposed algorithm, named Cooperative
Co-evolution with GDG and CMA-ES (CC-GDG-CMAES), is described in Section 3.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 Mei et al.

The experimental studies are presented in Section 4. Finally, conclusions and future
work are described in Section 5.

2. BACKGROUND
2.1. Large-Scale Black-Box Optimization
Without loss of generality, a black-box optimization problem can be stated as follows:

min f(x), (1)
s.t. : h(x) = 0, (2)

where x = (x1, . . . , xn) is an n-dimensional decision vector, and each xi (i = 1, . . . , n) is
called a decision variable. f(x) is the objective function to be minimized, and h(x) =
(h1(x), . . . , hm(x)) is a set of equality constraints. It is clear that all the inequality
constraints can be transformed to equality ones by adding slack variables. In the above
problem, at least one of the functions among the objective function f(x) and the set of
constraints h(x) is a black box.

When tackling the above constrained black-box optimization problem Eqs. (1)–(2),
the traditional method of Lagrangian multipliers is no longer applicable, since it re-
quires the calculation of the gradient of the Lagrangian. Concretely, the Lagrangian of
the above problem is

L(x,λ) = f(x) +

m∑
i=1

λihi(x), (3)

where λ = (λ1, . . . , λn) is the n × 1 vector of Lagrangian multipliers. Since at least
one function in the set of {f(x), h1(x), . . . , hm(x)} is a black box, it is obvious that the
Lagrangian L(x,λ) is also a black box, and thus the gradient ∇x,λL is unavailable.

In this situation, the augmented Lagrangian method is an alternative to solve a con-
strained black-box optimization problem by replacing it with a series of unconstrained
black-box optimization problems. Specifically, Eqs. (1)–(2) are replaced by the following
unconstrained problems:

min Φk(x) = f(x) +
µk
2

m∑
i=1

hi(x)2 −
m∑
i=1

λihi(x). (4)

At each step, the optimal solution x∗k = arg min Φk(x) is obtained by some derivative-
free method. Then, µk is increased and λi ← λi−µkhi(x∗k) is updated. When µk becomes
sufficiently large, the optimal solution x∗k to the unconstrained problem is also the
global optimum of the original constrained problem.

It can be seen that the most important issue in solving the constrained black-box
optimization problems with the augmented Lagrangian method is to solve the corre-
sponding unconstrained black-box optimization problems min Φk(x) to obtain x∗k. In
other words, once the unconstrained problems are solved, the original constrained
problem can be solved directly. Thus, we focus on solving the unconstrained black-box
optimization problems, which are stated as follows:

min f(x), (5)

where f(x) is a black box.
Then, a partially additively separable function is defined as follows:

Definition 2.1 (Partially additively separable function). Given an n-dimensional
function f(x), if there exists a partition (I1, . . . , Ig) of the index set {1, . . . , n} along

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A Competitive Divide-and-Conquer Algorithm for Unconstrained Large-Scale Black-Box OptimizationA:5

with a set of functions f1(xI1), . . . , fg(xIg), so that f(x) =
∑g
i=1 fi(xIi), then f(x) is

called to be partially additively separable. In particular, if |Ii| = 1, ∀i = 1, . . . , n, then
f(x) is completely additively separable.

In Definition 2.1, the partition (I1, . . . , Ig) is called an ideal partition of the index
set. More formally, the definition of an ideal partition is given as follows:

Definition 2.2 (Ideal partition). Given an n-dimensional function f(x) and a par-
tition (I1, . . . , Ig) of the index set {1, . . . , n}, if there exists a set of functions
f1(xI1), . . . , fg(xIg), so that f(x) =

∑g
i=1 fi(xIi), then (I1, . . . , Ig) is called an ideal

partition of the index set. The corresponding functions fi(xIi) (i = 1, . . . , g) are called
a set of ideal component functions.

In our work, we focus on the unconstrained large-scale black-box optimization prob-
lems with partially additively separable objective functions, in which the number of
decision variables n is large (i.e., n ≥ 1000).

2.2. Divide-and-Conquer Strategies
A divide-and-conquer strategy in optimization typically includes the following two
tasks: (1) the decomposition of the problem by dividing the set of decision variables
into a number of subcomponents; and (2) the coordination of the optimization of the
subcomponents. There are two types of problem decomposition depending on the dif-
ferent relationships between the subcomponents [Shan and Wang 2010]. One is called
the ideal decomposition, which aims to obtain an ideal partition of the index set
and the corresponding non-overlapping subcomponents. The other one is called the
coordination-based decomposition, which leads to the subcomponents sharing common
variables due to the interaction between them. In this paper, we focus on the ideal
decomposition, since ideal partitions of the index set must exist for the partially addi-
tively separable objective functions investigated in our studies.

As indicated in Definition 2.1, the identification of the ideal decomposition con-
sists of two tasks. One is obtaining an ideal partition (I1, . . . , Ig) of the index set,
and the other is the identification of the corresponding ideal component functions
f1(xI1), . . . , fg(xIg). Since f(x) is a black box, it is impossible to obtain the exact for-
mula of the component functions. Cooperative co-evolution is a suitable framework to
obtain black-box component functions.

A typical cooperative co-evolution framework divides the entire optimization pro-
cess into several cycles. In each cycle, the subcomponents are evolved in a round-
robin fashion. Given the g subcomponents xI1 , . . . ,xIg , a sub-population {si1, . . . , siN}
of candidate solutions is maintained for xIi (∀i = 1, . . . , g, N is the size of the sub-
population), where each sij is called an individual. The individuals can be gener-
ated by either applying crossover and mutation operators to the previous individ-
uals (genetic algorithms [Holland 1975]), or random sampling according to the dis-
tribution learnt from the past (estimation of distribution algorithms [Larrañaga and
Lozano 2002] and CMA-ES [Hansen 2011]). Besides, a context vector [Van den Bergh
and Engelbrecht 2004] [Li and Yao 2012] cv = (cv1, . . . , cvg) is maintained for eval-
uation of individuals. When evaluating a given individual sij , a temporary vector
vij = (cv1, . . . cvi−1, sij , cvi+1, . . . , cvg) is first obtained by replacing cvi ∈ cv with
sij . Then, the fitness value of sij is assigned to f(vij). The context vector is randomly
initialized and then updated after each cycle. A common strategy is to combine the
best-fit individuals together. In this case, the cooperative co-evolution framework re-
duces to the coordinate descent (when each subcomponent consists of a single variable)
or block coordinate descent methods. Fig. 1 gives an illustration of the above process
of the cooperative co-evolution framework.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 Mei et al.

cv

s11

s1N

cv1

si1

siN

sij

sg1

sgN

cvg

cvi

…… ……

cv1 cvi cvg
…… ……

Replace

and

evaluate

Fig. 1. Sub-populations and the context vector cv of the cooperative co-evolution framework, where cvi is
the best-fit individual in the sub-population {s1i, . . . , siN}. When evaluating sij , it first replaces cvi in cv.
Then, its fitness value is set to f(cv1, . . . , cvi−1, sij , cvi+1, . . . , cvg)

To find the ideal decomposition, various fixed grouping schemes have been proposed
(e.g., the one-dimensional [Liu et al. 2001], split-in-half [Shi et al. 2005] strategies
and the more general one dividing into k s-dimensional subcomponents where k ×
s = n [Van den Bergh and Engelbrecht 2004]). All these approaches divide the index
set according to its natural order before the optimization and no longer change the
decomposition throughout the optimization process. In this case, it is hard to identify
ideal partitions of the index set for the functions that are not fully separable. For
example, x1 and xn (n is the number of variables) are never placed in the same group
by the fixed grouping methods. Thus, the ideal decomposition can never be found for a
function in which x1 interacts with xn.

To increase the probability of obtaining the ideal decomposition, Yang et al. [Yang
et al. 2008] proposed a random grouping method, which randomly shuffles the indices
of the variables to obtain a different partition at the beginning of each cycle. Suppose
that in each cycle, there is a probability p (0 < p < 1) of obtaining ideal partitions,
then the probability of obtaining ideal partitions in at least one cycle out of the total
T cycles is 1 − (1 − p)T � p. The efficacy of random grouping has been verified on the
CEC’2010 LSGO benchmark functions with 1000 to 2000 decision variables [Yang et al.
2008] [Li and Yao 2012]. To further increase such probability, Omidvar et al. [Omidvar
et al. 2010] suggested more frequent random grouping (i.e., shorter cycles). Subsequent
to random grouping, various dynamic grouping methods have been proposed to learn
the structure of the ideal decomposition based on the interactions between variables
(e.g., LEGO [Smith and Fogarty 1995], LLGA [Harik 1997]), adaptive coevolutionary
optimization [Weicker and Weicker 1999], Cooperative Co-evolution with Variable In-
teraction Learning (CCVIL) [Chen et al. 2010], delta grouping [Omidvar et al. 2010]
and route distance grouping [Mei et al. 2014]).

