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EFFICIENT ADAPTIVE STOCHASTIC GALERKIN METHODS FOR
PARAMETRIC OPERATOR EQUATIONS

ALEX BESPALOV† AND DAVID SILVESTER‡

Abstract. This paper is concerned with the design and implementation of efficient solution
algorithms for elliptic PDE problems with correlated random data. The energy orthogonality that
is built into stochastic Galerkin approximations is cleverly exploited to give an innovative energy
error estimation strategy that utilizes the tensor product structure of the approximation space. An
associated error estimator is constructed and shown theoretically and numerically to be an effective
mechanism for driving an adaptive refinement process. The codes used in the numerical studies are
available online.

Key words. stochastic Galerkin methods, stochastic finite elements, PDEs with random data,
error estimation, a posteriori error analysis, adaptive methods, parametric operator equations

AMS subject classifications. 35R60, 65C20, 65N30, 65N15.

1. Introduction. Stochastic Galerkin approximation methods have emerged
over the last decade as an efficient alternative to sampling methods for computing
solutions (and associated quantities of interest) when studying linear elliptic PDE
problems with correlated random data. A typical strategy is to combine conventional
(h-) finite element approximation on the spatial domain with spectral (p-) approxi-
mation on a finite-dimensional manifold in the (stochastic) parameter domain. The
development of good/optimal adaptive refinement strategies remains an open ques-
tion however. It is highlighted in our previous work [4] as well as by other researchers:
notably Le Mâıtre and collaborators [13], [14], [15], Wan & Karniadakis [19], [20], and
Butler and collaborators [6], [5]. The strategy that is developed herein is similar in
spirit to that developed by Eigel et al. [7], but it is novel in that a posteriori estimates
of the error reduction in the energy norm (rather than the error itself) are used to
guide the adaptivity process.

An outline of the paper is as follows. Sections 2 and 3 set the problem of inter-
est within the general framework of parametric operator equations with a potentially
infinite-dimensional parameter space. The new error estimator is identified in Sec-
tion 4. The estimator is shown to be reliable and efficient, and its properties are
established that prove useful when individual error components are used to drive
adaptive refinement. A specific implementation of an adaptive refinement strategy is
described in section 5, and a set of numerical experiments that illustrate the effective-
ness of the strategy is presented in section 6. One notable feature is that our software
implementation is not limited to the lowest-order conforming spatial approximation—
this means that we can solve spatially-regular problems to high accuracy with just a
few adaptive refinement steps.

2. Parametric operator equations. Our setting is the framework established
in the review article of Schwab & Gittelson [17]. It is reiterated for completeness in
this section. Our notation is identical to that used in the precursor paper [4]. Let
Γ be a topological space and let H be a separable Hilbert space over R with natural
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norm ∥ · ∥H . We denote the dual space of H by H ′ and the corresponding duality
pairing by ⟨·, ·⟩. Our focus is on the following parametric operator equation

A(y)u(y) = f(y) ∀ y ∈ Γ, (2.1)

where A : Γ → L(H,H ′) and f : Γ → H ′ are given continuous maps defining for
each y ∈ Γ a symmetric bounded linear operator in L(H,H ′) and a linear functional
in H ′, respectively. We assume that A(y) has a bounded inverse for all y ∈ Γ so that
(2.1) has a unique solution u : Γ → H which is a continuous map. Our aim is to
use stochastic finite element techniques to solve PDE problems with random data.
Accordingly, we suppose that Γ :=

∏∞
m=1 Γm, with Γm being bounded intervals in R,

and assume that π is a product measure. In this case the elements of Γ are vectors,
denoted by y = (y1, y2, . . .) ∈ Γ, and π(y) :=

∏∞
m=1 πm(ym), where πm is a measure

on
(
Γm,B(Γm)

)
with B(Γm) representing the Borel σ-algebra on Γm. We define V to

be the Bochner space L2
π(Γ;H) with associated norm

∥ · ∥V :=

(∫
Γ

∥ · ∥2H dπ(y)

)1/2

.

This leads to the following weak formulation of (2.1): find u ∈ V such that

B(u, v) = F (v) ∀ v ∈ V, (2.2)

with the symmetric bilinear form and the linear functional

B(u, v) :=

∫
Γ

⟨A(y)u(y), v(y)⟩ dπ(y) and F (v) :=

∫
Γ

⟨f(y), v(y)⟩ dπ(y). (2.3)

To ensure that (2.2) is well posed, we will assume that f ∈ L2
π(Γ;H

′), the operator
A(y) is positive definite for all y ∈ Γ, and that there exist positive constants αmin

and αmax such that

∥A(y)∥L(H,H′) ≤ αmax, ∥A(y)−1∥L(H′,H) ≤ α−1
min ∀y ∈ Γ. (2.4)

It is evident that B(·, ·) defines an inner product in V and that it induces an energy
norm ∥v∥B := (B(v, v))1/2 that is equivalent to ∥v∥V .

The key assumption that is needed for our error estimation strategy is that A(y)
is a linear function of the parameters; that is, taking the form

A(y) = A0 +
∞∑

m=1

ymAm ∀y ∈ Γ, (2.5)

where A0 is symmetric positive definite and the operators Am ∈ L(H,H ′) are symmet-
ric for m ∈ N. To ensure well-posedness in the sense of (2.4) we follow Gittelson [11,
section 1] by assuming (with justification, see later in this section) that there exists a
constant τ ∈ [0, 1) such that for all y ∈ Γ,∣∣∣∣⟨ ∞∑

m=1

ymAmv, v

⟩∣∣∣∣ ≤ τ ⟨A0v, v⟩ ∀ v ∈ H.

Substituting (2.5) into (2.3) allows us to split B(·, ·) and rewrite (2.2) as

B0(u, v) +
∞∑

m=1

Bm(u, v) = F (v) ∀ v ∈ V,
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where the component bilinear forms Bm(·, ·) for m ∈ N0 are defined as

B0(u, v) :=

∫
Γ

⟨A0u(y), v(y)⟩ dπ(y), (2.6)

Bm(u, v) :=

∫
Γ

⟨Amu(y), v(y)⟩ ym dπ(y) ∀m ∈ N.

The assumptions on A0 imply that the bilinear form B0(·, ·) defines an inner product
in V which induces the norm ∥v∥B0 := (B0(v, v))

1/2 which is also equivalent to ∥v∥V .
This implies that there exist positive constants λ, Λ, such that

λB(v, v) ≤ B0(v, v) ≤ ΛB(v, v) ∀ v ∈ V. (2.7)

To give a concrete example of the abstract problem (2.2) we let D ⊂ R2 be
a Lipschitz domain with polygonal boundary ∂D, and consider the homogeneous
Dirichlet problem for the steady-state diffusion equation with a random, spatially
varying diffusion coefficient. More precisely, it is assumed that the diffusion coefficient
a = a(x, ξ) is a second-order correlated random field that can be written as a function
of a multivariate random variable ξ = (ξ1, ξ2, . . .) and that the right-hand side function
f = f(x) is deterministic. It is known (see e.g., [10, 12, 2, 17]), that we may rewrite
this problem in the following parametric form

−∇ · (a(x,y)∇u(x,y)) = f(x), x ∈ D, y ∈ Γ,

u(x,y) = 0, x ∈ ∂D, y ∈ Γ,
(2.8)

where Γ :=
∞∏

m=1
[−1, 1], with the diffusion coefficient represented as

a(x,y) = a0(x) +
∞∑

m=1

am(x) ym, x ∈ D, y ∈ Γ, (2.9)

and with the series converging uniformly in L∞(D).

The parameter-free term a0(x) in (2.9) typically represents the mean: that is,

a0(x) =

∫
Γ

a(x,y) dπ(y) = E[a](x), x ∈ D.

This is true, for example, for Karhunen-Loève expansions since in that case each ym
in (2.9) is the image of a mean-zero random variable and so∫

Γm

ym dπm(ym) = 0. (2.10)

If Γm = [−1, 1] and we additionally assume that the measure πm is symmetric, then
(2.10) always holds. To express (2.8) in the form (2.1), we let H := H1

0 (D), f(y) :=
f ∈ H−1(D) for all y ∈ Γ, and define the operator A(y) ∈ L(H1

0 (D),H−1(D)) for all
y ∈ Γ by the following identity

⟨A(y)v, w⟩ :=
∫
D

a(x,y)∇v(x) · ∇w(x) dx ∀ v, w ∈ H1
0 (D). (2.11)
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Then, due to (2.9), the operator A(y) admits decomposition (2.5) with A0 and Am,
m ∈ N, defined by

⟨A0v, w⟩ :=
∫
D

a0(x)∇v(x) · ∇w(x)dx ∀ v, w ∈ H1
0 (D), (2.12)

⟨Amv, w⟩ :=
∫
D

am(x)∇v(x) · ∇w(x)dx ∀ v, w ∈ H1
0 (D).