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A Competitive Divide-and-Conquer Algorithm for Unconstrained Large-Scale Black-Box OptimizationA:7

Although the proposed dynamic grouping methods significantly increase the chance
of obtaining ideal partitions, such probability is still low, especially for the problems
whose ideal partitions have complicated structures (e.g., consisting of many imbal-
anced subcomponents). In addition, the computational resource assigned to the opti-
mization under the ideal decomposition is not adequate to reach the global optimum, or
at least a good local optimum. Recently, Omidvar et al. [Omidvar et al. 2014] proposed
the differential grouping method, which has a rigorous theoretical background that
guarantees the correctness of the detected interactions between decision variables. It
learns the interactions between variables, and groups them before the optimization,
fixing the grouping throughout the optimization. Differential grouping has been em-
pirically verified to be the state-of-the-art decomposition method based on the results
obtained from the CEC’2010 large-scale global optimization (LSGO) benchmark func-
tions [Omidvar et al. 2014].

3. COOPERATIVE CO-EVOLUTION WITH GLOBAL DIFFERENTIAL GROUPING AND CMA-ES
The partially additively separable objective function considered in this paper takes the
following form:

f(x) =

g∑
i=1

fi(xIi). (6)

Therefore, provided that an ideal partition (I1, . . . , Ig) has been successfully obtained,
any function with the following form is an ideal component function:

fiti(xIi) = f(a1, . . . ,ai−1,xIi ,ai+1, . . . ,ag),∀ aj ∈ Ω(xIj), j 6= i, (7)

where Ω(xIj) indicates the solution space of xIj .
In the cooperative co-evolution framework, we set aj = cv

(t)
j , ∀j 6= i, t ≥ 0, where

cv
(t)
j is the jth context sub-vector at the tth iteration. In other words, the coopera-

tive co-evolution framework optimizes the subcomponents in terms of fit(t)i (xIi) =

f
(
cv

(t−1)
1 , . . . , cv

(t−1)
i−1 ,xIi , cv

(t−1)
i+1 , . . . , cv

(t−1)
n

)
. If all the subcomponents converge to

their own global optima x
∗(t)
Ii = arg min{fit(t)i (xIi)} (i = 1, . . . , g), the entire solution

must converge to the global optimum x∗ = arg min{f(x)}. Therefore, in the coopera-
tive co-evolution framework, one only needs to identify an ideal partition of the index
set. In our work, a Global Differential Grouping (GDG) is proposed to identify ideal
partitions, and a variant of CMA-ES is adopted to optimize each subcomponent.

The proposed algorithm, named CC-GDG-CMAES, is described in Algorithm 1,
where f is the objective function to be minimized and x = (x1, . . . , xn) is the deci-
sion vector. The parameter n is the problem size. The vectors ub = (ub1, . . . , ubn) and
lb = (lb1, . . . , lbn) indicate the upper and lower bounds of the variables (x1, . . . , xn).
The parameter ε is the threshold to detect interactions by GDG, and Γmax is the max-
imal number of fitness evaluations. The entire algorithm can be divided into three
phases: the decomposition phase, the initialization phase, and the optimization phase.
During the decomposition phase (line 2), the partition (I1, . . . , Ig) of the index set is
obtained by GDG() along with the number of subcomponents g and the number of fit-
ness evaluations Γ that have been consumed. The partition is then fixed throughout
the subsequent phases. During the initialization phase (lines 4–8), the parameters A
of CMA-ES are initialized in the standard way [Hansen 2011]. Then, the context vec-
tor cv = (cv1, . . . , cvg) is randomly initialized by randinit(). The optimization phase
(lines 10–14) is divided into a number of cycles. Within each cycle, an iteration of
CMA-ES is applied to optimize the subcomponents sequentially by CMAESIter(), and

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 Mei et al.

ALGORITHM 1: (x∗, f∗) = CC-GDG-CMAES(f,x, n,ub, lb, ε,Γmax)

1 /* (Phase 1): Decomposition */;
2 (g, I1, . . . , Ig,Γ) = GDG(f,x, n,ub, lb, ε);
3 /* (Phase 2): Initialization */;
4 Initialize the CMA-ES parameters A;
5 for i = 1→ g do
6 Γi = 0;
7 end
8 cv = randinit(ub, lb, n);
9 /* (Phase 3): Optimization */;

10 while
∑g

i=1 Γi < Γmax − Γ do
11 for i = 1→ g do
12 (cv,A,Γi) = CMAESIter(cv, Ii,A,Γi);
13 end
14 end
15 x∗ = cv, f∗ = f(x∗);
16 return (x∗, f∗);

the corresponding coordinates of cv are replaced by the latest best-fit individual (line
12). The CMA-ES parameters A and number of fitness evaluations Γi are updated as
well. The algorithm stops when the total number of fitness evaluations exceeds the
maximal number of fitness evaluations Γmax. Finally, the best-so-far solution x∗ is set
to cv and its objective value f∗ is obtained.

Next, the details of GDG will be given in Section 3.1, followed by a description of the
CMA-ES subcomponent in Section 3.2.

3.1. Global Differential Grouping
The Global Differential Grouping (GDG) method is extended from the differential
grouping method [Omidvar et al. 2014], which groups the variables based on the in-
teraction between them. To facilitate the description of GDG, two complementary re-
lationships between variables are first defined in Definitions 3.1 and 3.2.

Definition 3.1 (Interaction). Given a function f(x1, . . . , xn), for any pair of variables
xp and xq, if ∃(a, b), ∂2f

∂xp∂xq
|xp=a,xq=b 6= 0, then xp and xq are said to interact with each

other.

Definition 3.2 (Independence). Given a function f(x1, . . . , xn), for any pair of vari-
ables xp and xq, if ∀(a, b), ∂2f

∂xp∂xq
|xp=a,xq=b = 0, then xp and xq are said to be independent

from each other.

It is obvious that two variables either interact with or are independent from each other.
Based on the above definitions, a variable is called separable if it is independent from
all the other variables, and nonseparable if it interacts with at least one of the other
variables.

The differential grouping method was derived from Theorem 3.3 [Omidvar et al.
2014], which is described below:

THEOREM 3.3. ∀a, b1 6= b2, δ ∈ R, δ 6= 0, if f(x) is a partially separable function, and
the following condition holds

∆δ,xp
[f](x)|xp=a,xq=b1 6= ∆δ,xp

[f](x)|xp=a,xq=b2 , (8)

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A Competitive Divide-and-Conquer Algorithm for Unconstrained Large-Scale Black-Box OptimizationA:9

ALGORITHM 2: (g, I1, . . . , Ig, Isep,Γ) = DG(f, n,ub, lb, ε)

1 D = {1, ..., n}, Isep = {}, g = 0, Γ = 0;
2 for i ∈ D do
3 Itmp = {i};
4 for j ∈ D \ {i} do
5 p1 = lb, p2 = p1, p2(i) = ubi;
6 ∆1 = f(p1)− f(p2);
7 p1(j) = 0, p2(j) = 0;
8 ∆2 = f(p1)− f(p2);
9 Γ← Γ + 4;

10 if |∆1 −∆2| > ε then
11 Itmp ← Itmp ∪ {j}, D ← D \ {j};
12 end
13 end
14 if |Itmp| = 1 then
15 Isep ← Isep ∪ Itmp;
16 else
17 g ← g + 1;
18 Ig = Itmp;
19 end
20 end
21 return (g, I1, . . . , Ig, Isep,Γ);

where
∆δ,xp

[f](x) = f(. . . , xp + δ, . . .)− f(. . . , xp, . . .) (9)
refers to the forward difference of f with respect to variable xp with interval δ, then xp
and xq interact with each other,

Based on Theorem 3.3, one can detect the interaction between any two different
variables xi and xj by checking whether the condition Eq. (8) holds. The differential
grouping method is described in Algorithm 2, which implements Theorem 3.3 by set-
ting a = lbi, b1 = lbj , b2 = 0, δ = ubi− lbi and xk = lbk for all k ∈ {1, . . . , n} \ {i, j}. Then,
∆1 = ∆δ,xp [f](x)|xp=a,xq=b1 and ∆2 = ∆δ,xp [f](x)|xp=a,xq=b2 . For any pair of variables
(xi, xj), if the difference between ∆1 and ∆2 is greater than the predefined threshold ε,
then the two variables are considered to interact with each other and their indices are
placed in the same subset. In addition, the indices of all separable variables are placed
in a single separable index subset Isep.