To ensure a well-posed problem we assume that a0(x) ∈ L∞(D) is uniformly
bounded away from zero, i.e.,

∃αmin
0 , αmax

0 > 0 such that αmin
0 ≤ a0(x) ≤ αmax

0 a.e. in D. (2.13)

We also assume that am(x) ∈ L∞(D), m ∈ N, and

τ :=
1

αmin
0

∞∑
m=1

∥am∥L∞(D) < 1. (2.14)

On the one hand, (2.14) ensures convergence of the series in (2.5) uniformly in y,
see [17, Lemma 2.21]. On the other hand, (2.14) together with (2.13) imply bounded
invertibility of A(y) for all y ∈ Γ (and, hence, unique solvability of (2.1)) and inequal-
ities (2.4) hold with

αmax := αmax
0 (1 + τ) and αmin := αmin

0 (1− τ),

see [17, Proposition 2.22]. Note that this implies that

αmin<α
min
0 ≤ αmax

0 <αmax,

and hence the constants λ and Λ in (2.7) satisfy λ < 1 < Λ.

3. Discrete formulations. The weak problem (2.2) will be discretized by con-
structing a finite-dimensional subspace VN ⊂ V and using Galerkin projection onto
VN . This defines a unique element uN ∈ VN satisfying

B(uN , v) = F (v) ∀ v ∈ VN . (3.1)

Our goal is to design an algorithm for adaptive selection of a sequence of finite di-
mensional subspaces VN ⊂ V such that a specified tolerance is met by the Galerkin
solution uN ∈ VN . This involves two essential ingredients. First, we need to find
a reliable and efficient estimator for the approximation error u − uN (measured in
an appropriate norm). Second, we need to develop an effective strategy for adaptive
refinement of stochastic Galerkin approximations.

We will exploit the tensor product structure of the Galerkin approximation space
VN = X ⊗ PP ⊂ H ⊗ L2

π(Γ) ≃ V by constructing finite-dimensional subspaces X ⊂
H and PP ⊂ L2

π(Γ) independently of each other. For the approximation on the
parameter domain Γ, let {Pm

n }n∈N0 denote the set of univariate polynomials on Γm

that are orthonormal with respect to the measure πm. Note that for any polynomial
Pm
n , the index n refers to the polynomial degree and we denote by cmn the leading

coefficient of Pm
n . The set {Pm

n }n∈N0
is an orthonormal basis of L2

πm
(Γm). Moreover,

it is well known that these polynomials satisfy the following three-term recurrence
(e.g., see [9, 18]):

Pm
0 ≡ 1; βm

n P
m
n+1(t) = (t− αm

n )Pm
n (t)− βm

n−1P
m
n−1(t), n ∈ N, t ∈ Γm, (3.2)
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where

αm
n =

∫
Γm

t (Pm
n (t))2 dπm(t) for n ∈ N and βm

n =
cmn
cmn+1

for n ∈ N0.

Note that if Γm = [−1, 1] and the measure πm is symmetric then αm
n = 0 in (3.2). The

recurrence formula (3.2) will be a crucial tool in the analysis of the error estimator in
section 4.2.

To construct an orthonormal basis of multivariate polynomials for L2
π(Γ), we

introduce the following set of finitely supported sequences:

I :=
{
ν = (ν1, ν2, . . .) ∈ NN

0 ; # supp ν <∞
}
,

where supp ν := {m ∈ N; νm ̸= 0} for any ν ∈ NN
0 . We will call I and any of

its subsets the index sets. The countable set of tensor product polynomials defined
by Pν(y) =

∏∞
m=1 P

m
νm

(ym), ∀ ν ∈ I forms an orthonormal basis of L2
π(Γ). Since

Pm
0 (ym) ≡ 1 for any m ∈ N, we have the characterization

Pν(y) =
∏

m∈supp ν

Pm
νm

(ym), ∀ ν ∈ I. (3.3)

Given a finite index set P ⊂ I, the space of multivariate polynomials PP :=
span{Pν ; ν ∈ P} defines a finite-dimensional subspace of L2

π(Γ). Each polynomial
Pν ∈ PP is a function of a finite number of the parameters ym, m ∈ N, and the
corresponding Galerkin approximation space is given by

VN = VXP := X ⊗ PP, (3.4)

where X is a finite-dimensional subspace of H and P is a finite subset of the index
set I. We will implicitly assume that P always contains the zero-index 0 = (0, 0, . . .).
We note that the choice of the index set P for PP determines both the number of
“active” parameters ym in the polynomial approximation on Γ, and the polynomial
degrees in these “active” parameters.

Given the construction (3.4), it will be convenient to rewrite (3.1) as follows: find
uXP ∈ VXP satisfying

B(uXP, v) = F (v) ∀ v ∈ VXP. (3.5)

The approximation provided by (3.5) can be improved by enriching the subspace VXP.
This can be done by enriching the finite-dimensional subspace X ⊂ H and/or the
polynomial space PP ⊂ L2

π(Γ). To this end, suppose that X∗ is a finite-dimensional
subspace of H such that X∗ ⊃ X. For example, in finite element methods, X∗ could
be obtained from X by adding new basis functions corresponding to nodes introduced
by mesh refinement. Then, X∗ can be decomposed as

X∗ = X ⊕ Y, (3.6)

where Y ⊂ H and X ∩ Y = {0}. The subspace Y will be called the detail space. We
observe that, since ⟨A0·, ·⟩ defines an inner product in H and X ∩ Y = {0}, there
exists a constant γ ∈ [0, 1) such that the strengthened Cauchy–Schwarz inequality
holds (see e.g., Eijkhout & Vassilevski [8]). That is,

|⟨A0uX , vY ⟩| ≤ γ ⟨A0uX , uX⟩1/2 ⟨A0vY , vY ⟩1/2 ∀uX ∈ X, ∀ vY ∈ Y. (3.7)

5



On the parameter domain Γ, we introduce an enriched polynomial space PP∗

corresponding to a larger index set P∗ ⊃ P. Thus, P∗ = P∪Q with Q ⊂ I such that
P ∩Q = ∅. We will call Q the detail index set. Then, PP∗ can be decomposed as

PP∗ = PP ⊕PQ, PP ∩ PQ = {0}. (3.8)

The decomposition in (3.8) is orthogonal with respect to the measure π. That is,∫
Γ

Pν(y)Pµ(y) dπ(y) = 0 ∀ ν ∈ P, ∀µ ∈ Q. (3.9)

We use the finite-dimensional subspaces X, Y ⊂ H and the index sets P, Q ⊂ I to
define the following finite-dimensional subspaces of V :

VYP := Y ⊗ PP, VXQ := X ⊗ PQ. (3.10)

Note that for any finite index set P ⊂ I, the subspaces VXP, VYP ⊂ V are such that
the strengthened Cauchy–Schwarz inequality

|B0(u, v)| ≤ γ ∥u∥B0
∥v∥B0

∀u ∈ VXP, ∀ v ∈ VYP (3.11)

holds with the same constant γ ∈ [0, 1) as in the strengthened Cauchy–Schwarz in-
equality (3.7) for the subspaces X, Y ⊂ H. This fact is due to the orthonormality of
the polynomials in PP (see [4, Lemma 3.1] for the proof of (3.11)).

We will define the enriched finite-dimensional subspace of V as the space1

V ∗
XP := VX∗P ⊕ VXQ = VXP ⊕ VYP ⊕ VXQ, (3.12)

where VX∗P := X∗ ⊗ PP, and VYP, VXQ are defined by (3.10). Thus, the original
subspace VXP is enriched by adding new basis functions ϕνPν(y), where either ν ∈ P
and ϕν ∈ Y (basis functions in VYP), or ν ∈ Q and ϕν ∈ X (basis functions in VXQ).
Next, let u∗XP ∈ V ∗

XP be the Galerkin projection onto the enriched subspace V ∗
XP, so

that

B(u∗XP, v) = F (v) ∀ v ∈ V ∗
XP. (3.13)

The approximation u∗XP ∈ V ∗
XP generated by (3.13) is not worse than the approxi-

mation uXP ∈ VXP, in the following sense:

∥u− u∗XP∥B = inf
v∈V ∗

XP

∥u− v∥B ≤ ∥u− uXP∥B . (3.14)

We will assume, as is commonly done in nonparametric a posteriori error analysis,
that the following stronger property holds.