Although Algorithm 2 has been demonstrated to be effective in grouping the inter-
acting variables together, and can potentially save a considerable number of fitness
evolutions when the subcomponents are mutually exclusive, it has three major draw-
backs. First, the comparison between the variables is not complete and many inter-
actions between variables may be missed. For example, suppose that there are three
variables (x1, x2, x3), where x2 interacts with x1 and x3, and x1 is independent from x3
(e.g., f(x1, x2, x3) = x1x2+x2x3). In Algorithm 2, the index of x2 is removed from the set
D immediately after its interaction with x1 has been detected. Then, the interaction
between x2 and x3 cannot be detected, and the final index partition will be I1 = {1, 2}
and I2 = {3}, which is different from the unique ideal partition I1 = {1, 2, 3}. This phe-
nomenon happens on the Rosenbrock function [Rosenbrock 1960], where each variable
interacts with at most two of the other variables.

The second drawback is that, the grouping performance is sensitive to the threshold
ε. Theoretically, the value of ε can be set to 0, since any positive difference between ∆1

and ∆2 implies interaction between the corresponding variables. However, in practice,

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 Mei et al.

the computer operations incur computational errors and cause non-zero values of |∆1−
∆2| for independent variables. To tolerate such computational errors, a positive small
threshold ε is proposed and employed in line 10 [Omidvar et al. 2014], and three values
of 10−1, 10−3 and 10−6 are empirically compared. The results show that the best ε value
varies from function to function, which indicates that ε needs to be set adaptively as
per the test function rather than fixed.

The third problem is that, it cannot deal with fully separable functions or the func-
tions with a large portion of separable variables. It only keeps a single index subset
Isep for all the separable variables. As a result, it cannot optimize the correspond-
ing subcomponent xIsep effectively. For example, it optimizes all the variables of the
fully separable functions without any decomposition. It has been shown that the de-
cision of the optimal subcomponent size for fully separable functions is still an open
and challenging task, and any intermediary decomposition between the two extreme
decompositions is better [Omidvar et al. 2014].

To address the first issue, the entire matrix Λn×n of all the |∆1 −∆2|’s is calculated
and maintained, where Λij is the |∆1 − ∆2| value between the variables xi and xj .
Then, a matrix Θn×n of the interaction between the variables is obtained from Λn×n
and ε. The entry Θij takes 1 if Λij > ε, and 0 otherwise. The Θ matrix is also known
as the design structure matrix in the area of system decomposition and integration
[Browning 2001], which indicates whether the objects of the system relate to each
other. Finally, the decomposition of the variables can be modelled as the computation
of the connected components of the graph with the node adjacency matrix of Θ, which
can be easily solved in linear time in terms of n using breadth-first search or depth-
first search [Hopcroft and Tarjan 1973]. The grouping method based on the Θ matrix is
called the Global Differential Grouping (GDG), as it maintains the global information
of the interactions between variables. An example of GDG is given below. Given a
function f(x) = x1x2 + x1x4 + x2x4 + x3x5x6 + x5x6x7 with a unique lower bound
of −1 and an upper bound of 1 for all the variables, the Λ matrix obtained by GDG
is shown in Eq. (10). With a sufficiently small ε, the Θ matrix is then shown in Eq.
(11). Considering Eq. (11) as the adjacency matrix of a graph, as shown in Fig. 2, the
connected components are {x1, x2, x4} and {x3, x5, x6, x7}.

Λ =

x1 x2 x3 x4 x5 x6 x7
x1 0 2 0 2 0 0 0
x2 2 0 0 2 0 0 0
x3 0 0 0 0 2 2 0
x4 2 2 0 0 0 0 0
x5 0 0 2 0 0 4 2
x6 0 0 2 0 4 0 2
x7 0 0 0 0 2 2 0

, (10)

Θ =

x1 x2 x3 x4 x5 x6 x7
x1 0 1 0 1 0 0 0
x2 1 0 0 1 0 0 0
x3 0 0 0 0 1 1 0
x4 1 1 0 0 0 0 0
x5 0 0 1 0 0 1 1
x6 0 0 1 0 1 0 1
x7 0 0 0 0 1 1 0

. (11)

Then, to address the sensitivity of the grouping performance to the threshold ε and
to determine the best ε value specifically for each function, an intuitive method is used

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A Competitive Divide-and-Conquer Algorithm for Unconstrained Large-Scale Black-Box OptimizationA:11

x1

x2

x3

x4

x5

x6

x7

Fig. 2. The graph corresponding to the adjacency matrix Eq. (11).

to estimate the magnitude of the computational error based on the magnitude of the
objective space. Specifically, K points x1, . . . ,xK are randomly sampled in the decision
space, and their objective values f(x1), . . . , f(xK) are evaluated. Then, we choose the ε
value as follows:

ε = α ·min{|f(x1)|, . . . , |f(xK)|}, (12)

where α is the controlling coefficient which will be set to 10−10 in the experimental
studies.

Finally, a proper ideal partition is still to be decided for the fully separable func-
tions or the functions with a large portion of separable variables. To this end, a simple
scheme is adopted. It is known that if the original partition of the index set is ideal,
then any further partition for the separable index subset Isep will lead to another
ideal partition [Omidvar et al. 2014]. Then, the separable index subset is further di-
vided into smaller subsets whose sizes are set according to a rule of thumb, which is
to choose a value that is small enough to be within the capacity of the subcomponent
optimizer, but it should not be made any smaller [Omidvar et al. 2014]. Based on the
previous studies [Hansen et al. 2010], CMA-ES performs well for the functions with up
to 40 dimensions. Its competitiveness may not be maintained on large-scale problems,
mainly due to the rapid increase of the covariance matrix [Omidvar and Li 2010] [Ros
and Hansen 2008]. Here, the subcomponent size is set to 20, which is a more conser-
vative value. Therefore, if Isep is still large, it is further divided into 20-dimensional
or smaller subsets. For example, if |Isep| = 950, then it is further divided into 47 20-
dimensional subsets plus a 10-dimensional subset.

The pseudocode of GDG is described in Algorithm 3. All the fitness values used to
obtain the Λ and Θ matrices are stored in the scalar F1, the vectors F2 and F3, and
the matrix F4. Then, the partition (I ′1, . . . , I ′k) is obtained by the function ConnComp(),
which computes the connected components based on the node adjacency matrix Θ and
considers each separable variable as a single component, since it is an isolated node
in the graph. This can be done simply by depth-first search or breadth-first search
in linear time, whose details can be found in [Hopcroft and Tarjan 1973]. Then, the
indices of all the separable variables are grouped into Isep (lines 24 – 31) and further
divided into 20-dimensional or smaller subsets (lines 32 – 40). It can be seen that GDG
takes a fixed number of fitness evaluations of

Γ = 1 + 2n+
n(n− 1)

2
=
n2 + 3n+ 2

2
. (13)

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 Mei et al.

ALGORITHM 3: (g, I1, . . . , Ig,Γ) = GDG(f, n,ub, lb, ε)

1 p1 = lb, F1 = f(p1), Γ = 1;
2 F2 = 01×n, F3 = 01×n, F4 = 0n×n;
3 for i = 1→ n do
4 p2 = p1, p2(i) = ubi, F2(i) = f(p2), Γ← Γ + 1;
5 p3 = p1, p3(i) = 0, F3(i) = f(p3), Γ← Γ + 1;
6 end
7 for i = 1→ n− 1 do
8 for j = i+ 1→ n do
9 p4 = p1, p4(i) = ubi, p4(j) = 0;

10 F4(i, j) = F4(j, i) = f(p4), Γ← Γ + 1;
11 end
12 end
13 Λ = 0n×n, Θ = 0n×n;
14 for i = 1→ n− 1 do
15 for j = i+ 1→ n do
16 ∆1 = F1 − F2(i), ∆2 = F3(j)− F4(i, j);
17 Λij = |∆1 −∆2|;
18 if Λij > ε then
19 Θij = 1;
20 end
21 end
22 end
23 (k, I′1, . . . , I′k) = ConnComp(Θ) ; // Computing the connected components
24 Isep = {}, g = 0;
25 for i = 1→ k do
26 if |I′i| = 1 then
27 Isep ← Isep ∪ I′i;
28 else
29 g ← g + 1, Ig = I′i;
30 end
31 end
32 while |Isep| > 0 do
33 g ← g + 1, Ig = {};
34 for i ∈ Isep do
35 Ig ← I ∪ {i}, Isep ← Isep \ {i};
36 if |Isep| = 0 ∨ |Ig| = 20 then
37 break;
38 end
39 end
40 end
41 return (g, I1, . . . , Ig,Γ);

3.2. CMA-ES subcomponent optimizer
CMA-ES [Hansen and Ostermeier 1996] was proposed for solving difficult non-linear
non-convex continuous optimization problems. As the name implies, the basic idea of
CMA-ES is the covariance matrix adaptation. It samples the population based on the
current covariance matrix between the variables, and updates the covariance matrix
by the distribution of the best subset (e.g., half) of the individuals, weighted by their
fitness values. Details of CMA-ES can be found in [Hansen 2011].