Assumption 3.1. (saturation assumption). Let u ∈ V solve (2.2), and let uXP ∈
VXP and u∗XP ∈ V ∗

XP ⊃ VXP be two Galerkin approximations satisfying (3.5) and
(3.13), respectively. We assume that there exists a constant β ∈ [0, 1) such that

∥u− u∗XP∥B ≤ β ∥u− uXP∥B. (3.15)

1This enriched space is smaller than the enriched space V ∗
XP that was analyzed in [4].
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4. A posteriori error estimation. A new a posteriori estimator for the dis-
cretization error e := u− uXP ∈ V will be developed in this section. Using (2.2), we
have

B(e, v) = F (v)−B(uXP, v) ∀ v ∈ V. (4.1)

Following [4] we can approximate the error e ∈ V by using the bilinear form B0(·, ·)
given by (2.6) instead of B(·, ·) on the left-hand side of (4.1), and by discretizing
the resulting identity via Galerkin projection onto the enriched subspace V ∗

XP given
by (3.12). This leads to the error estimator e∗0 ∈ V ∗

XP satisfying

B0(e
∗
0, v) = F (v)−B(uXP, v) ∀ v ∈ V ∗

XP. (4.2)

We emphasize the advantage of using the B0 inner product from the point of view
of linear algebra. Indeed, since B0 incorporates only the parameter-free part of the
operator A(y), it invariably leads to a block diagonal system matrix. Calculations
can then be decomposed into multiple problems each having the dimension of a finite-
dimensional subspace of H (either X∗ ⊂ H or X ⊂ H). Effectively, this means
that the contributions to discretization error arising from the choice of X and P are
decoupled in the error estimator e∗0. More precisely (cf. (3.12)),

e∗0 = eX∗P + eXQ and ∥e∗0∥B0 =
(
∥eX∗P∥2B0

+ ∥eXQ∥2B0

)1/2

,

where the contributing spatial error estimator eX∗P ∈ VX∗P and the parameter error
estimator eXQ ∈ VXQ satisfy, respectively,

B0(eX∗P, v) = F (v)−B(uXP, v) ∀ v ∈ VX∗P, (4.3a)

B0(eXQ, v) = F (v)−B(uXP, v) ∀ v ∈ VXQ. (4.3b)

Note that these estimators are computable because P and Q are finite index sets.
The following result is an immediate consequence of Propositions 4.1 and 4.2

in [4]. It establishes the relation between the true error e in (4.1) and the estimator
e∗0 satisfying (4.2).

Proposition 4.1. Suppose that (saturation) Assumption 3.1 holds for the solu-
tion u to (2.2). Then, the estimator e∗0 defined by (4.2) satisfies

√
λ ∥e∗0∥B0 ≤ ∥e∥B ≤

√
Λ√

1− β2
∥e∗0∥B0 , (4.4)

where λ, Λ are the constants in (2.7) and β ∈ [0, 1) is the constant in (3.15).
Note that the computational cost associated with solving (4.3a) can be signif-

icantly higher than the cost of solving (4.3b), because the full enhanced subspace
X∗ ⊂ H is used in (4.3a). In order to avoid this, we can further exploit the de-
composition of the enriched space V ∗

XP in (3.12) and perform computations on a
lower-dimensional space. Indeed, instead of eX∗P in (4.3a) we can compute the error
estimator eYP ∈ VYP satisfying

B0(eYP, v) = F (v)−B(uXP, v) ∀ v ∈ VYP. (4.5)
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Finally, combining the estimators eYP and eXQ defined by (4.5) and (4.3b) gives the
following estimate for the overall discretization error ∥e∥B :

η :=
(
∥eYP∥2B0

+ ∥eXQ∥2B0

)1/2
. (4.6)

Note that B0(eYP, eXQ) = 0 due to the orthogonality (3.9) of polynomial spaces PP

and PQ with respect to the measure π. Therefore

η = ∥eYP + eXQ∥B0 . (4.7)

The connection between η and ∥e∗0∥B0 is established in the next lemma.

Lemma 4.1. Let e∗0 ∈ V ∗
XP be defined by (4.2). Then the error estimate η defined

by (4.6) satisfies

η ≤ ∥e∗0∥B0 ≤
1√

1− γ2
η, (4.8)

where γ ∈ [0, 1) is the constant in the strengthened Cauchy–Schwarz inequality (3.7)
for the subspaces X, Y ⊂ H.

Proof. The proof is very similar to that of Lemma 4.1 in [4] and so we only outline
the main steps. Since VXP, VYP and VXQ are subspaces of V ∗

XP, we deduce from
Galerkin orthogonality, (4.2), (4.5) and (4.3b), that

B0(e
∗
0, vXP) = 0 ∀ vXP ∈ VXP, (4.9)

B0(e
∗
0, vYP) = B0(eYP, vYP) ∀ vYP ∈ VYP, (4.10)

B0(e
∗
0, vXQ) = B0(eXQ, vXQ) ∀ vXQ ∈ VXQ. (4.11)

Then using (4.11) with vXQ = eXQ and (4.10) with vYP = eYP, we obtain

B0(e
∗
0, eYP + eXQ) = B0(e

∗
0 − eXQ, eYP + eXQ) +B0(eXQ, eYP + eXQ)

= B0(e
∗
0 − eXQ, eYP) +B0(eXQ, eYP + eXQ)

= B0(e
∗
0, eYP) +B0(eXQ, eXQ)

= B0(eYP, eYP) +B0(eXQ, eXQ) = η2.

Hence, applying the Cauchy-Schwarz inequality and recalling the formula (4.7) for η,
we establish the left-hand inequality in (4.8).

In order to prove the right-hand inequality in (4.8), we represent e∗0 ∈ V ∗
XP as

e∗0 = wXP + wYP + wXQ, (4.12)

where wXP ∈ VXP, wYP ∈ VYP, and wXQ ∈ VXQ. Then, using (4.9)–(4.11) and
then applying the discrete Cauchy–Schwarz inequality we obtain

∥e∗0∥2B0
= B0(e

∗
0, wXP + wYP + wXQ) = B0(eYP, wYP) +B0(eXQ, wXQ)

≤ ∥eYP∥B0 ∥wYP∥B0 + ∥eXQ∥B0 ∥wXQ∥B0

≤ η
(
∥wYP∥2B0

+ ∥wXQ∥2B0

)1/2
. (4.13)
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On the other hand, using representation (4.12), the orthogonality (3.9) of polynomial
spaces PP and PQ with respect to the measure π, and the strengthened Cauchy–
Schwarz inequality (3.11), we can estimate

∥e∗0∥2B0
= ∥wXP∥2B0

+ ∥wYP∥2B0
+ ∥wXQ∥2B0

+ 2B0(wXP, wYP)

≥ ∥wXP∥2B0
+ ∥wYP∥2B0

+ ∥wXQ∥2B0
− 2γ ∥wXP∥B0 ∥wYP∥B0 .

≥ (1− γ2)
(
∥wYP∥2B0

+ ∥wXQ∥2B0

)
. (4.14)

The right-hand inequality in (4.8) then follows from (4.13) and (4.14).

Remark 4.1. The error decomposition is subtle, for any vXQ ∈ VXQ we have

B0(eXQ − wXQ, vXQ)
(4.11)
= B0(e

∗
0 − wXQ, vXQ)

(4.12)
= B0(wXP + wYP, vXQ)

(3.9)
= 0,

showing that wXQ = eXQ. On the other hand, wYP ̸= eYP, in general (here, the
equality does hold when the subspaces X and Y in (3.6) are orthogonal with respect
to the inner product ⟨A0·, ·⟩). Therefore, ∥e∗0∥B0 ̸= η, in general, and the constant
in the upper bound in (4.8) only depends on the constant γ that measures the angle
between the subspaces X and Y (with respect to the inner product ⟨A0·, ·⟩). Note
that if X and Y are orthogonal then γ = 0 and (4.8) implies ∥e∗0∥B0

= η.
Combining the results of Proposition 4.1 and Lemma 4.1 gives two-sided bounds

for the energy error ∥e∥B = ∥u− uXP∥B in terms of the estimate η.
Theorem 4.1. Let u ∈ V be the solution to problem (2.2), and let uXP ∈ VXP

be the Galerkin approximation satisfying (3.5). Suppose that Assumption 3.1 holds.
Then, the a posteriori error estimate η defined by (4.6) satisfies

√
λ η ≤ ∥u− uXP∥B ≤

√
Λ√

1− β2
√
1− γ2

η, (4.15)

where λ, Λ are the constants in (2.7), γ ∈ [0, 1) is the constant in the strengthened
Cauchy–Schwarz inequality (3.7), and β ∈ [0, 1) is the constant in (3.15).

Remark 4.2. We note the improved constant in the lower bound in (4.15) when
compared to the corresponding error bound in the precursor paper [4, Theorem 4.1].

Remark 4.3. The error estimation strategy immediately extends to multilevel
Galerkin approximations of (2.2). In particular, given finite-dimensional subspaces
Xν ⊂ H (ν ∈ P), we can define the multilevel finite dimensional subspace of V as the
space

VXP := ⊕
ν∈P

(
Xν ⊗ Pν

)
.

We can also construct an enriched subspace

V ∗
XP :=

(
⊕

ν∈P

(
X∗

ν ⊗ Pν

)
︸ ︷︷ ︸

VXP ⊕ VY P

)
⊕

(
Xν̄ ⊗ PQ︸ ︷︷ ︸

VXQ

)
,

where X∗
ν (ν ∈ P) are the enriched finite-dimensional subspaces of H such that

X∗
ν = Xν ⊕ Yν with detail spaces Yν ⊂ H. The detail index set Q ⊂ I is such

that P∩Q = ∅, and ν̄ is any one of the indices in P (e.g., ν̄ is such that dim(Xν̄) =
max{dim(Xν); ν ∈ P}). Theorem 4.1 remains valid if we define η as in (4.6) with eYP

and eXQ given by (4.5) and (4.3b), respectively. The only change is that the constant
γ in (4.15) is now defined as γ := max{γν ; ν ∈ P}, where γν denotes the constant in
the strengthened Cauchy–Schwarz inequality for the subspaces Xν , Yν ⊂ H.
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4.1. Estimates of the error reduction. As discussed in [4, section 5], it turns
out that the error estimates ∥eYP∥B0 and ∥eXQ∥B0 contributing to η in (4.6) also
provide effective estimates for the error reductions that would result if we were to
compute the enhanced Galerkin approximations uX∗P ∈ VX∗P and uXP∗ ∈ VXP∗ :=
X ⊗ PP∗ by solving the discrete problems

B(uX∗P, v) = F (v) ∀ v ∈ VX∗P, (4.16a)

B(uXP∗ , v) = F (v) ∀ v ∈ VXP∗ . (4.16b)

We recall from [4, equation (5.3)] that in the case of the enhanced approximation
uX∗P satisfying (4.16a), the Galerkin orthogonality property and the Pythagorean
theorem yield the equality

∥e∥2B = ∥eX∗P∥2B + ∥uX∗P − uXP∥2B , (4.17)

where e = u − uXP and eX∗P = u − uX∗P. From (4.17) we conclude that the error
reduction achieved by enriching only the subspace X ⊂ H is characterized by the
quantity ∥uX∗P−uXP∥B. In the same way, the error reduction achieved by enriching
only the polynomial subspace PP is characterized by the quantity ∥uXP∗ − uXP∥B,
where uXP∗ ∈ VXP∗ solves (4.16b). The following theorem establishes two-sided
bounds for both error reductions in terms of the estimates ∥eYP∥B0 and ∥eXQ∥B0 .

Theorem 4.2. [4, Theorem 5.1] Let uXP ∈ VXP be the Galerkin approximation
satisfying (3.5), and let uX∗P ∈ VX∗P and uXP∗ ∈ VXP∗ be the enhanced approxima-
tions satisfying (4.16). Then, there hold the following estimates for the error reduction

√
λ ∥eYP∥B0 ≤ ∥uX∗P − uXP∥B ≤

√
Λ√

1− γ2
∥eYP∥B0 , (4.18)

√
λ ∥eXQ∥B0 ≤ ∥uXP∗ − uXP∥B ≤

√
Λ ∥eXQ∥B0 , (4.19)

where eYP ∈ Y ⊗ PP and eXQ ∈ X ⊗ PQ are defined by (4.5) and (4.3b), λ, Λ are
the constants in (2.7), and γ ∈ [0, 1) is the constant appearing in the strengthened
Cauchy–Schwarz inequality (3.7).

4.2. The error estimator eXQ. The properties of the estimator eXQ play an
important role in the implementation of our error estimation strategy. It goes without
saying that the estimator eXQ depends on the choice of the detail index set Q, and,
generally speaking, two detail index sets Q1, Q2 ⊂ I result in different estimators

e
(1)
XQ ∈ V

(1)
XQ and e

(2)
XQ ∈ V

(2)
XQ satisfying

B0(e
(i)
XQ, v) = F (v)−B(uXP, v) ∀ v ∈ V (i)

XQ, i = 1, 2, (4.20)

respectively (where V
(i)
XQ = X ⊗ PQi). The next lemma establishes a simple relation

between these two error estimators and the error estimator eXQ corresponding to the
combined index set Q = Q1 ∪Q2.

Lemma 4.2. Let Q, Q1, Q2 ⊂ I be three detail index sets such that Q = Q1 ∪Q2

and Q1∩Q2 = ∅. If eXQ, e
(1)
XQ, e

(2)
XQ are the parameter error estimators corresponding

to these index sets satisfying (4.3b) and (4.20) then

eXQ = e
(1)
XQ + e

(2)
XQ and

∥∥eXQ

∥∥2
B0

=
∥∥e(1)XQ

∥∥2
B0

+
∥∥e(2)XQ

∥∥2
B0
. (4.21)
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Proof. For any v ∈ V (i)
XQ = X ⊗ PQi , i = 1, 2, we have the representation

v(y) =
∑
µ∈Qi

ψµPµ(y) with ψµ ∈ X.

(Note that ψµ is a function of x in a PDE setting, in which case v is also a function
of x.) Similarly, for eXQ ∈ VXQ = X ⊗ PQ = X ⊗

(
PQ1 ⊕PQ2

)
, we write

eXQ(y) =
∑
ν∈Q

ϕνPν(y) =
( ∑

ν∈Q1

+
∑
ν∈Q2

)
ϕνPν(y) =: w1(y) + w2(y)

with ϕν ∈ X and wi ∈ V (i)
XQ, i = 1, 2. Using this decomposition, (4.3b) takes the form

B0(w1, v) +B0(w2, v) = F (v)−B(uXP, v) ∀ v ∈ VXQ. (4.22)

Next, choosing v ∈ V (1)
XQ ⊂ VXQ,

B0(w2, v) =

∫
Γ

⟨
A0

∑
ν∈Q2

ϕν Pν(y),
∑
µ∈Q1

ψµ Pµ(y)
⟩
dπ(y)

=
∑
ν∈Q2

∑
µ∈Q1

⟨A0ϕν , ψµ⟩
∫
Γ

Pν(y)Pµ(y) dπ(y) = 0, (4.23)

because {Pµ}µ∈I is an orthonormal basis and Q1 ∩ Q2 = ∅. Hence, from (4.22) we

conclude that w1 ∈ V
(1)
XQ satisfies B0(w1, v) = F (v) − B(uXP, v), ∀ v ∈ V

(1)
XQ. This

is the same equation as (4.20) (with i = 1), and since (4.20) uniquely defines e
(1)
XQ,

we deduce that w1 = e
(1)
XQ. Testing with v ∈ V (2)

XQ in (4.22) we similarly deduce that

w2 = e
(2)
XQ. Therefore, eXQ = e

(1)
XQ+ e

(2)
XQ. The second equality in (4.21) immediately

follows from (4.23).
Given any finite detail set Q = {µ ∈ I;µ ̸∈ P}, a consequence of Lemma 4.2 is

that the associated error estimator eXQ can be decomposed into contributions from
the estimators that correspond to individual indices µ ∈ Q:

eXQ =
∑
µ∈Q

e
(µ)
XQ with ∥eXQ∥2B0

=
∑
µ∈Q

∥∥e(µ)XQ

∥∥2
B0
, (4.24)

where e
(µ)
XQ ∈ X ⊗ Pµ satisfies

B0

(
e
(µ)
XQ, v

)
= F (v)−B(uXP, v) ∀ v ∈ X ⊗Pµ. (4.25)

Each estimator e
(µ)
XQ can be independently and cheaply computed (in fact, the linear

systems associated with (4.25) for all µ ∈ Q have the same coefficient matrix, see

section 5). A second key point is that, thanks to Theorem 4.2, the norm
∥∥e(µ)XQ

∥∥
B0

provides an estimate for the error reduction that would be achieved by including the
individual index µ in the enriched index set P∗ and computing the corresponding
enhanced approximation uXP∗ .

An equally important aspect of the construction of an efficient adaptive refinement
algorithm is the need to account for the large number of indices µ ∈ I\P for which the
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error estimator e
(µ)
XQ, and hence the corresponding error reduction, is equal to zero.