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A Competitive Divide-and-Conquer Algorithm for Unconstrained Large-Scale Black-Box OptimizationA:13

ALGORITHM 4: cv = randinit(ub, lb, n)

1 x(0) = lb + (lb + ub)/2, σ(0) = 0.3 · (ub− lb);
2 z ∼ N (0, In×n);
3 cv = x(0) + σ(0) ◦ z ; // ◦ is the entrywise product of two vectors/matrices
4 return cv;

The CMA-ES subcomponent optimizer is directly derived from the minimalistic im-
plementation of CMA-ES (purecmaes.m), which is given on the official website 1. Here,
we only list the differences between the variant adopted in our approach (CMAESIter()
in Algorithm 1) and the original CMA-ES (purecmaes.m), without giving the full details
of the algorithm.

(1) CMAESIter() runs a single iteration of purecmaes.m instead of a number of itera-
tions.

(2) In CMAESIter(), the fitness function of each individual pij for the index subset
Ii is defined as f(cv1, . . . , cvi−1,pij , cvi+1, . . . , cvg), where cvk is the best-so-far
individual for xIk , ∀k ∈ {1, . . . , g} \ {i}, since the explicit fitness function fi(pij)
is not available. Due to the fact that CMA-ES uses truncation selection at each
iteration, f(cv1, . . . , cvi−1,pij , cvi+1, . . . , cvg) leads to the same CMA-ES process
as fi(pij).

(3) The initialization of CMAESIter() is different from that of purecmaes.m. First, the
initial mean is randomly sampled from a uniform distribution between 0 and 1 in
purecmaes.m, while it is fixed to the center of the solution space lb + (lb + ub)/2 in
CMAESIter(). Second, the initial standard deviation σ is a scalar and is fixed to 0.5
in purecmaes.m regardless of the range of the decision variables. In CMAESIter(),
on the other hand, σi is initialized to 0.3 · (ubi − lbi) for each decision variable
respectively to take the range of the decision variables into account. Finally, in
our algorithm, the newly introduced context vector cv is initialized by randinit(),
which is described in Algorithm 4.

Note that in CMA-ES, the population size λk for the subcomponent xIk
monotonously increases with the problem size |Ik| (λk = 4 + b3 log(|Ik|)c). Such an
adaptive setting of population size addresses the issue of contributions of different sub-
components mentioned in [Omidvar et al. 2011] [Omidvar et al. 2014] to some extent.
This is consistent with the intuition that a larger subcomponent contributes more to
the objective function and thus needs to be allocated to more computational resources
by a larger population size.

4. EXPERIMENTAL STUDIES
In the experimental studies, the proposed CC-GDG-CMAES is evaluated on the
CEC’2010 large-scale global optimization (LSGO) benchmark functions [Tang et al.
2009], which consist of 20 1000-dimensional benchmark functions (f1 to f20) that can
be divided into five categories. The details of the categorization of the functions are
given in Table I.

First, the accuracy of GDG is evaluated by comparing the interaction matrix ob-
tained by GDG with the true interaction matrix. Then, the final results obtained by
CC-GDG-CMAES are compared with that of DECC-I [Omidvar et al. 2014], MA-SW-
Chains [Molina et al. 2010], CMA-ES [Hansen 2011] (the minimalistic implementation
purecmaes.m) and the Cooperative Co-evolution with Ideal Grouping and CMA-ES (CC-

1https://www.lri.fr/∼hansen/purecmaes.m

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 Mei et al.

Table I. The categorization of the CEC’2010 LSGO benchmark functions.

Category Functions Description

Fully separable f1 to f3 1000 separable variables
Single-group 50-nonseparable f4 to f8 One 50-dimensional nonseparable group plus 950

separable variables
10-group 50-nonseparable f9 to f13 10 50-dimensional nonseparable groups plus 500

separable variables
20-group 50-nonseparable f14 to f18 20 50-dimensional nonseparable groups
Nonseparable f19 to f20 Single 1000-dimensional nonseparable group

Table II. Description of the compared algorithms in the experimental studies.

Algorithm Description

DECC-I [Omidvar et al. 2014] Differential Evolution with Cooperative Co-evolution and Ideal De-
composition

MA-SW-Chains [Molina et al.
2010]

Memetic Algorithm with adaptive local search intensity and Solis
Wets’ local search algorithm

CMA-ES [Hansen 2011] Evolution Strategy with Covariance Matrix Adaptation
CC-IG-CMAES Cooperative Co-evolution with Ideal Decomposition and CMA-ES
CC-GDG-CMAES Cooperative Co-evolution with Global Differential Grouping and

CMA-ES

IG-CMAES). DECC-I and MA-SW-Chains are the representatives of the state-of-the-
art algorithms for solving large-scale black-box optimization problems. DECC-I adopts
the differential evolution with cooperative co-evolution [Yang et al. 2008] and an ideal
partition of the index set obtained manually using the knowledge of the benchmark
functions. In this ideal partition, all the separable variables are placed in a single
group called the separable group. MA-SW-Chains is a memetic algorithm that assigns
local search intensity to individuals by chaining different local search applications to
explore more effectively in the search space. CMA-ES is one of the state-of-the-art al-
gorithms for small-sized black-box optimization problems [Hansen et al. 2010], and
can be seen as a special case of CC-GDG-CMAES where there is no decomposition.
Therefore, the comparison with CMA-ES will show the efficacy of GDG. CC-IG-CMAES
replaces the GDG part of CC-GDG-CMAES by the pre-selected ideal partition of the
index set. Therefore, the comparison with CC-IG-CMAES shows the effect on the final
solution when GDG cannot find any ideal partition. The compared algorithms in the
experimental studies are summarized in Table II.

4.1. Experimental Settings
The parameter settings of CC-GDG-CMAES are given in Table III. All the parameters
of CMA-ES are set in the standard way suggested on the official website 2. Thus, be-
sides the stopping criterion Γmax, there are only two parameters related to GDG (Eq.
(12)) – K and α. Here, Γmax = 3 × 106 is a commonly-used setting which has been
adopted by most of the previous studies including the compared DECC-I and MA-SW-
Chains. All the compared algorithms were run 25 times independently.

4.2. Results and Discussions
4.2.1. Grouping Accuracy. First, the accuracy of GDG is evaluated on f1 to f20. To this

end, three measures are defined to indicate the accuracies of identifying the (1) in-
teraction; (2) independence and (3) both types of relationships. They are defined as

2https://www.lri.fr/∼hansen/purecmaes.m

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A Competitive Divide-and-Conquer Algorithm for Unconstrained Large-Scale Black-Box OptimizationA:15

Table III. The parameter settings of the compared algorithms.

Parameter Description Value

K Samples to estimate the magnitude of objective space 10
α Coefficient to obtain ε 10−10

Γmax Maximal fitness evaluations 3× 106

Table IV. Accuracies of identifying interaction, independence and both types of relationships of GDG
with α = 10−10 on the CEC’2010 LSGO benchmark functions.

Measure f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

ρ1 - - - 100% 100% 100% 100% 100% 100% 100%
ρ2 100% 100% 2.8% 100% 100% 100% 100% 100% 100% 100%
ρ3 100% 100% 2.8% 100% 100% 100% 100% 100% 100% 100%

Measure f11 f12 f13 f14 f15 f16 f17 f18 f19 f20

ρ1 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
ρ2 75.5% 100% 100% 100% 100% 100% 100% 100% - 100%
ρ3 76.1% 100% 100% 100% 100% 100% 100% 100% 100% 100%

follows:

ρ1 =

∑n
i=1

∑n
j=1,j 6=i(Θ ◦Θideal)i,j∑n

i=1

∑n
j=1,j 6=i(Θideal)i,j

× 100%, (14)

ρ2 =

∑n
i=1

∑n
j=1,j 6=i((1n×n −Θ) ◦ (1n×n −Θideal))i,j∑n
i=1

∑n
j=1,j 6=i(1n×n −Θideal)i,j

× 100%, (15)

ρ3 =

∑n
i=1

∑n
j=1,j 6=i(1n×n − |Θ−Θideal|)i,j

n(n− 1)/2
× 100%, (16)

where Θideal is the ideal interaction matrix. (Θideal)i,j equals 1 if variable i and j
interact with each other, and 0 otherwise. |Θ−Θideal|i,j takes 0 if Θi,j = (Θideal)i,j , and
1 otherwise. The operator “◦” is the entrywise product of two matrices.