Some notation is needed first: for any m ∈ N, we let ε(m) =
(
ε
(m)
1 , ε

(m)
2 , . . .

)
∈ I

represent the Kronecker delta sequence for the coordinate m, i.e., ε
(m)
j = δjm for any

j ∈ N. Then, for any finite index set P we define P∗
∞ to be the infinite index set

given by P∗
∞ := P ∪Q∞, where

Q∞ :=
{
µ ∈ I \P; µ = ν ± ε(m), ∀ν ∈ P, ∀m = 1, 2, . . .

}
. (4.26)

The nonzero contributions to the error estimator eXQ are associated with the bound-
ary of the current index set. We identify the corresponding indices in the following
lemma.

Lemma 4.3. Assume that the detail index set Q is a finite subset of the index set
I\P∗

∞ and let f : Γ→ H ′ be the parametric linear functional in (2.1). The associated
estimator eXQ is equal to zero if and only if

F (v) =

∫
Γ

⟨f(y), v(y)⟩ dπ(y) = 0 ∀ v ∈ VXQ. (4.27)

Proof. Thanks to Lemma 4.2, it is sufficient to consider the detail index set Q
comprising a single index, that is Q = {µ}, where µ ̸∈ P∗

∞. The key step is to
show that the error estimator eXQ ∈ VXQ = X ⊗ Pµ satisfies B0(eXQ, v) = F (v),
∀ v ∈ VXQ. Then, since B0(·, ·) generates a norm on V , the result is an immediate
consequence of (4.27). Thus, using the error equation (4.3b) we simply need to show
that for arbitrary v ∈ VXQ we have

F (v)−B0(eXQ, v) = B(uXP, v) = B0(uXP, v) +
∞∑

m=1

Bm(uXP, v) = 0. (4.28)

To establish (4.28), recall that uXP(y) =
∑

ν∈P ϕν Pν(y) ∈ VXP with ϕν ∈ X and
v(y) = ϕµ Pµ(y) ∈ VXQ with ϕµ ∈ X. First, since µ ̸∈ P, we get

B0(uXP, v) =

∫
Γ

⟨A0uXP(y), v(y)⟩dπ(y)

=
∑
ν∈P

⟨A0ϕν , ϕµ⟩
∫
Γ

Pν(y)Pµ(y)dπ(y) = 0.

Next, for any fixed m = 1, 2, . . ., we get

Bm(uXP, v) =

∫
Γ

⟨AmuXP(y), v(y)⟩ ymdπ(y)

=
∑
ν∈P

⟨Amϕν , ϕµ⟩
∫
Γ

Pν(y)Pµ(y)ymdπ(y) = 0

thanks to the three-term recurrence (3.2) and the fact that µ ̸∈ P∗
∞.

We now show that (4.27) holds in the important case when the parametric linear
functional f(y) has affine dependence on the parameters ym (and in particular, when
f is parameter free as in our model problem (2.8)).

Corollary 4.1. Assume that f(y) has the decomposition

f(y) = f0 +
∞∑

m=1

ymfm, ∀y ∈ Γ (4.29)
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with fm ∈ H ′ (m ∈ N0) and convergence of the series to be understood in H ′ uniformly
in y. Let the detail index set Q be any finite subset of the index set I \ P∗

∞. Then
the corresponding estimator eXQ is equal to zero.

Proof. The assertion will follow by Lemma 4.3 if we prove that F (v) = 0 for any
v ∈ VXQ. It is again sufficient to consider Q = {µ} with some µ ̸∈ P∗

∞. In this case,
for any v(y) = ϕµ Pµ(y) ∈ VXQ one has

F (v) = ⟨f0, ϕµ⟩
∫
Γ

Pµ(y)dπ(y) +
∞∑

m=1

⟨fm, ϕµ⟩
∫
Γ

ymPµ(y)dπ(y).

Here,
∫
Γ
Pµ(y)dπ(y) = 0 because µ ̸= 0 (recall that 0 ∈ P), and

∫
Γ
ymPµ(y)dπ(y) = 0

for all m ∈ N due to the three-term recurrence (3.2) and because µ ̸= ε(m) for any
m ∈ N (note that ε(m) ∈ P∗

∞). Hence F (v) = 0.
The enrichment of the polynomial space PP on Γ is linked to the choice of the

detail index set Q, for which the contributing estimator eXQ is computed. Lemma 4.3
and Corollary 4.1 suggest that even in the case of highly enriched polynomial spaces

PP∪Q, the number of individual indices for which non-zero contributions e
(µ)
XQ need to

be computed may actually be very few. We will illustrate this assertion with a simple
example. Given integersM ≥ 1 and p ≥ 0 we denote by PM,p the space of polynomials
of total degree ≤ p in the first M parameters ym, m = 1, . . . ,M . Note that PM,p can
be equivalently defined as the span of the tensorized Legendre polynomials Pν(y) so
that

ν ∈ PM,p :=
{
ν = (ν1, ν2, . . .) ∈ NN

0 ; supp ν ⊂ {1, . . . ,M},
∑M

m=1 νm ≤ p
}
.

The dimension of PM,p is given by dim(PM,p) = #(PM,p) =
(p+M)!
p!M ! .

Example 4.1. Fix the polynomial space on Γ to be P3,2 and consider an enriched
polynomial space P10,5 = P3,2 ⊕ PQ with detail index set Q = P10,5 \ P3,2. Then
dim(PQ) = dim(P10,5) − dim(P3,2) = 2993. However, from the result in Lemma 4.3,

the number of indices µ ∈ Q associated with nonzero refinement estimators e
(µ)
XQ (i.e.,

that need to be computed) is only

#(Q ∩Q∞) =
(
dim(P3,3)− dim(P3,2)

)
+ (10− 3) · dim(P3,2) = 80 (!)

The above discussion indicates that if the error estimation strategy is to be ef-
fective, then the detail index set Q should be a sufficiently large (finite) subset of
the index set Q∞. This conclusion underpins the specific choice of Q in the adaptive
algorithm presented in the next section.

5. Adaptive algorithm. A generic adaptive refinement algorithm is discussed
in this section. Its efficiency is a consequence of the theoretical results of the previous
section. To fix notation, the algorithmic components are developed in the context of
the model diffusion problem (2.8) with a random coefficient a = a(x,y) represented
by the parametric form (2.9). The extension of the algorithm to other parametric
operator equations will be immediately obvious.

The variational formulation of (2.8) is given by (2.2)–(2.3) where the parametric
operator A(y) is defined by (2.11) for all y ∈ Γ, f ∈ H−1(D), and V := L2

π(Γ,H
1
0 (D)).

We will construct a finite-dimensional subspace of V by tensorizing standard finite
element functions of x ∈ D and multivariate polynomials of y ∈ Γ. Our finite element
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approximation will be conforming: for example, piecewise bilinear or biquadratic
approximation on shape-regular partition ∆h of D. (Here, h > 0 denotes the length
of the longest element edge in the resulting mesh). We will denote the associated finite
element space by X(h). Next, given a finite index set P ⊂ I (this is built adaptively
by the algorithm), we take the finite-dimensional subspace PP of L2

π(Γ) described in
section 3. The resulting finite-dimensional subspace of V is VN = VXP := X(h)⊗PP.
Here, N = N(h,P) denotes the total number of degrees of freedom, and is simply the
product of the number of spatial degrees of freedom and the cardinality of P. The
stochastic Galerkin finite element (sGFEM) solution uXP ∈ VXP is uniquely defined
by the identity (3.5).

To control the error in the Galerkin approximation, we compute the energy esti-
mate η defined by (4.6) and stop the adaptive process when a prescribed tolerance, tol,
is satisfied. To compute the component estimators eYP and eXQ that contribute to η,
the construction of the detail spaces on D and Γ need to be explicitly specified. In our
algorithm, Y (h) will be local bubble functions: these can either be defined by higher
order polynomials (for example, biquartic in the case of a biquadratic space X(h) or
biquadratic in the case of a bilinear space X(h)) or else by constructing piecewise
polynomials (biquadratic or bilinear) on a refined mesh ∆h/2. The detail polynomial
space PQ is associated with the following index set (cf. (4.26))

Q =
{
µ ∈ I \P; µ = ν ± ε(m), ∀ν ∈ P, ∀m = 1, 2, . . . ,MP + 1

}
, (5.1)

where the parameter counter MP is defined as follows

MP :=

{
0 if P = {0},
max

{
max(supp ν); ν ∈ P \ {0}

}
otherwise.