Table IV shows the three accuracies of GDG on the CEC’2010 LSGO benchmark
functions. Note that there is no ρ1 for f1 to f3, because all the variables are indepen-
dent from each other and thus there is no interaction. There is no ρ2 for f19 since all
the variables interact with each other. It should be noted that the nonseparable Rosen-
brock function f20 has both interaction and independence in the Θ matrix due to the
chain-like interaction between the variables. That is, xi only interacts with xi−1 and
xi+1, and is independent from all the other variables.

It can be seen that GDG has perfect accuracy on most of the benchmark functions.
The low ρ2 values on f3 and f11 imply that most of the computational errors between
independent variables are larger than ε on these two functions. When looking further
into the details of f3 and f11, the parts of the objective functions including the separable
variables are both found to be the Ackley function, which is stated as follows:

fAckley(x) = 20− 20 exp

−0.2

√√√√ 1

n

n∑
i=1

x2i

− exp

(
1

n

n∑
i=1

cos(2πxi)

)
+ e. (17)

One can see that the Ackley function includes the exponential function. This is con-
sistent with our intuition that exponential functions can induce larger computational

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 Mei et al.

Table V. Accuracies of identifying interaction, independence and both types of relationships of GDG
with α = 10−9 on the CEC’2010 LSGO benchmark functions.

Measure f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

ρ1 - - - 100% 100% 100% 100% 100% 100% 100%
ρ2 100% 100% 15.0% 100% 100% 100% 100% 100% 100% 100%
ρ3 100% 100% 15.0% 100% 100% 100% 100% 100% 100% 100%

Measure f11 f12 f13 f14 f15 f16 f17 f18 f19 f20

ρ1 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
ρ2 81.2% 100% 100% 100% 100% 100% 100% 100% - 100%
ρ3 81.6% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table VI. Accuracies of identifying interaction, independence and both types of relationships of GDG
with α = 10−8 on the CEC’2010 LSGO benchmark functions.

Measure f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

ρ1 - - - 100% 100% 100% 100% 100% 100% 100%
ρ2 100% 100% 60.1% 100% 100% 100% 100% 100% 100% 100%
ρ3 100% 100% 60.1% 100% 100% 100% 100% 100% 100% 100%

Measure f11 f12 f13 f14 f15 f16 f17 f18 f19 f20

ρ1 100% 100% 100% 100% 100% 100% 100% 100% 100% 99.8%
ρ2 96.5% 100% 100% 100% 100% 100% 100% 100% - 100%
ρ3 96.6% 100% 100% 100% 100% 100% 100% 100% 100% 100.0%

errors due to their higher complexity than the polynomial functions. The observation
suggests a possibility of a more adaptive setting of ε based not only on the magnitude
of objective space, but also on the complexity level of the objective function.

As a result, GDG obtained ideal partitions of the variables for all the test functions
except f3 and f11. For f3, all the 1000 separable variables were placed in a single non-
separable group. For f11, the 500 nonseparable variables were perfectly divided into 10
50-dimensional nonseparable groups, and the 500 separable variables were placed in a
single nonseparable group. Overall, GDG is demonstrated to be effective in identifying
ideal partitions of the variables.

In order to investigate the sensitivity of the parameter α defined in Eq. (12) to the
accuracy of GDG, comparative analysis is carried out using different α values. Tables
V – VI show the accuracies achieved by α = 10−9 and 10−8. One can see that for f3
and f11, the accuracy improves with the increase of α. However, when α = 10−8, some
of the interactions in f20 can no longer be identified. When looking into the grouping
results, the 1000 separable variables in f3 were still placed in a single nonseparable
group for both α = 10−9 and 10−8. For f11, the 500 separable variables were placed in
a single nonseparable group when α = 10−9, and divided into a 165-dimensional sep-
arable group and a 335-nonseparable group when α = 10−8. For f20 and α = 10−8, the
1000 nonseparable variables are divided into three nonseparable groups. The first one
is 679-dimensional, the second is 298-dimensional and the last is 23-dimensional. In
summary, α = 10−9 obtained the highest accuracy among the three compared values.
As for the grouping results which are practically used by the subsequent search pro-
cess, α = 10−10 and α = 10−9 performed the same. Therefore, we simply keep α = 10−10

for the test functions without loss of grouping performance.

4.2.2. Computational Effort of Grouping. Eq. (13) gives the number of fitness evaluations
required for carrying out variable grouping by GDG on n-dimensional problems. In the
experimental studies, n = 1000, and thus the computational effort of grouping is

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A Competitive Divide-and-Conquer Algorithm for Unconstrained Large-Scale Black-Box OptimizationA:17

Γ =
10002 + 3× 1000 + 2

2
= 501501. (18)

This is about 1/6 of the total fitness evaluations Γmax = 3 × 106. There are nearly
2.5 × 106 fitness evaluations for the subsequent optimization, which is a considerable
number.

4.2.3. Optimization Performance. Tables VII and VIII show the median, mean and stan-
dard deviation of the fitness values obtained by the 25 independent runs of the com-
pared algorithms on the CEC’2010 LSGO benchmark functions. For testing the sta-
tistical significance of the results, first the Kruskal-Wallis one-way ANOVA [Sheskin
2003] with a significance level of 0.05 is used to find out if there is any significant
difference between the algorithms. If a significant difference is detected, then a se-
ries of pair-wise Wilcoxon rank sum tests [Wilcoxon 1945] with a significance level of
0.05 is conducted with Bonferroni correction [Sheskin 2003] in order to find the best
performing algorithm. Bonferroni correction is a simple technique for controlling the
family-wise error rate. The family-wise error rate is the accumulation of type I errors
when more than one pair-wise comparison is used to rank a set of results. The median
of the best performing algorithm is marked in bold. Note that for each of the instances
except f3 and f11, CC-GDG-CMAES manages to obtain an ideal partition, and is thus
essentially the same as CC-IG-CMAES. If both algorithms perform significantly better
than all the other algorithms, their median values are marked in bold. Overall, it is ob-
vious that CC-GDG-CMAES and CC-IG-CMAES perform much better than the other
algorithms. For f5 and f6, none of the algorithms perform significantly better than any
of the other algorithms due to the large standard deviation of some algorithms (MA-
SW-Chains for f5, and CC-GDG-CMAES and CC-IG-CMAES for f6). It is noteworthy
that for f6, CC-GDG-CMAES and CC-IG-CMAES obtain large mean values. However,
their median values are the global optimum. When looking into the details of the re-
sults, it is found that the algorithms obtain the global optimum for 19 out of the 25
runs, but are stuck in very large local optima (with scale of 106) for the other 6 runs.
The probability of obtaining the global optimum is still high (19/25 = 76%).

Then, CC-GDG-CMAES is compared with CMA-ES and CC-IG-CMAES to verify the
efficacy of GDG. From Tables VII and VIII, it is seen that CC-GDG-CMAES outper-
forms CMA-ES with respect to mean on 13 functions and median on 14 functions,
while CC-GDG-CMAES is outperformed by CMA-ES on only one function. It obtains
the same results as CMA-ES on f3, f19 and f20 since it has no decomposition on these
functions, and is thus equivalent to CMA-ES. It is outperformed by CC-IG-CMAES on
only two functions (f3 and f11), since GDG failed to obtain any ideal partition.

Next, CC-GDG-CMAES is compared with DECC-I to show the advantage of CMA-
ES as a subcomponent optimizer. It can be seen that CC-GDG-CMAES obtains better
mean values on 14 functions and better median values on 15 functions. Note that
DECC-I keeps all the separable variables in a single subcomponent, while CC-GDG-
CMAES further divides them into at most 20-dimensional subcomponents. Therefore,
CC-GDG-CMAES employs different decompositions for f1, f2, f4 to f10, f12 and f13,
where there are 500 to 1000 separable variables. However, for f14 to f20, there is no
separable variable and the ideal partitions are unique for both algorithms. CC-GDG-
CMAES outperforms DECC-I on 5 out of these 7 functions, which indicates that CMA-
ES is an effective subcomponent optimizer for large-scale black-box optimization. For
f3 and f11, CC-GDG-CMAES does not obtain any better ideal partition, and places all
the separable variables in a single group. When replacing the grouping of CC-GDG-
CMAES with the ideal grouping, the resultant CC-IG-CMAES improves the mean and
median on both f3 and f11, and reliably reaches the global optimum on f3.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 Mei et al.