(5.2)

The error estimators eYP and eXQ satisfy the discrete formulations (4.5) and (4.3b)
with VYP := Y (h) ⊗ PP, VXQ := X(h) ⊗ PQ, and with the bilinear form B0(·, ·)
(cf. (2.6), (2.12)) defined by B0(v, w) =

∫
Γ

∫
D
a0(x)∇v(x,y) ·∇w(x,y) dx dπ(y). The

spatial error estimator eYP is computed using the strategy described in the precursor
paper [4]. On each element K ∈ ∆h we use a standard element residual technique
(see, e.g., Ainsworth & Oden [1]) to construct the following local residual problem
corresponding to (4.5): find eYP|K ∈ Y (h)|K ⊗ PP satisfying

B0,K(eYP|K , v) = FK(v) +

∫
Γ

∫
K

∇ ·
(
a(x,y)∇uXP(x,y)

)
v(x,y) dx dπ(y)

− 1

2

∫
Γ

∫
∂K\∂D

a(s,y)

[[
∂uXP

∂n

]]
v(s,y) dsdπ(y), (5.3)

for any v ∈ Y (h)|K ⊗ PP. Here, B0,K(·, ·) and FK(·) are the elementwise bilinear
form and linear functional, respectively, Y (h)|K is the restriction of the finite element

detail space to the element K, and
[[∂uXP

∂n

]]
denotes the flux jump in the approximate

solution uXP across inter-element edges. We refer to [4] for details of the linear
algebra associated with solving (5.3).

The parameter error estimator eXQ is computed by combining the contribut-

ing estimators e
(µ)
XQ corresponding to individual indices µ ∈ Q (see (4.24)). Each

contributing estimator e
(µ)
XQ ∈ X(h)⊗Pµ is computed by solving the linear system as-

sociated with discrete formulation (4.25). The coefficient matrix of this linear system
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represents the assembled stiffness matrix corresponding to the parameter-free term
a0(x) (see (2.9)) on ∆h, and is therefore the same for all µ ∈ Q. Once the stiffness

matrix has been factorized, the estimators e
(µ)
XQ can be computed independently by

using forward and backward substitutions. Once all contributing estimators eYP and

e
(µ)
XQ (µ ∈ Q) have been computed, the total error estimate η can be calculated via

η =

(
∥eYP∥2B0

+
∑
µ∈Q

∥∥e(µ)XQ

∥∥2
B0

)1/2

. (5.4)

If η exceeds the tolerance, we must enrich the subspace VXP = X(h) ⊗ PP in order
to compute a more accurate approximation. A key feature of our algorithm is that

the estimators eYP and e
(µ)
XQ (µ ∈ Q) are individually probed in order to decide how

to enrich the subspace VXP. The motivation for this is that ∥eYP∥B0 and ∥e(µ)XQ∥B0

provide effective estimates for the error reductions ∥uX∗P − uXP∥B and ∥uXP∗ −
uXP∥B, respectively, where uX∗P ∈ VX∗P = (X(h) ⊕ Y (h)) ⊗ PP and uXP∗ ∈
VXP∗ = X(h) ⊗ (PP ⊕ Pµ). Therefore, the dominant estimate indicates which part
of the approximation space VXP ought to be enriched: either the finite element space
on D or the polynomial space on Γ. In the former case, the enrichment is based on
a global refinement of the spatial mesh ∆h (typically, ∆h → ∆h/2), whereas in the
latter case, new indices are added to the index set P.

Algorithmically, this procedure is implemented as follows. We start with an initial
finite element space X(h0), associated with a coarse mesh ∆h0 , and an initial index
set P0 (e.g., P0 = {(0, 0, 0, . . .)} or P0 = {(0, 0, 0, . . .), (1, 0, 0, . . .)}). The goal of the
algorithm is to generate a sequence of finite element spaces

X(h0) ⊂ X(h1) ⊂ X(h2) ⊂ . . . ⊂ X(hn) ⊂ H1
0 (D)

(where hk+1 could be the same as hk), and a sequence of index sets

P0 ⊂ P1 ⊂ P2 ⊂ . . . ⊂ Pn ⊂ I

such that the tolerance tol is met by the Galerkin solution un ∈ X(hn)⊗PPn . At each

step k, the Galerkin solution uXP and the error estimators eYP and e
(µ)
XQ (µ ∈ Q) are

computed as described above. Then we find the maximum among the error estimates:

δ := max
{
∥eYP∥B0 ; max

{∥∥e(µ)XQ

∥∥
B0

; µ ∈ Q
}}
.

If δ = ∥eYP∥B0
, then the polynomial space on Γ is unchanged and the finite element

space X(hk) is enriched. In our global refinement setting the enriched space X(hk+1)
is defined on a uniformly refined mesh: expressed in a hierarchical basis it is given by
X(hk) ⊕ Z(hk+1), where Z(hk+1) is the span of Lagrangian basis functions defined
at the newly introduced nodes. Otherwise, (if δ > ∥eYP∥B0) the finite element space
is unchanged and the polynomial space on Γ is enriched by updating the index set

(specifically, by including additional indices µ ∈ Q for which
∥∥e(µ)XQ

∥∥
B0
≥ ∥eYP∥B0).

In this latter case, we set

Pk+1 := Pk ∪
{
µ ∈ Q; ∥e(µ)XQ∥B0 ≥ ∥eYP∥B0

}
,

so that PPn+1 = span{Pν ; ν ∈ Pn+1}. The updated subspace VXP := X(hk+1) ⊗
PPk+1

can then be generated and a more accurate Galerkin solution can be computed.
The process is then repeated until the tolerance is met.
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Algorithm 5.1. Adaptive sGFEM [tol, A, f ]→ un
input h0, P0

for k = 0, 1, 2, . . . do

uk ← Solve [A, f,X(hk),Pk]

δX ← Error Estimate 1 [A, f, uk, Y (hk)]

Qk ← Detail Index Set [Pk]

for i = 1, 2, . . . ,#(Qk) do

δP,i ← Error Estimate 2 [A, f, uk, µi]

end

ηk :=
(
δ2X +

∑#(Qk)
i=1 δ2P,i

)1/2

if ηk < tol then n := k, break

if δX ≥ max
{
δP,i; i = 1, 2, . . . ,#(Qk)

}
then

X(hk+1) := X(hk)⊕ Z(hk+1), Pk+1 := Pk

else X(hk+1) := X(hk), Pk+1 := Pk ∪
{
µi ∈ Qk; δP,i ≥ δX

}
end

The complete algorithm is listed in Algorithm 5.1. A software implementation
requires four functional building blocks:

• Solve[A, f,X(h),P] — a subroutine that generates the Galerkin approxima-
tion uXP ∈ X(h)⊗ PP satisfying (3.5);

• Detail Index Set[P] — a subroutine that generates the detailed index set
Q for the given index set P (see (5.1));

• Error Estimate 1[A, f, uXP, Y (h)] — a subroutine that computes the con-
tributing error estimate based on X-enrichment (see the first term on the
right-hand side of (4.6));

• Error Estimate 2[A, f, uXP, µ] — a subroutine that computes the contri-
buting error estimate based on P-enrichment by a single index µ ̸∈ P (see
the second term on the right-hand side of (4.6) with Q = {µ}).

The effectiveness of the adaptive strategy will be demonstrated by the numerical
results that are presented in the next section.

6. Numerical experiments. Staying within the context of the two-dimensional
diffusion problem (2.8) with the random coefficient a = a(x,y) in the parametric form
(2.9), we follow Eigel et al. [7, Section 11] and select the expansion coefficients am,
m∈N0 in (2.9) to represent planar Fourier modes of increasing total order. More
precisely, we set a0(x) := 1 and

am(x) := αm cos(2πβ1(m)x1) cos(2πβ2(m)x2), x = (x1, x2) ∈ (0, 1)× (0, 1). (6.1)

The modes are ordered so that for any m ∈ N,

β1(m) = m− k(m)(k(m) + 1)/2 and β2(m) = k(m)− β1(m)
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Fig. 6.1. Error estimates at each step of the adaptive algorithm using Q1 spatial approximation,
with fast (σ̃ = 4) and slow (σ̃ = 2) decay of the amplitude coefficients.

with k(m) = ⌊−1/2+
√
1/4 + 2m⌋, and the amplitude coefficients are constructed so

that αm = ᾱm−σ̃ for fixed σ̃ > 1 and 0 < ᾱ < 1/ζ(σ̃), where ζ denotes the Riemann
zeta function. Note that for the coefficients given by (6.1), the inequalities in (2.13)
and (2.14) hold with αmin

0 = αmax
0 = 1 and τ = ᾱζ(σ̃). Therefore, the variational

formulation of (2.8) admits a unique solution u ∈ V .

In our numerical experiments we set f(x) = 1. We consider expansions (2.9)
with slow (σ̃ = 2) and fast (σ̃ = 4) decay of the amplitudes αm in (6.1). In each
case, we choose ᾱ such that τ = ᾱζ(σ̃) = 0.9, which results in ᾱ ≈ 0.547 for σ̃ = 2
and ᾱ ≈ 0.832 for σ̃ = 4. We also assume that the parameters ym in (2.9) are
the images of uniformly distributed independent mean-zero random variables, and so
πm = πm(ym) is the associated probability measure on Γm = [−1, 1]. This assumption
ensures (2.10). The two problems are the same as those solved in [7, Section 11.1.1].

The performance of our adaptive algorithm was tested and numerical results
will be presented for bilinear (Q1) and biquadratic (Q2) spatial approximation on
uniform grids �h of square elements of edge length h. The detail space Y (h) (used
in Algorithm 5.1 to compute the spatial error estimate δX) is defined differently
in the two cases. For bilinear approximation, Y (h) is simply the span of the set
of bilinear bubble functions corresponding to edge midpoints and element centroids
of the grid (this strategy is taken from the precursor paper [4, section 6.2]). For
biquadratic approximation, Y (h) spans a carefully selected set of biquartic bubble
functions defined on �h. An assessment of the effectivity of this choice of detail space
can be found in Liao [16, section 2.3].

The adaptive computation is initialized using an approximation space of fixed di-
mension. More precisely, in both theQ1 andQ2 cases we tensorize a coarse polynomial
space PP0 on Γ based on the initial index set

P0 = {(0, 0, 0, . . .), (1, 0, 0, . . .)}

with a finite element space X(h0) associated with the coarse mesh �h0 , where h0 =
2−4 in the case of Q1 approximation and h0 = 2−3 in the case of Q2 approximation.
When the finite element space X(h) needs to be enriched within the adaptive algo-
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rithm, this enrichment (for both Q1 and Q2 approximation) is based on a uniform
refinement of the spatial mesh �h (that is �h → �h/2).

Table 6.1
Evolution of the index set at each step k of the adaptive algorithm using Q1 approximation for

fast (σ̃ = 4) and slow (σ̃ = 2) decay of the amplitude coefficients αm. The entries ‘—’ represent
steps when a spatial refinement is performed.

k fast decay slow decay

0 (0 0) (0 0 0 0)
(1 0) (1 0 0 0)

1 — —

2 (2 0) —

3 — (0 1 0 0)
(2 0 0 0)

4 — —

5 (3 0) (0 0 1 0)
(1 1 0 0)

6 — —

7 (0 1) (0 0 0 1)
(4 0) (3 0 0 0)

(1 0 1 0)

8 (1 1)

9 —

The computational results were produced using the open source MATLAB toolbox
S-IFISS [3]. In the first instance, we run Algorithm 5.1 with Q1 approximation with
a stopping tolerance tol = 2.5e-3. We plot the energy error estimates ηk at each
step k = 0, 1, 2, . . . of the algorithm as a function of the total number of degrees of
freedom, nk = dim

(
X(hk)⊗PPk

)
. The results are shown in Figure 6.1. The evolution

of the index sets in these two cases (fast and slow decay) is shown in Table 6.1. This
identifies the new indices that are added to the index set at steps of the adaptive
algorithm where the polynomial space on Γ is enriched.

Next, we run Algorithm 5.1 with Q2 approximation with a stopping tolerance
tol = 2.5e-4. We plot the energy error estimates ηk as a function of the total number
of degrees of freedom at each step k = 0, 1, 2, . . . in Figure 6.2. The evolution of the
index sets is identified in Table 6.2 and is visualized as bar plots in Figure 6.3.

Looking in detail at the results in Figure 6.1 and Table 6.1, we observe that for
the same level of accuracy, the final index set generated by the adaptive algorithm is
larger in the case of a slower decay rate (9 indices for σ̃ = 2 vs. 7 indices for σ̃ = 4).
We also see that more random variables are activated in the slow decay case, and that
they have a lower degree of polynomial approximation (polynomials of total degree 3
in 4 random variables for σ̃ = 2 vs. polynomials of degree 4 in 2 random variables
for σ̃ = 4). These features are even more pronounced when using Q2 approximation.
Looking at Table 6.2 and Figure 6.3 we find 65 active indices for σ̃ = 2 that include
polynomials of degree 5 in 13 random variables vs. 23 active indices for σ̃ = 4 covering
polynomials of degree 8 in 4 random variables. This behavior is consistent with what
we might expect, and reflects the influence of the higher-order Fourier modes in the
expansion (2.9) on the solution—this influence is more significant in the case of slow
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Fig. 6.2. Error estimates at each step of the adaptive algorithm using Q2 spatial approximation,
with fast (σ̃ = 4) and slow (σ̃ = 2) decay of the amplitude coefficients.
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Fig. 6.3. The number of active indices (darker bars) and active random variables (lighter bars)
at each step of the adaptive algorithm with Q2 spatial approximation.

decay of the coefficients than in the case of fast decay.

We should emphasize the point that having a more accurate spatial approximation
enables one to compute a significantly more accurate sGFEM solution. Indeed, for
a comparable number of degrees of freedom the total error estimate in the sGFEM
solution is smaller by up to one order of magnitude when Q2 approximation is used
in place of Q1 approximation (check the vertical scales in Figures 6.1 and 6.2). There
are two side effects of this: more steps of the algorithm are typically needed in order
to reach the higher level of accuracy (over twice as many in the case of slow decay)
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Table 6.2
Evolution of the index set at each step k of the adaptive algorithm using Q2 approximation for

fast (σ̃ = 4) and slow (σ̃ = 2) decay of the amplitude coefficients αm. The entries ‘—’ represent
steps when a spatial refinement is performed.

k fast decay slow decay

0 (0 0 0 0) (0 0 0 0 0 0 0 0 0 0 0 0 0)
(1 0 0 0) (1 0 0 0 0 0 0 0 0 0 0 0 0)

1 (2 0 0 0) (0 1 0 0 0 0 0 0 0 0 0 0 0)
(0 1 0 0) (2 0 0 0 0 0 0 0 0 0 0 0 0)

2 (3 0 0 0) (0 0 1 0 0 0 0 0 0 0 0 0 0)
(1 1 0 0 0 0 0 0 0 0 0 0 0)

3 — —

4 (4 0 0 0) (0 0 0 1 0 0 0 0 0 0 0 0 0)
(1 1 0 0) (3 0 0 0 0 0 0 0 0 0 0 0 0)

(1 0 1 0 0 0 0 0 0 0 0 0 0)
(2 1 0 0 0 0 0 0 0 0 0 0 0)

5 (5 0 0 0) (0 0 0 0 1 0 0 0 0 0 0 0 0)
(2 1 0 0)

6 — (0 0 0 0 0 1 0 0 0 0 0 0 0)

7 (3 1 0 0) —
(6 0 0 0)
(0 0 1 0)
(1 0 1 0)

8 (4 1 0 0) (1 0 0 1 0 0 0 0 0 0 0 0 0)
(7 0 0 0) (2 0 1 0 0 0 0 0 0 0 0 0 0)
(2 0 1 0) (0 0 0 0 0 0 1 0 0 0 0 0 0)

(0 2 0 0 0 0 0 0 0 0 0 0 0)
(1 0 0 0 0 1 0 0 0 0 0 0 0)
(4 0 0 0 0 0 0 0 0 0 0 0 0)
(1 0 0 0 1 0 0 0 0 0 0 0 0)
(3 1 0 0 0 0 0 0 0 0 0 0 0)
(0 1 1 0 0 0 0 0 0 0 0 0 0)
(1 2 0 0 0 0 0 0 0 0 0 0 0)

9 (5 1 0 0) (0 0 0 0 0 0 0 1 0 0 0 0 0)
(2 0 0 1 0 0 0 0 0 0 0 0 0)
(1 1 1 0 0 0 0 0 0 0 0 0 0)
(3 0 1 0 0 0 0 0 0 0 0 0 0)
(1 0 0 0 0 0 1 0 0 0 0 0 0)

10 — (0 0 0 0 0 0 0 0 1 0 0 0 0)

11 (3 0 1 0) (0 0 0 0 0 0 0 0 0 1 0 0 0)
(0 0 0 1)
(8 0 0 0)
(6 1 0 0)
(0 2 0 0)
(1 2 0 0)

12 (0 0 0 0 0 0 0 0 0 0 1 0 0)