Table VII. Median, mean and standard deviation of the fitness values obtained by the 25 inde-
pendent runs of the compared algorithms on the CEC’2010 LSGO benchmark functions from
f1 to f8. Under the pairwise Wilcoxon rank sum test with Bonferroni correction and significance
level of 0.05, the median of the best performing algorithms are marked in bold.

Functions DECC-I MA-SW-Chains CMA-ES CC-IG-CMAES CC-GDG-CMAES

f1

Median 1.51e-01 1.50e-14 8.49e+06 0.00e+00 0.00e+00
Mean 4.21e+00 2.10e-14 8.60e+06 0.00e+00 0.00e+00
Std 1.03e+01 1.99e-14 8.01e+05 0.00e+00 0.00e+00

f2

Median 4.42e+03 7.90e+02 5.20e+03 1.61e+03 1.61e+03
Mean 4.39e+03 8.10e+02 5.21e+03 1.60e+03 1.60e+03
Std 1.97e+02 5.88e+01 2.20e+02 5.29e+01 5.29e+01

f3

Median 1.67e+01 6.11e-13 2.17e+01 0.00e+00 2.17e+01
Mean 1.67e+01 7.28e-13 2.17e+01 0.00e+00 2.17e+01
Std 3.34e-01 3.40e-13 1.06e-02 0.00e+00 1.06e-02

f4

Median 5.82e+11 3.54e+11 5.22e+13 1.17e+10 1.17e+10
Mean 6.13e+11 3.53e+11 5.90e+13 1.60e+10 1.60e+10
Std 2.08e+11 3.12e+10 1.98e+13 1.25e+10 1.25e+10

f5

Median 1.37e+08 2.31e+08 6.44e+07 1.02e+08 1.02e+08
Mean 1.34e+08 1.68e+08 6.37e+07 1.02e+08 1.02e+08
Std 2.31e+07 1.04e+08 1.31e+07 1.32e+07 1.32e+07

f6

Median 1.63e+01 1.60e+00 2.17e+01 0.00e+00 0.00e+00
Mean 1.64e+01 8.14e+04 2.58e+06 6.03e+06 6.03e+06
Std 2.66e-01 2.84e+05 7.13e+06 9.88e+06 9.88e+06

f7

Median 4.34e+00 9.04e+01 1.41e+09 0.00e+00 0.00e+00
Mean 2.97e+01 1.03e+02 1.35e+09 0.00e+00 0.00e+00
Std 8.58e+01 8.70e+01 3.29e+08 0.00e+00 0.00e+00

f8

Median 6.73e+00 3.43e+06 6.47e+08 2.20e+07 2.20e+07
Mean 3.19e+05 1.41e+07 1.08e+09 2.90e+07 2.90e+07
Std 1.10e+06 3.68e+07 1.35e+09 2.59e+07 2.59e+07

No. Best 0 2 0 4 3

Table IX shows the best fitness values over the 25 independent runs of the com-
pared algorithms. For each function, the best result among the compared algorithms
is marked in bold. MA-SW-Chains was the winner in 2010, and DECC-I is an algorithm
that was developed later and showed comparative performance with MA-SW-Chains.
It can be seen that CC-GDG-CMAES is much better than DECC-I and MA-SW-Chains
in terms of best performance, and obtains the global optima for 6 test functions.

To compare CC-GDG-CMAES with CMA-ES and CC-IG-CMAES in more detail,
their convergence curves are plotted for five selected functions, one from each cate-
gory (shown in Table I), as shown in Figs. 3 to 7. Concretely, f1 is selected from the
fully separable functions, where CC-GDG-CMAES performs best among all the com-
pared algorithms. f5 is selected from the functions still with a large portion of separa-
ble variables, but CC-GDG-CMAES does not perform as well as on f1. f11 is selected
from the third category, where CC-GDG-CMAES is outperformed by DECC-I. f18 is
selected from the partially separable functions with no separable variables, on which
CC-GDG-CMAES performs significantly better. f19 is arbitrarily selected from the two
nonseparable functions. In the figures, the x-axis stands for the fitness evaluations
and the y-axis represents the average fitness value of the individuals in the current
population over the 25 independent runs. The y-axis is in log scale. For f1, f5 and f18,

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A Competitive Divide-and-Conquer Algorithm for Unconstrained Large-Scale Black-Box OptimizationA:19

Table VIII. Median, mean and standard deviation of the fitness values obtained by the 25 indepen-
dent runs of the compared algorithms on the CEC’2010 LSGO benchmark functions from f9 to
f20. Under the pairwise Wilcoxon rank sum test with Bonferroni correction and significance level
of 0.05, the median of the best performing algorithms are marked in bold.

Functions DECC-I MA-SW-Chains CMA-ES CC-IG-CMAES CC-GDG-CMAES

f9

Median 4.84e+07 1.40e+07 9.55e+06 1.57e+03 1.57e+03
Mean 4.84e+07 1.41e+07 9.59e+06 1.74e+03 1.74e+03
Std 6.56e+06 1.15e+06 1.07e+06 6.95e+02 6.95e+02

f10

Median 4.31e+03 2.07e+03 5.17e+03 1.80e+03 1.80e+03
Mean 4.34e+03 2.06e+03 5.20e+03 1.81e+03 1.81e+03
Std 1.46e+02 1.40e+02 2.83e+02 8.89e+01 8.89e+01

f11

Median 1.03e+01 3.70e+01 2.38e+02 4.39e+01 6.44e+01
Mean 1.02e+01 3.77e+01 2.38e+02 5.07e+01 6.53e+01
Std 1.14e+00 6.85e+00 1.97e-01 2.04e+01 2.82e+01

f12

Median 1.35e+03 3.50e-06 0.00e+00 0.00e+00 0.00e+00
Mean 1.48e+03 3.62e-06 0.00e+00 0.00e+00 0.00e+00
Std 4.28e+02 5.92e-07 0.00e+00 0.00e+00 0.00e+00

f13

Median 6.23e+02 1.07e+03 7.85e+04 1.59e+02 1.59e+02
Mean 7.51e+02 1.25e+03 9.15e+04 2.72e+02 2.72e+02
Std 3.70e+02 5.72e+02 6.77e+04 1.77e+02 1.77e+02

f14

Median 3.34e+08 3.08e+07 1.07e+07 0.00e+00 0.00e+00
Mean 3.38e+08 3.10e+07 1.06e+07 0.00e+00 0.00e+00
Std 2.40e+07 2.19e+06 1.11e+06 0.00e+00 0.00e+00

f15

Median 5.87e+03 2.71e+03 5.16e+03 2.01e+03 2.01e+03
Mean 5.88e+03 2.72e+03 5.12e+03 2.00e+03 2.00e+03
Std 9.89e+01 1.22e+02 1.98e+02 6.74e+01 6.74e+01

f16

Median 2.49e-13 9.39e+01 4.33e+02 8.46e+01 8.46e+01
Mean 2.47e-13 1.01e+02 4.33e+02 9.67e+01 9.67e+01
Std 9.17e-15 1.45e+01 2.83e-01 3.78e+01 3.78e+01

f17

Median 3.93e+04 1.26e+00 0.00e+00 0.00e+00 0.00e+00
Mean 3.92e+04 1.24e+00 0.00e+00 0.00e+00 0.00e+00
Std 2.75e+03 1.25e-01 0.00e+00 0.00e+00 0.00e+00

f18

Median 1.19e+03 1.19e+03 2.51e+03 5.79e+01 5.79e+01
Mean 1.17e+03 1.30e+03 3.36e+03 8.63e+01 8.63e+01
Std 9.66e+01 4.36e+02 1.81e+03 8.76e+01 8.76e+01

f19

Median 1.75e+06 2.85e+05 2.81e+06 2.81e+06 2.81e+06
Mean 1.74e+06 2.85e+05 2.87e+06 2.87e+06 2.87e+06
Std 9.54e+04 1.78e+04 6.61e+05 6.61e+05 6.61e+05

f20

Median 3.87e+03 1.06e+03 8.29e+02 8.29e+02 8.29e+02
Mean 4.14e+03 1.07e+03 8.54e+02 8.54e+02 8.54e+02
Std 8.14e+02 7.29e+01 6.71e+01 6.71e+01 6.71e+01

No. Best 2 1 3 9 9

CC-IG-CMAES and CC-GDG-CMAES have the same convergence curves. For f19, all
three algorithms have the same convergence curve.

It can be seen that CC-IG-CMAES and CC-GDG-CMAES converge quickly on f1, f5
and f11. This is because there are at least 500 separable variables in these functions,
which are divided into low-dimensional subcomponents (at most 20). CMA-ES has been
shown to be effective to search in a low-dimensional solution space and converges

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 Mei et al.

Table IX. The best fitness values obtained by the 25 independent runs of the compared algorithms
on the CEC’2010 LSGO benchmark functions. For each function, the best algorithm is marked in
bold.

Functions DECC-I MA-SW-Chains CMA-ES CC-IG-CMAES CC-GDG-CMAES

f1 3.01e-03 3.18e-15 7.32e+06 0.00e+00 0.00e+00
f2 4.00e+03 7.04e+02 4.82e+03 1.50e+03 1.50e+03
f3 1.61e+01 3.34e-13 2.16e+01 0.00e+00 2.16e+01
f4 2.51e+11 3.04e+11 3.61e+13 3.48e+09 3.48e+09
f5 8.84e+07 2.89e+07 3.55e+07 8.06e+07 8.06e+07
f6 1.60e+01 8.13e-07 2.17e+01 0.00e+00 0.00e+00
f7 7.18e-01 3.35e-03 6.50e+08 0.00e+00 0.00e+00
f8 1.17e+00 1.54e+06 4.86e+08 1.77e+07 1.77e+07
f9 3.63e+07 1.19e+07 7.60e+06 7.90e+02 7.90e+02
f10 4.14e+03 1.81e+03 4.75e+03 1.64e+03 1.64e+03
f11 8.50e+00 2.74e+01 2.38e+02 2.00e+01 2.17e+01
f12 1.02e+03 2.65e-06 0.00e+00 0.00e+00 0.00e+00
f13 4.13e+02 3.86e+02 6.06e+03 1.27e+02 1.27e+02
f14 3.04e+08 2.72e+07 8.83e+06 0.00e+00 0.00e+00
f15 5.70e+03 2.48e+03 4.72e+03 1.85e+03 1.85e+03
f16 2.27e-13 8.51e+01 4.32e+02 4.26e+01 4.26e+01
f17 3.47e+04 1.04e+00 0.00e+00 0.00e+00 0.00e+00
f18 9.74e+02 7.83e+02 6.49e+02 2.38e+01 2.38e+01
f19 1.53e+06 2.49e+05 1.62e+06 1.62e+06 1.62e+06
f20 3.20e+03 9.25e+02 7.72e+02 7.72e+02 7.72e+02

No. Best 3 3 3 14 13

quickly. The early convergence allows more fitness evaluations to identify the ideal
decomposition if needed in the future. Although CC-GDG-CMAES is outperformed by
DECC-I on f11, it is still better than CMA-ES due to the advantage of decomposi-
tion. For f18, the 1000 variables are decomposed into 20 50-dimensional nonseparable
groups. In this case, the solution space is larger and may make CMA-ES spend more
fitness evaluations to converge. For f19, the algorithms do not converge since there
is no decomposition and all the 1000 variables are placed in a single nonseparable
group. This also implies the importance of decomposition to increase convergence of
algorithm, even for the nonseparable functions.

5. CONCLUSION
This paper addresses the two important issues in solving large-scale black-box opti-
mization with decomposition. First, the Global Differential Grouping (GDG) is derived
from the differential grouping [Omidvar et al. 2014] to identify an ideal partition of
variables. Then, CMA-ES is employed and modified to adapt to the Cooperative Co-
evolution (CC) framework as a subcomponent solver. The resultant algorithm, called
CC-GDG-CMAES, has been demonstrated to outperform the state-of-the-art results on
the CEC’2010 LSGO benchmark functions. Additionally, for most of the test functions,
ideal partitions have been identified by GDG.

In the future, the assumption of partial additive separability of the objective func-
tion, on which many of the theorems in this paper are based, is to be relaxed. There-
fore, the functions with other types of separability, or some nonseparable functions
with weak interaction matrices such as the Rosenbrock function, cannot be decom-

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A Competitive Divide-and-Conquer Algorithm for Unconstrained Large-Scale Black-Box OptimizationA:21

0 0.5 1 1.5 2 2.5

x 10
6

10
-20

10
-10

10
0

10
10

10
20

Fitness evaluations

A
v
er

ag
e

F
it

n
es

s
V

al
u
e

CMAES

CC-IG-CMAES

CC-GDG-CMAES

Fig. 3. Convergence curves of the compared algorithms on f1.

0 0.5 1 1.5 2 2.5

x 10
6

10
7

10
8

10
9

10
10

Fitness evaluations

A
v
er

ag
e

F
it

n
es

s
V

al
u
e

CMAES

CC-IG-CMAES

CC-GDG-CMAES

Fig. 4. Convergence curves of the compared algorithms on f5.

posed, and thus cannot be solved effectively. Effective decomposition methods are to
be designed for such nonseparable functions to explore the solution space more effec-
tively. In addition, the strength of the interaction between variables is also to be taken
into account to further improve the efficiency of the search, e.g., the variables with
stronger interactions are optimized together more often than the ones with weaker
interactions.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 Mei et al.

0 0.5 1 1.5 2 2.5

x 10
6

10
1

10
2

10
3

Fitness evaluations

A
v
er

ag
e

F
it

n
es

s
V

al
u
e

CMAES

CC-IG-CMAES

CC-GDG-CMAES

Fig. 5. Convergence curves of the compared algorithms on f11.

0 0.5 1 1.5 2 2.5

x 10
6

10
0

10
5

10
10

10
15

Fitness evaluations

A
v
er

ag
e

F
it

n
es

s
V

al
u
e

CMAES

CC-IG-CMAES

CC-GDG-CMAES

Fig. 6. Convergence curves of the compared algorithms on f18.

APPENDIX
The MATLAB code of this algorithm has been uploaded to MATLAB Central File
Exchange for free and easy download and use. The download link is: http://www.
mathworks.com/matlabcentral/fileexchange/45783-the-cc-gdg-cmaes-algorithm.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A Competitive Divide-and-Conquer Algorithm for Unconstrained Large-Scale Black-Box OptimizationA:23

0 0.5 1 1.5 2 2.5

x 10
6

10
6

10
7

10
8

10
9

Fitness evaluations

A
v
er

ag
e

F
it

n
es

s
V

al
u
e

CMAES

CC-IG-CMAES

CC-GDG-CMAES

Fig. 7. Convergence curves of the compared algorithms on f19.

ACKNOWLEDGMENTS

This work was supported by an ARC Discovery grant (No. DP120102205) and an EPSRC grant (No.
EP/I010297/1). Xin Yao is supported by a Royal Society Wolfson Research Merit Award.

REFERENCES
D. Andrews and Y. Whang. 1990. Additive interactive regression models: circumvention of the curse of di-

mensionality. Econometric Theory 6, 4 (1990), 466–479.
D. Azulay and J. Pique. 2001. A revised simplex method with integer Q-matrices. ACM Transactions on

Mathematical Software (TOMS) 27, 3 (2001), 350–360.
J.C. Bezdek, R.J. Hathaway, R.E. Howard, C.A. Wilson, and M.P. Windham. 1987. Local convergence analy-

sis of a grouped variable version of coordinate descent. Journal of Optimization Theory and Applications
54, 3 (1987), 471–477.

M. Blondel, K. Seki, and K. Uehara. 2013. Block coordinate descent algorithms for large-scale sparse multi-
class classification. Machine learning 93, 1 (2013), 31–52.

T.R. Browning. 2001. Applying the design structure matrix to system decomposition and integration prob-
lems: a review and new directions. IEEE Transactions on Engineering Management 48, 3 (2001), 292–
306.

W. Chen, T. Weise, Z. Yang, and K. Tang. 2010. Large-Scale Global Optimization Using Cooperative Co-
evolution with Variable Interaction Learning. Parallel Problem Solving from Nature, PPSN XI (2010),
300–309.

A.L. Custódio and L.N. Vicente. 2007. Using sampling and simplex derivatives in pattern search methods.
SIAM Journal on Optimization 18, 2 (2007), 537–555.

G.B. Dantzig and M.N. Thapa. 1997. Linear programming: 1: Introduction. Vol. 1. Springer.
R. Eberhart and J. Kennedy. 1995. A new optimizer using particle swarm theory. In Micro Machine and

Human Science, 1995. MHS’95., Proceedings of the Sixth International Symposium on. IEEE, 39–43.
J. Friedenberg and G. Silverman. 2006. Mind as a Black Box: The Behaviorist Approach. In Cognitive science:

An introduction to the study of mind. Sage, 85–88.
J.H. Friedman and B.W. Silverman. 1989. Flexible parsimonious smoothing and additive modeling. Techno-

metrics 31, 1 (1989), 3–21.
W.W. Hager and H. Zhang. 2006. Algorithm 851: CG DESCENT, a conjugate gradient method with guaran-

teed descent. ACM Transactions on Mathematical Software (TOMS) 32, 1 (2006), 113–137.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 Mei et al.