13 —

14 (0 0 0 0 0 0 0 0 0 0 0 1 0)
(0 1 0 1 0 0 0 0 0 0 0 0 0)
(2 0 0 0 0 1 0 0 0 0 0 0 0)
(1 0 0 0 0 0 0 0 0 1 0 0 0)
(2 0 0 0 1 0 0 0 0 0 0 0 0)
(0 1 0 0 1 0 0 0 0 0 0 0 0)
(1 0 0 0 0 0 0 1 0 0 0 0 0)
(2 2 0 0 0 0 0 0 0 0 0 0 0)
(2 1 1 0 0 0 0 0 0 0 0 0 0)
(1 0 0 0 0 0 0 0 1 0 0 0 0)
(4 1 0 0 0 0 0 0 0 0 0 0 0)
(5 0 0 0 0 0 0 0 0 0 0 0 0)
(0 0 2 0 0 0 0 0 0 0 0 0 0)
(1 1 0 1 0 0 0 0 0 0 0 0 0)
(1 0 0 0 0 0 0 0 0 0 1 0 0)
(3 0 0 1 0 0 0 0 0 0 0 0 0)
(0 0 1 1 0 0 0 0 0 0 0 0 0)
(0 1 0 0 0 1 0 0 0 0 0 0 0)
(2 0 0 0 0 0 1 0 0 0 0 0 0)
(4 0 1 0 0 0 0 0 0 0 0 0 0)
(0 0 1 0 0 1 0 0 0 0 0 0 0)
(0 1 0 0 0 0 1 0 0 0 0 0 0)

15 (0 0 0 0 0 0 0 0 0 0 0 0 1)
(1 1 0 0 1 0 0 0 0 0 0 0 0)
(1 0 2 0 0 0 0 0 0 0 0 0 0)
(2 1 0 1 0 0 0 0 0 0 0 0 0)
(1 0 0 0 0 0 0 0 0 0 0 1 0)
(1 0 1 1 0 0 0 0 0 0 0 0 0)
(1 1 0 0 0 1 0 0 0 0 0 0 0)
(2 0 0 0 0 0 0 0 0 1 0 0 0)
(3 2 0 0 0 0 0 0 0 0 0 0 0)
(3 1 1 0 0 0 0 0 0 0 0 0 0)
(2 0 0 0 0 0 0 1 0 0 0 0 0)
(3 0 0 0 0 1 0 0 0 0 0 0 0)
(3 0 0 0 1 0 0 0 0 0 0 0 0)
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and, as a consequence, a much richer index set is likely to be constructed (there are
nearly 7 times as many active indices in the final Q2 based approximation compared
to the final Q1 approximation in the case of slow decay). We also observe that the
rate of convergence of the adaptive algorithm with Q1 approximation seems to be
independent of the rate of decay of coefficients (see Figure 6.1), whereas the adaptive
algorithm with Q2 approximation appears to converge slightly faster in the case of
fast decay (see Figure 6.2).

Table 6.3
The energies, total error estimates, reference errors, and effectivity indices for the sGFEM

solutions at each iteration step in the case σ̃ = 4 (fast decay); in this case ∥uref∥B = 1.94142e-01,
nref = 382743.

k nk ∥uk∥B ηk ∥erefk ∥B θk

0 578 1.92490e-01 3.18519e-02 2.52709e-02 1.26
1 2178 1.93018e-01 2.08364e-02 2.08574e-02 1.00
2 3267 1.93753e-01 1.57841e-02 1.22716e-02 1.29
3 12675 1.93893e-01 9.99149e-03 9.81808e-03 1.02
4 49923 1.93928e-01 7.97375e-03 9.10216e-03 0.88
5 66564 1.94057e-01 5.51003e-03 5.73418e-03 0.96
6 264196 1.94066e-01 4.61169e-03 5.42581e-03 0.85
7 396294 1.94114e-01 2.91629e-03 3.26522e-03 0.89
8 462343 1.94124e-01 2.54321e-03 2.64887e-03 0.96
9 1842183 1.94126e-01 2.04781e-03 2.48012e-03 0.83

To conclude the discussion we would like to demonstrate the efficiency of our error
estimation strategy. To this end, we let uk ∈ X(hk) ⊗ PPk

be the Galerkin solution
computed at each step k = 0, 1, 2, . . . of the adaptive algorithm with Q1 approximation
(see Table 6.1 for details of refinement at each step), and let ηk be the corresponding
estimate of the energy error given by (5.4). We want to compare ηk with the energy
norm of the true error ek := u− uk, where u ∈ L2

π(Γ,H
1
0 (D)) is the exact solution of

our model problem. Using Galerkin orthogonality and the symmetry of the bilinear
form B, we have the error representation ∥ek∥2B = ∥u∥2B − ∥uk∥2B. A computable
estimate of the energy error at the kth step may then be obtained by replacing the
unknown exact solution u by an accurate (reference) solution uref ∈ X(href) ⊗ PPref

in the error representation. In simple terms, we approximate the energy norm of the
true error by

∥ek∥B ≈
(
∥uref∥2B − ∥uk∥2B

)1/2
:= ∥erefk ∥B

and we then compute the effectivity index given by θk = ηk/∥erefk ∥B .
Thus, given that Q2 approximation leads to significantly increased accuracy, a

suitable candidate reference solution for the Q1 results can be generated by running
the adaptive algorithm with a small error tolerance using Q2 approximation on a fine
spatial grid. In our case, X(href) is defined on the uniform grid �href

with href = 2−6,
and Pref is the final index set when the tolerance (tol = 2.5e-04) is reached (e.g., in
the case of fast decay, Pref is the collection of all indices in the second column in
Table 6.2, and the corresponding reference solution uref is the one with the smallest
error estimate plotted on the left-hand plot in Figure 6.2).

The results of these computations are presented in Table 6.3 (for σ̃ = 4) and
in Table 6.4 (for σ̃ = 2). As the iteration converges, the effectivity indices tend to
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decrease. This behavior illustrates the increasing influence of the higher-order Fourier
modes in the coefficient expansion: it reflects the fact that the error estimates ηk are
based on the parameter-free bilinear form B0. It also goes without saying that the
effectivity index is remarkably close to unity at every step!

Table 6.4
The energies, total error estimates, reference errors, and effectivity indices for the sGFEM

solutions at each iteration step in the case σ̃ = 2 (slow decay); in this case ∥uref∥B = 1.90117e-01,
nref=1081665.

k nk ∥uk∥B ηk ∥erefk ∥B θk

0 578 1.89179e-01 2.29925e-02 1.88606e-02 1.22
1 2178 1.89633e-01 1.39596e-02 1.35540e-02 1.03
2 8450 1.89746e-01 1.08927e-02 1.18594e-02 0.92
3 16900 1.89996e-01 6.82414e-03 6.76065e-03 1.01
4 66564 1.90025e-01 5.21155e-03 5.89584e-03 0.88
5 99846 1.90074e-01 3.79683e-03 4.03873e-03 0.94
6 396294 1.90081e-01 3.08163e-03 3.68263e-03 0.84
7 594441 1.90100e-01 2.23643e-03 2.55596e-03 0.87

7. Concluding remarks. Adaptive algorithms are destined to play a crucial
role in the computational solution of elliptic PDE problems with correlated random
data. There are two very important contributions in this paper. First, the energy
orthogonality that is built into stochastic Galerkin approximations can be exploited
to give an innovative energy error estimation strategy that separates the contribution
to the overall error coming from the spatial approximation from the part that is due
to the parametric approximation. Second, our adaptive algorithm utilizes the fact
that estimators corresponding to the parametric approximation can be individually
probed in order to decide how to enrich the approximation space at the next adaptive
step.

In contrast to previous work in this area, which typically estimates a posteri-
ori errors by taking norms of residuals, our approach generates precise estimates of
energy reductions that will occur if different refinement strategies are pursued. Ex-
tensive numerical testing confirms that effectivity indices that are close to unity can
be maintained throughout the adaptive refinement process. A final distinctive feature
is that our software implementation is not limited to the lowest-order conforming spa-
tial approximation—this means that we can solve spatially-regular problems to high
accuracy in an efficient manner.
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inequality in multilevel methods, SIAM Rev., 33 (1991), pp. 405–419.

[9] W. Gautschi, Orthogonal polynomials: computation and approximation, Numerical Mathe-
matics and Scientific Computation, Oxford University Press, New York, 2004. Oxford
Science Publications.

[10] R. G. Ghanem and P. D. Spanos, Stochastic finite elements: a spectral approach, Springer,
New York, 1991.

[11] C. J. Gittelson, An adaptive stochastic Galerkin method for random elliptic operators, Math.
Comp., 82 (2013), pp. 1515–1541.

[12] A. Keese, A review of recent developments in the numerical solution of stochastic partial
differential equations (stochastic finite elements), Technical Report 2003–06, Institute of
Scientific Computing, TU Braunschweig, 2003.
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