N. Hansen. 2011. The CMA evolution strategy: A tutorial. Technical Report.
N. Hansen, A. Auger, R. Ros, S. Finck, and P. Pošı́k. 2010. Comparing results of 31 algorithms from the black-

box optimization benchmarking BBOB-2009. In Proceedings of the 12th annual conference companion
on Genetic and evolutionary computation. ACM, 1689–1696.

N. Hansen and A. Ostermeier. 1996. Adapting arbitrary normal mutation distributions in evolution strate-
gies: The covariance matrix adaptation. In Proceedings of 1996 IEEE International Conference on Evo-
lutionary Computation. IEEE, 312–317.

G.R. Harik. 1997. Learning gene linkage to efficiently solve problems of bounded difficulty using genetic
algorithms. Ph.D. Dissertation. The University of Michigan, Ann Arbor, MI, USA.

J.H. Holland. 1975. Adaptation in natural and artificial systems: An introductory analysis with applications
to biology, control, and artificial intelligence. The University of Michigan Press.

R. Hooke and T.A. Jeeves. 1961. “Direct search” solution of numerical and statistical problems. Journal of
the ACM (JACM) 8, 2 (1961), 212–229.

J.E. Hopcroft and R.E. Tarjan. 1973. Efficient algorithms for graph manipulation. Commun. ACM 16, 6
(1973), 372–378.

P. Larrañaga and J.A. Lozano. 2002. Estimation of distribution algorithms: A new tool for evolutionary com-
putation. Vol. 2. Springer.

G. Li, C. Rosenthal, and H. Rabitz. 2001. High dimensional model representations. The Journal of Physical
Chemistry A 105, 33 (2001), 7765–7777.

X. Li and X. Yao. 2012. Cooperatively coevolving particle swarms for large scale optimization. Evolutionary
Computation, IEEE Transactions on 16, 2 (2012), 210–224.

Y. Liu, X. Yao, Q. Zhao, and T. Higuchi. 2001. Scaling up fast evolutionary programming with cooperative
coevolution. In Proceedings of the 2001 Congress on Evolutionary Computation, Vol. 2. IEEE, 1101–1108.

I. Loshchilov, M. Schoenauer, and M. Sebag. 2011. Adaptive coordinate descent. In Proceedings of the 13th
annual conference on Genetic and evolutionary computation. ACM, 885–892.

Y. Mei, X. Li, and X. Yao. 2014. Cooperative Co-evolution with Route Distance Grouping for Large-Scale
Capacitated Arc Routing Problems. IEEE Transactions on Evolutionary Computation 18, 3 (2014), 435–
449.

D. Molina, M. Lozano, and F. Herrera. 2010. MA-SW-Chains: Memetic algorithm based on local search chains
for large scale continuous global optimization. In 2010 IEEE Congress on, Evolutionary Computation
(CEC). IEEE, 1–8.

J.A. Nelder and R. Mead. 1965. A simplex method for function minimization. The computer journal 7, 4
(1965), 308–313.

M.N. Omidvar and X. Li. 2010. A comparative study of cma-es on large scale global optimisation. In AI 2010:
Advances in Artificial Intelligence. Springer, 303–312.

M.N. Omidvar, X. Li, Y. Mei, and X. Yao. 2014. Cooperative Co-evolution with Differential Grouping for
Large Scale Optimization. IEEE Transactions on Evolutionary Computation 18, 3 (2014), 378–393.

M.N. Omidvar, X. Li, Z. Yang, and X. Yao. 2010. Cooperative co-evolution for large scale optimization through
more frequent random grouping. In Proceedings of the 2010 IEEE Congress on Evolutionary Computa-
tion. 1–8.

M.N. Omidvar, X. Li, and X. Yao. 2010. Cooperative co-evolution with delta grouping for large scale non-
separable function optimization. In Proceedings of the 2010 IEEE Congress on Evolutionary Computa-
tion. 1762–1769.

M.N. Omidvar, X. Li, and X. Yao. 2011. Smart use of computational resources based on contribution for
cooperative co-evolutionary algorithms. In Proceedings of the 13th annual conference on Genetic and
evolutionary computation. ACM, 1115–1122.

M.N. Omidvar, Y. Mei, and X. Li. 2014. Optimal Decomposition of Large-Scale Separable Continuous Func-
tions for Cooperative Co-evolutionary Algorithms. In Proceedings of the 2014 IEEE Congress on Evolu-
tionary Computation (CEC2014). IEEE.

M.A. Potter and K. De Jong. 1994. A cooperative coevolutionary approach to function optimization. Parallel
Problem Solving from Nature (PPSN) (1994), 249–257.

P. Richtárik and M. Takáč. 2012. Iteration complexity of randomized block-coordinate descent methods for
minimizing a composite function. Mathematical Programming (2012), 1–38.

L.M. Rios and N.V. Sahinidis. 2012. Derivative-free optimization: A review of algorithms and comparison of
software implementations. Journal of Global Optimization (2012), 1–47.

R. Ros and N. Hansen. 2008. A simple modification in CMA-ES achieving linear time and space complexity.
In Parallel Problem Solving from Nature–PPSN X. Springer, 296–305.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A Competitive Divide-and-Conquer Algorithm for Unconstrained Large-Scale Black-Box OptimizationA:25

H.H. Rosenbrock. 1960. An Automatic Method for Finding the Greatest or Least Value of a Function. Com-
put. J. 3, 3 (1960), 175–184.

S. Shan and G. Wang. 2010. Survey of modeling and optimization strategies to solve high-dimensional de-
sign problems with computationally-expensive black-box functions. Structural and Multidisciplinary
Optimization 41, 2 (2010), 219–241.

D.J. Sheskin. 2003. Handbook of parametric and nonparametric statistical procedures. crc Press.
Y. Shi, H. Teng, and Z. Li. 2005. Cooperative co-evolutionary differential evolution for function optimization.

In Proceedings of the First international conference on Advances in Natural Computation - Volume Part
II. Springer-Verlag, 1080–1088.

J. Smith and T.C. Fogarty. 1995. An adaptive poly-parental recombination strategy. In Evolutionary Com-
puting. Springer, 48–61.

C.J. Stone. 1985. Additive regression and other nonparametric models. The annals of Statistics (1985), 689–
705.

K. Tang, X. Li, P.N. Suganthan, Z. Yang, and T. Weise. 2009. Benchmark Functions for the CEC’2010 Spe-
cial Session and Competition on Large-Scale Global Optimization. Technical Report. Nature Inspired
Computation and Applications Laboratory, USTC, China. http://nical.ustc.edu.cn/cec10ss.php.

P. Tseng. 2001. Convergence of a block coordinate descent method for nondifferentiable minimization. Jour-
nal of optimization theory and applications 109, 3 (2001), 475–494.

F. Van den Bergh and A.P. Engelbrecht. 2004. A cooperative approach to particle swarm optimization. IEEE
Transactions on Evolutionary Computation 8, 3 (2004), 225–239.

J. Weglarz, J. Blazewicz, W. Cellary, and R. Slowinski. 1977. Algorithm 520: An Automatic Revised Sim-
plex Method for Constrained Resource Network Scheduling [H]. ACM Transactions on Mathematical
Software (TOMS) 3, 3 (1977), 295–300.

K. Weicker and N. Weicker. 1999. On the improvement of coevolutionary optimizers by learning variable
interdependencies. In Proceedings of the 1999 IEEE Congress on Evolutionary Computation. IEEE.

F. Wilcoxon. 1945. Individual comparisons by ranking methods. Biometrics Bulletin 1, 6 (1945), 80–83.
Z. Yang, K. Tang, and X. Yao. 2008. Large scale evolutionary optimization using cooperative coevolution.

Information Sciences 178, 15 (2008), 2985–2999.
X. Yao, Y. Liu, and G. Lin. 1999. Evolutionary programming made faster. IEEE Transactions on Evolutionary

Computation 3, 2 (1999), 82–102.
C. Zhu, R.H. Byrd, P. Lu, and J. Nocedal. 1997. Algorithm 778: L-BFGS-B: Fortran subroutines for large-

scale bound-constrained optimization. ACM Transactions on Mathematical Software (TOMS) 23, 4
(1997), 550–560.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

